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Genome-wide rare variant analysis for
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exomes from two cohorts
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Understanding the impact of rare variants is essential to understanding human health. We

analyze rare (MAF < 0.1%) variants against 4264 phenotypes in 49,960 exome-sequenced

individuals from the UK Biobank and 1934 phenotypes (1821 overlapping with UK Biobank) in

21,866 members of the Healthy Nevada Project (HNP) cohort who underwent Exome+
sequencing at Helix. After using our rare-variant-tailored methodology to reduce test statistic

inflation, we identify 64 statistically significant gene-based associations in our meta-analysis

of the two cohorts and 37 for phenotypes available in only one cohort. Singletons make

significant contributions to our results, and the vast majority of the associations could not

have been identified with a genotyping chip. Our results are available for interactive browsing

in a webapp (https://ukb.research.helix.com). This comprehensive analysis illustrates the

biological value of large, deeply phenotyped cohorts of unselected populations coupled with

NGS data.
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Over the past decade, we have witnessed the growing depth
and breadth of genome-wide association studies (GWAS)
leveraging genotyped common variants. It has been

shown that the most useful and predictive insights about the
genetic effects of common variants only begin to appear as sample
sizes reach into the hundreds of thousands. Modern resources like
the UK Biobank (UKB, www.ukbiobank.ac.uk) that make thou-
sands of phenotypes available to match these genetic data are
proving a boon to our understanding of human genetics. In
addition to identifying specific variants associated with traits,
modern GWAS show that polygenic scores utilizing thousands of
common variants together can explain a sizable portion of phe-
notypic variation and that genetic risk for one phenotype can help
explain variation in another1–3.

Until now, the insights stemming from these large sample sizes
have only been available for common and low frequency variants,
with comprehensive studies not available below a minor allele
frequency (MAF) of about 0.1%. It has been shown that as allele
frequencies drop, the effect sizes of associated variants can
increase beyond the limits imposed by natural selection on more
common variants4–6. In rare disease and family-based studies,
aggregating phenotypically-similar probands to identify asso-
ciated groups of rare variants has been crucial to our under-
standing of disease; exome and genome-based approaches are
now standard of care for evaluating these patients7–10. However,
the impact of rare variants on common traits and sub-clinical
phenotypes has only been examined for selected phenotypes as
large exome and phenotypic datasets have not been available11–13.

The release by the UKB of 49,960 exomes matched to thou-
sands of phenotypes enables, for the first time, large-scale clin-
icalomics discovery, including analyses of rare variants, at scale14.
We have coupled these data to the exomes of 21,866 participants
in the Healthy Nevada Project (HNP, Renown Health, Reno,
Nevada) who consented to research involving their electronic
medical records15 (Table 1).

Population-based analyses to identify statistically significant
associations between traits and rare variants require a different
methodology from the common variant methods to which the
field has grown accustomed16,17. Because the power to identify
statistically significant rare variant associations decreases as the
MAF decreases, discovery analyses require that these rare variants
be grouped together in some way. The most common method to
group rare variants together in population-based genetic analyses
is at the level of the gene, usually via a collapsing test (Fig. 1),
combined multivariate and collapsing test, the sequence kernel
association test (SKAT), or unified tests that can consider both a
burden and nonburden situation (SKAT-O)16,18,19. Analysis
methods that group rare variants have been used in exome and
genome sequencing studies to successfully discover genes asso-
ciated with many traits, such as myocardial infarction, amyo-
trophic lateral sclerosis, and blood pressure11,12,20.

Here, we apply a gene-based collapsing analysis method to
49,960 participants for 4264 phenotypes measured by the UKB as
well as 1934 traits in an additional 21,866 participants from the

HNP cohort. We identify 64 statistically significant gene-based
associations in our meta-analysis of the two cohorts, and 37 for
phenotypes available in only one cohort. We show the unique
power of including rare variants from exome sequence data in
analyses by demonstrating the significant contributions of sin-
gletons to our results and identifying associations that could not
have been discovered with a genotyping chip. Our analysis makes
rare-variant discoveries by combining tens of thousands of
exomes with thousands of phenotypes across multiple health
systems.

Results
Description of included datasets. We used two cohorts in this
analysis (Table 1). The first cohort was the set of sequenced UKB
exomes. The UKB participants are between the ages of 40 and 69,
and each has been extensively phenotyped, including consenting
to making their medical records available. As described pre-
viously, the exome-sequenced set of UKB samples is enriched for
individuals with MRI data, enhanced baseline measurements,
hospital episode statistics, and linked primary care records
(described for Category 170 at http://biobank.ctsu.ox.ac.uk/
crystal/label.cgi?id=170). Of the 49,960 exome-sequenced indi-
viduals, 55% are female, and 40,468 are classified by the UKB as
genetically of European ancestry (field 22006).

The second cohort included the exomes of 21,866 participants
from the HNP (Table 1). These are unselected patients from
Northern Nevada (Renown Health, Reno, Nevada) who con-
sented to research involving their electronic medical records15.
The participants in this cohort are aged 18–89+, and 68% are
female. We classified 17,238 of these as European ancestry using
principal component analysis based on 184,445 representative
common variants (see “Methods”).

Collapsing rare variants. We performed a gene-based collapsing
analysis to identify genes in which rare variants were, in aggre-
gate, associated with a phenotype. In brief, we identified quali-
fying variants that met specific annotation criteria (see
“Methods”) and had a MAF < 0.1%. We explored two gene-based
collapsing models: (1) all non-benign coding and (2) only loss of
function (LoF). The LoF model was used to identify associations
where only putative LoF variants had an effect. In the coding
model, we included 1,074,012 qualifying variants across 16,341
genes in the UKB cohort and 754,459 variants across 17,023 genes
in the HNP cohort (see “Methods”). In the LoF model, we
included 165,480 qualifying variants across 15,276 genes in the
UKB cohort and 111,735 variants across 14,848 genes in the HNP
cohort. There were 15,999 coding model genes and 13,474 LoF
model genes that overlapped between the two cohorts. The
median number of qualifying coding and LoF variants per gene in
the UKB European ancestry population was 34 and six, and 22
coding and four LoF for the HNP cohort, respectively (Fig. 2 and
Supplementary Fig. 1). When looking at all ethnicities, these
numbers rose to 48 coding and seven LoF for the UKB cohort and

Table 1 Study and cohort information.

UK Biobank (UKB) Healthy Nevada Project (HNP)

N individuals: total/European ancestry 49,960/40,468 21,866/17,238
N phenotypes: binary/quantitative 3014/1250 1784/150
N phenotypes unique to cohort: binary/quantitative 1240/1203 10/103
Median N cases for binary traits [range] All: 173 [5:46,192]

Eur: 139 [1:37,983]
All: 153 [5:11,779]
Eur: 126 [2:9, 426]

Median N phenotyped for quantitative traits [range] All: 10,735 [635:49,904]
Eur: 9287 [516:40,428]

All: 2339 [343:19,698]
Eur: 1924 [290:15,542]
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Fig. 1 Gene-based collapsing analysis. a First, variants in each gene are identified by sequencing. b Variants that are predicted to be damaging—those that
are rare and annotated as likely to affect the functionality of the gene, such as coding variants—are then selected for analysis. c Finally, the number of cases
with a qualifying variant in each gene is compared with the number of controls with a qualifying variant, producing one statistical result per gene instead of
one per variant.
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Fig. 2 Histogram of number of qualifying variants per gene in European UKB cohort. a Number of qualifying coding variants per gene. Eleven genes with
>500 variants were excluded from plot. The median of variants per gene is 34 (range [1:2833]). b Number of qualifying coding variants per coding
nucleotide of each gene. Sixteen genes with values >0.2 were excluded from the plot. The median of variants per nucleotide is 0.027 (range
[0.0001:0.991]). c Number of qualifying loss of function (LoF) variants per gene. Six genes with >50 variants were excluded from plot. The median of
variants per gene is six (range [1:178]). d Number of qualifying LoF variants per coding nucleotide of each gene. Nine genes with values >0.05 were
excluded from the plot. The median of variants per nucleotide is 0.005 (range [9.5 × 10−5:0.25]). Plots for all ancestries and HNP cohort can be found in
Supplementary Fig. 1.
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30 coding and seven LoF for the HNP cohort. The median per-
centage of people carrying qualifying variants in each gene was
the same for both the UKB and HNP cohorts, both in European
ancestry and across ethnicities: 0.13% for the coding model, and
0.02% for the LoF model.

Reducing test statistic inflation. We performed our main ana-
lysis in the European ancestry individuals, including related
individuals, using a linear mixed model (LMM) to account for
relatedness and population structure (see QQ plots in Supple-
mentary Fig. 2). To reduce test statistic inflation for binary traits,
genes were only included in the LMM analysis if the expected
number of variant carriers in the case group was at least ten,
based on the overall carrier and phenotype frequency21. This is an
essential step to avoid false positive associations in gene-based
collapsing analysis results, especially when there is a case-control
imbalance (Fig. 3). This cutoff is for an individual to be carrying
any qualifying variant in the gene, and thus it may reflect a
situation where ten people are each carrying their own unique
variants in a gene, with each variant only being seen once. This
criterium does have the consequence of reducing the number of
genes that can be investigated, as genes with low numbers of
variants will not pass the threshold for all analyzed phenotypes.
To compensate and permit coverage of these genes, we performed
a supplementary Fisher’s exact test analysis of the binary traits
that was restricted to unrelated European ancestry individuals.
The Fisher’s exact test did not require a minimum number of
carriers and showed no test statistic inflation (see Fig. 3 and
Supplementary Fig. 2). For quantitative traits, we set a minimum
threshold of five variant carriers (again, of any qualifying variant

in that gene) to avoid overinterpreting signals coming from very
small numbers of carriers.

Gene-based collapsing meta-analysis. We analyzed 4264 phe-
notypes in the currently available European ancestry UKB exome
cohort (Table 1, see Supplementary Data 1 for list of phenotypes).
The corresponding QQ plots showed a general lack of test statistic
inflation (see Supplementary Fig. 2). We then performed the same
analyses in the 1934 phenotypes available from the European
ancestry individuals in the HNP cohort, which was sequenced at
Helix using the Exome+ assay15. We next performed a meta-
analysis of the results from the two separately analyzed cohorts to
identify statistically significant associations with the 1821 phe-
notypes that had been collected in both cohorts. We identified
47 significant associations (meta-analysis p < 3.4 × 10−10)
(Table 2, Supplementary Data 2).

Incidence of independent replication. In addition to the meta-
analysis, we wanted to clarify how often associations that were
statistically significant in the UKB cohort alone would replicate in
the independent HNP cohort. The success rate would inform our
confidence in associations for phenotypes that were only mea-
sured in one cohort and not the other. We therefore also analyzed
the European ancestry UKB data as the discovery cohort, with the
HNP data as the replication cohort. By this method, we identified
39 associations that were statistically significant (LMM p < 3.4 ×
10−10) in the discovery cohort, including 32 of the 47 associations
from the meta-analysis and seven that were not significant in the
meta-analysis. In the replication cohort, all 39 discovery pheno-
type/gene combinations showed directions of effect in that were
consistent with the discovery signal, 32 (82%) achieved nominal
significance (LMM p < 0.05), and 18 (46%) achieved statistically
significant replication (LMM p < 0.001, the Bonferroni threshold
for 39 tests). Given that the sample size was much lower in the
replication cohort, it is not unexpected that some of the discovery
associations did not achieve formal replication significance.

Analysis of phenotypes unique to each cohort. The high rate of
replication of signals identified in the discovery cohort is
encouraging for identifying significant associations for the 2556
phenotypes that could not be incorporated into the meta-analysis:
2443 phenotypes that were measured only in the UKB cohort and
113 that were only in the HNP cohort. This cohort-specific
analysis identified 30 additional statistically significant associa-
tions, all from the UKB cohort (Table 2, Supplementary Data 2).

Analysis including all ancestries. Because we used an LMM,
which can account for ancestry differences between individuals,
we additionally performed an analysis that included all ancestries.
The resulting QQ plots showed a general lack of test statistic
inflation (see Supplementary Fig. 2). Of the 77 significant Eur-
opean ancestry associations described above, 64 (83%) generated
a lower p value when the additional ancestries were added to the
European subset, by a median of 3.4 orders of magnitude. In
contrast, for the 17% of associations where the p value increased,
it was only by a median of 0.6 orders of magnitude. Given the
controlled test statistic inflation for these analyses, analyzing
ancestries together in these datasets appears to be a reasonable
method to boost power for discovery.

We therefore identified associations that were only significant
in the mixed ancestry analysis. We identified 17 from the meta-
analysis across cohorts and seven more from the analysis of
phenotypes available in only one cohort (Table 3 and Supple-
mentary Data 2). In addition, we found that each of the
associations that were statistically significant in the mixed
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Fig. 3 Overlaid QQ plots for the coding model with the phenotype atrial
fibrillation. This phenotype has a 1:22 case:control ratio. Shown are the
results for a linear mixed model (LMM) meta-analysis of all European
ancestry individuals with no minimum number of variant carriers required
(black), with at least ten case carriers observed (red), and with at least ten
case carriers expected in the case group based on the overall frequency
(cyan), as well as a Fisher’s exact test (FET) of unrelated European ancestry
individuals and all genes included (blue). The second to last condition is the
requirement we set for our main analysis results. The one significant
association is TTN, known from previous studies to be involved in
phenotypes related to atrial fibrillation28. This association is significant
(meta-analysis p < 3.4 × 10−10) in the LMM analysis, but it is difficult to
distinguish from test statistic inflation without using the 10 expected case
carriers cutoff (cyan). There is no inflation in the Fisher’s exact test of
unrelated individuals, but this association is not significant in that analysis.
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population also generated p values below 1 × 10–5 in the
European ancestry subset (with the exception of some associa-
tions of HBB against various blood phenotypes, as this gene had
very few European ancestry variant carriers in the UKB cohort).
These associations were therefore already strong in the European
ancestry subset but appeared to need a larger sample size to push
them to significance.

Summary of gene-based results. The vast majority of the sig-
nificant gene-phenotype associations identified were consistent
with the current knowledge in the field (see Supplementary
Data 2 for details). For example, rare variants in PCSK9 and A-
POB were associated with low density lipoprotein (LDL)
levels, and rare LoF variants in TUBB1 were associated with
platelet count.

Table 2 Statistically significant associations from the European ancestry analysis.

Method Lead
gene

Lead
phenotype

Lead
model

UKB carrier
n (%)b

UKB
p value

HNP carrier
n (%)b

HNP
p value

Meta
p value

LMM ALPL Alkaline phosphatasea Coding 257 (0.68%) 2.4 × 10−186 68 (0.65%) 2.5 × 10−39 5.3 × 10−223

LMM SLC22A12 Uratea Coding 314 (0.83%) 3.3 × 10−108 8 (0.46%) 2.1 × 10−4 5.5 × 10−111

LMM GOT1 Aspartate aminotransferase Coding 113 (0.3%) 5.4 × 10−58 28 (0.27%) 2.2 × 10−13 1.6 × 10−69

LMM ABCA1 HDL cholesterola Coding 449 (1.26%) 2.9 × 10−35 88 (0.98%) 2.3 × 10−10 4.9 × 10−44

LMM APOB LDL directa LoF 96 (0.25%) 8.9 × 10−31 8 (0.09%) 9.7 × 10−11 8.5 × 10−40

LMM GPT Alanine aminotransferase Coding 126 (0.33%) 1.9 × 10−28 40 (0.39%) 2.4 × 10−6 4.0 × 10−33

FET HBB Thalassaemia LoF 1 (25%) /0 (0%)b 1.2 × 10−4 8 (47.06%)/5
(0.03%)b

1.7 × 10−21 1.2 × 10−24

LMM TUBB1 Platelet counta Coding 233 (0.59%) 1.2 × 10−15 71 (0.66%) 2.9 × 10−7 2.8 × 10−21

FET JAK2 D45 Polycythaemia vera Coding 13 (36.11%)/209
(0.61%)b

1.7 × 10−19 3 (10.34%)/77
(0.53%)b

5.4 × 10−4 1.7 × 10−19

LMM KLF1 Mean corpuscular haemoglobin LoF 27 (0.07%) 5.0 × 10−15 4 (0.04%) 8.9 × 10−4 2.3 × 10−17

LMM APOA5 Triglycerides LoF 42 (0.11%) 2.0 × 10−12 10 (0.11%) 1.1 × 10−2 1.0 × 10−13

LMM GP9 Mean platelet volumea Coding 85 (0.22%) 5.2 × 10−11 28 (0.27%) 1.5 × 10−3 3.1 × 10−13

LMM ANGPTL3 Cholesterol Coding 175 (0.46%) 3.2 × 10−10 67 (0.62%) 6.8 × 10−4 8.8 × 10−13

LMM GCK Glycated haemoglobin Coding 58 (0.15%) 3.0 × 10−12 9 (0.17%) 8.4 × 10−2 9.3 × 10−13

LMM TTN I48 Atrial fibrillation and flutter LoF 41 (2.38%)/311
(0.8%)b

1.1 × 10−11 12 (1.48%)/132
(0.8%)b

2.8 × 10−2 7.6 × 10−12

FET COL4A4 R31 Unspecified haematuria LoF 15 (1.2%)/
51 (0.15%)b

1.1 × 10−8 5 (0.47%)/7
(0.05%)b

1.0 × 10−3 1.2 × 10−10

FET BRCA2 Z40.0 Prophylactic surgery for
malignant neoplasm risk-factors

LoF 7 (12.28%)/154
(0.45%)b

1.1 × 10−8 2 (9.52%)/
56 (0.38%)b

3.1 × 10−3 1.4 × 10−10

LMM CST3 Cystatin C Coding 56 (0.15%) 9.6 × 10−52

LMM SHBG SHBG Coding 149 (0.42%) 1.1 × 10−33

LMM LDLR Non-cancer illness code, self-reported:
high cholesterol

Coding 79 (1.54%)/173
(0.49%)b

1.9 × 10−18

LMM SLC45A2 Hair colour: Blonde Coding 54 (1.16%)/112
(0.31%)b

1.2 × 10−17

LMM STAB1 Median T2star in putamen (right) LoF 38 (0.4%) 2.1 × 10−14

LMM GP1BB Mean platelet volumec Coding 33 (0.08%) 3.0 × 10−12

LMM SMAD6 6mm weak meridian (right) LoF 30 (0.11%) 3.1 × 10−11

LMM CRP C-reactive protein Coding 66 (0.17%) 6.6 × 10−11

LMM MC1R Hair colour: Red Coding 31 (1.75%)/222
(0.57%)b

2.2 × 10−10

D45, I48 and R31 refer to ICD-10-CM diagnosis codes, Median T2star is a measurement from a brain MRI, 6 mm weak meridian (right) is from keratometry of the right eye. When multiple phenotypes
and/or models (coding, LoF) were significantly associated with a gene, only the lead phenotype and model are shown. When multiple genes were associated with a trait, only the top gene is shown. All
results can be found in Supplementary Data 2
LMM linear mixed model, FET Fisher’s exact test, LoF loss of function, HDL high density lipoprotein, LDL low density lipoprotein, SHBG sex hormone binding globulin
aAdditional genes associated with alkaline phosphatase include GPLD1, ASGR1, and ABCB11; with HDL cholesterol include LCAT, CETP, and SCARB1; with LDL direct include PCSK9; with platelet count
include MPL and ITGA2B; with urate include SLC2A9; and with mean platelet volume include IQGAP2, GFI1B, and GP1BA
bFor binary traits, the information shown is case n (%)/ctrl n (%)
cAlthough this phenotype was included in the meta-analysis, this particular gene did not have carriers in the HNP cohort

Table 3 Statistically significant associations from the mixed ancestry analysis.

Gene Lead
model

Lead
phenotype

UKB carrier n
(%)a

UKB
p value

HNP carrier n
(%)a

HNP p value Meta p value Eur carrier
n (%)a,b

Eur
p valueb

UGT1A1 Coding Total bilirubin 90 (0.19%) 3.4 × 10−14 19 (0.15%) 1.5 × 10−2 4.3 × 10−15 77 (0.16%) 5.5 × 10−9

FCGRT Coding Albumin 72 (0.16%) 4.9 × 10−12 28 (0.22%) 2.4 × 10−2 8.5 × 10−13 72 (0.16%) 9.2 × 10−8

TMPRSS6 Coding Mean corpuscular
haemoglobin

389 (0.8%) 1.5 × 10−11 105 (0.78%) 5.0 × 10−2 5.8 × 10−12 369 (0.73%) 6.3 × 10−9

SLCO1B3 Coding Total bilirubin 531 (1.14%) 6.7 × 10−10 135 (1.06%) 1.6 × 10−2 4.5 × 10−11 574 (1.18%) 1.4 × 10−8

OCA2 Coding Hair colour: Blonde 32 (0.61%)/65
(0.15%)a

1.5 × 10−14 31 (0.66%)/46
(0.13%)a

2.5 × 10−15c

TYRP1 Coding Hair colour: Blonde 65 (1.24%)/
231 (0.52%)a

3.4 × 10−12 55 (1.18%)/180
(0.5%)a

6.6 × 10−9

SEC23B Coding Red blood cell
distribution width

341 (0.7%) 1.9 × 10−10 279 (0.71%) 3.4 × 10−10

All results shown are from the LMM with all ethnicities. When multiple phenotypes and/or models (coding, LoF) were significantly associated with a gene, only the lead phenotype and model are shown.
All results can be found in Supplementary Data 2
aFor binary traits, the information shown is case n (%)/ctrl n (%)
bEur carrier and Eur p value columns: For the phenotypes measured in both cohorts, the European meta-analysis values are shown. For the phenotypes measured only in UKB (blank for HNP), the UKB
Eur values are shown
cWhile OCA2 was significantly associated with hair colour in the European ancestry subset, that subset had only nine expected case carriers, and so it failed our screening. In the Fisher’s exact test in
unrelated individuals with no carrier cutoff, the p value is 1.3 × 10−8
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We also found several associations that could be reasonably
expected given current knowledge in the field but had not been
previously identified in this type of population. For example, we
found that rare coding variants in GP1BB were associated with
higher mean platelet volumes in the general population,
consistent with their previous association with some familial
bleeding and platelet disorders22. As another example, we
identified associations between rare coding variants in TYRP1
and blonde hair. A variant in this gene had previously been
shown to cause blonde hair in dark-skinned individuals of
Melanesian ancestry from the Solomon Islands, but until now it
was thought that this gene did not play a role in blonde hair in
other ancestries23,24.

Additional discoveries were novel. For example, we found that
rare coding variants in STAB1 were associated with median
T2star MRI measures in several brain structures, with the
strongest association in the putamen. As STAB1 is a transmem-
brane receptor that is thought to play a role in angiogenesis, this
finding provides novel hypotheses for further study. We also
found an association of loss-of-function variants in SMAD6 with
eye measurements. SMAD6 is a member of the SMAD family of
signal transducers, inhibitors of BMP signalling. While its
suggested role in human eye development is novel, BMP
signalling pathways are involved in many human development
processes (reviewed in ref. 25), including eye development, and a
recent study found that the SMAD6 mouse homologue, Smad6, is
essential for blood vessel function in the developing mouse
retina22.

In addition to the associations that met our stringent
significance criteria, there were a number of additional associa-
tions that are worth mentioning. There were multiple associations
that generated significant p values in the meta-analysis but did not
meet our criteria of having a better p value in the meta-analysis
than in each individual cohort. For example, we observed a
significant association between albumin levels and variants in the
gene that encodes albumin, ALB (meta-analysis p= 7.3 × 10−19),
but the meta-analysis p value was higher than the UKB-specific p
value because there was only one carrier in the HNP cohort. In
addition, we identified a novel association between LoF variants in
the PAPPA gene and decreased height (p= 1.7 × 10−10 in the
meta-analysis of unrelated individuals), but there were only two
carriers in the HNP cohort and the p value rose above significance
in the main LMM analysis that included relatives. While this gene
has been previously implicated in GWAS of height, this is the first
time that rare variants in this gene have been found to be
significantly associated with height in a human population26,27. As
one more example, our meta-analysis identified as significant (p=
2.5 × 10−20) the known association between LoF variants in TTN
and the ICD10 code I48 for dilated cardiomyopathy28. However,
there were only three expected case carriers, which failed our
LMM threshold, and the Fisher’s exact test of unrelated
individuals was just shy of significant (p= 6.9 × 10−10). None-
theless, our main LMM analysis did identify an association
between this gene and the related ICD10 code I42 for atrial
fibrillation, a more common phenotype that included more
expected variant carriers and thus passed our criteria (Table 2,
Fig. 3).

Individual variant analysis. Mapping the precise effects of each
contributing variant can elucidate the underlying biology of an
association. We therefore performed association analyses of each
individual rare variant to show the effects they had on the overall
signal for each associated gene. For example, variants in SLC2A9
are associated with low urate levels (Fig. 4a, b). The protein
encoded by this gene reabsorbs urate in the proximal tubules of

the kidneys. Variants that disrupt the transmembrane regions or
lower gene expression are known to be associated with hypour-
icemia29. We find that the association signal in this gene is most
heavily concentrated in missense variants in the transmembrane
regions of the protein, especially in the first half of the protein
(Fig. 4a, b). Of the >40 variants associated with decreased urate
levels, 88% are in or directly adjacent to a predicted transmem-
brane region (p < 0.05 from a Fisher’s exact test comparing the
proportion of positively-associated missense variants in or adja-
cent to this domain compared with outside of this domain).

Likewise, variants in different portions of GFI1B have distinct
effects on mean platelet volume (Fig. 4c). Consistent with the
literature, variants in the zinc finger domains of this gene are
associated with increased platelet volumes (p < 0.05 from a
Fisher’s exact test comparing the proportion of positively-
associated missense variants in zinc fingers to outside of zinc
fingers), but we make the observation that some variants between
zinc fingers 3 and 4 may have an effect in the opposite direction
(p < 0.05 from a Fisher’s exact test comparing the proportion of
negatively-associated missense variants in this region to outside
of this region, even after excluding all zinc finger variants)30,31.

In one more example, a significant association is observed
between variants in ASGR1 and alkaline phosphatase AP levels.
Previously, two LoF variants in this gene were found to be
associated with AP levels, coronary artery disease, and non-HDL
cholesterol32. In our analysis, the association is most strongly
influenced by LoF variants, but many missense variants
contribute to the signal as well (Fig. 4d).

Finally, we investigated what proportion of the gene-based
signals could be traced back to one causal variant as opposed to
requiring the grouped effects of multiple rare variants to achieve
significance. First, we found that only 16% of the significantly
associated genes had a single variant within the gene whose p
value was statistically significant after multiple test correction. Of
these, we found that only 7% of associations had a single variant
with a better p value than the gene as a whole. Second, we re-
analyzed the significant associations after including the lead
variant for each gene as a covariate (except for four associations
where all qualifying variants in the gene had two or fewer carriers;
Supplementary Data 2). After factoring out the signal from the
most significant variant in each gene, we found that 41% of
associations had their p values rise sufficiently to fail statistical
significance: yet, 85% of the associations still generated a p value
below 5 × 10−8 with the lead variant accounted for, and only 2%
clearly had their entire signal driven by the lead variant (p > 0.05
after removing lead variant). Together, our results indicate that
while some significant associations had single variants that made
major contributions to their effects, few were completely
explained by individual variants.

Discussion
Here we present an analysis to catalogue the effects of rare and
unique coding variants on thousands of phenotypes across two
large cohorts. Until now, rare variant analyses using next gen-
eration sequence data have been performed on a small number of
phenotypes at a time such as in schizophrenia, developmental
delay, and diabetes33–35. Most of these studies were designed
around specific phenotypes and collected targeted, disease-
specific samples. Analyzing thousands of traits in a biobank-
scale population presents additional challenges due to the rarity
of the variants, which can lead to false positive associations. The
best practices that we suggest to produce reliable results include
restricting to high quality regions of the genome, setting a very
low MAF cutoff, and requiring that at least a minimum threshold
of individuals carry qualifying variants in the analyzed gene. Our
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methodology reduces test statistic inflation, and our success is
demonstrated by the independent replication of most results.

Our analysis found that the majority of statistically significant
gene-based associations were not driven by single explanatory
variants. In fact, the signal for these associations was sufficiently
dispersed over multiple variants per gene such that if aggregation
at the gene-level was not utilized, 84% of the associated genes
would not have had a single variant that exceeded the threshold
for a multiple-testing correction. Furthermore, when the asso-
ciation for each gene was performed conditional on the single
most significant variant in each gene, the p value for the gene as a
whole remained below 5 × 10−8 for 85% of the associations.

Importantly, the associations identified in this analysis can only
be obtained using sequencing techniques, as opposed to chip-
based methods. All of the variants used in our analysis have a
MAF below 0.1%, which is below the range of frequencies that
can currently be comfortably imputed. Furthermore, 38% of the
variants included in our analysis were singletons–only observed

once in our dataset and never reported in gnomAD36. Such
unique variants are not accessible by chip and were vital to our
study’s success. In fact, 88% of our statistically significant asso-
ciations generated higher, i.e., worse, p values–by a median of 2
orders of magnitude–when the singletons were removed from the
analysis.

In genes where multiple rare variants contribute to the signal,
we find that mapping the precise contributions of each variant in
the context of the secondary and tertiary structures can reveal the
most functional parts of the gene for the given phenotype and
provide additional support for a statistical association (Fig. 4).
Mapping individual missense variants to their sequence context
after a gene-based discovery can also refine the classification of
missense variants as true LoF. Corresponding diagrams mapping
the locations of the rare variants in each significant gene-
phenotype association can be found in Supplementary Fig. 3.
Formal statistical tests of domain enrichment and discovery
analyses that focus on different gene regions will doubtless
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Fig. 4 Distribution of effects of rare variants in select genes in the UKB cohort. a SLC2A9 protein and urate levels. The legend shows the gene, its
associated phenotype, and the effect size (beta). The effect size is computed from the gene-based collapsing model, in which individuals were coded as
either having or not having a qualifying variant. A positive value indicates that variant carriers have, on average, higher values for the phenotype, while a
negative value indicates that variant carriers have lower values. The amino acid positions are shown on the x-axis, with the PFAM domain highlighted. The
y-axis displays the beta of each individual variant, with negative values shown below and positive values above the horizontal axis. Variants are indicated
according to their consequence as shown and labelled according to their amino acid change or splice site variation. The number inside the circle is the
number of people carrying that variant. Darker lines connecting the variants to the gene and darker-filled shapes indicate more significant p values for the
association. b Membrane topology plot of SLC2A9 showing variants with positive effect size (green) on urate levels and variants with negative effect size
(pink). SLC2A9 (Glut9) reabsorbs urate in the proximal tubules of the kidneys. Variants that disrupt the transmembrane regions or lower gene expression
are known to be associated with hypouricemia29. Here, 88% of the variants with negative betas, associated with lowered urate levels, are in or directly
adjacent to a predicted transmembrane region, as opposed to only 55% of the variants with positive effect size. c GFI1B protein and mean platelet volume.
Consistent with the literature, variants in the zinc finger domains are associated with increased platelet volumes, but we make the observation that some
variants in between zinc fingers 3 and 4 may be having an effect in the opposite direction30,31. d ASGR1 protein and alkaline phosphatase levels. In addition
to the known effects of LoF variants, we show that missense variants are also playing a role32. Plots of the other significantly associated genes are included
in Supplementary Fig. 3.
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uncover novel associations but will also often have less power due
to the small number of people who will be carrying rare variants
in each domain.

Our analysis differs from the one presented by Van Hout et al.,
who performed a gene-based analysis on the European ancestry
subset of this same UKB dataset and with some of the same phe-
notypes14. Some of our analysis differences included our use of a
replication dataset, our more stringent MAF cutoff (1% vs. 0.1%),
and collapsing model differences (LoF vs. both LoF and coding
models). We also identified 5 of the 25 gene-based associations
reported by Van Hout et al. (between TUBB1, IQGAP2, and KLF1
and blood cell phenotypes)14. The associations that we did not
confirm were largely due to differences in our analysis techniques:
the p value cutoff (three associations), the MAF cutoff (five asso-
ciations), the requirement for a minimum number of carriers (six
associations, none with p values via Fisher’s exact test that met our
threshold), and restriction to high-confidence regions (three asso-
ciations) (see Supplementary Table 1 for details). While the reasons
for many of these study differences are innocuous, the associations
with too few variant carriers in particular can be prone to false
signals and will require larger sample sizes to confirm.

Many of the significant signals that we find reflect associations
that had already been established in rare familial diseases (see
Supplementary Data 2 for details). For example, we show that
rare coding variants in GP1BB are associated with higher mean
platelet volumes; previous studies have shown that variants in this
gene cause certain familial bleeding and platelet disorders22.
Going beyond the acknowledgment that rare variants in this gene
can cause these rare conditions, our findings contextualize what it
means for any person who carries a non-benign variant in this
gene: our work shows more broadly how rare variants in this gene
may manifest sub-clinical blood-related phenotypes in the general
population. This method brings us closer to a future where a
single comprehensive calculation (incorporating both common
and rare variation) is able to more accurately predict phenotypic
outcomes of polygenic variation towards an improvement in our
understanding of human health.

Our analysis has a number of limitations. The analysis included
rigid criteria for variant qualification and grouped variants at the
most basic level, the gene. Future studies in this dataset can utilize
more complex weighting algorithms as opposed to rigid cutoffs and
can explore different ways of grouping rare variants, such as by gene
family or by exon18. Our study used a simple dominant model of
inheritance, while recessive models and models that include
gene–gene or gene–variant interactions will doubtless provide novel
insights as well. Our study was also restricted to the CDS portions
of the genome, and future work must expand further, especially to
comprehensively analyze rare variants in non-coding regions.
Although our initial explorations did not find utility in variance-
component score and weighted analysis methods or methods that
utilize variants beyond the coding regions (see Supplementary Note
on our analyses utilizing the SKAT test and CADD scores19,37,38),
additional work focusing on these areas will likely identify novel
associations, as they have proved useful in some prior studies39–42.
Finally, many phenotypes included in this study had a small
number of cases, which reduced the power for discovery, and will
no doubt become better powered as more of these large-scale
population studies are completed.

This analysis presents one of the first forays into a new stan-
dard for human genetics research. As the sample sizes of cohorts
with extensive phenotypic data and next generation sequencing
grows, both through publicly available cohorts such as the UKB
and population-based screening efforts such as the Healthy
Nevada Project, we are now able to investigate the biological
impact of rare variants with the same fine-tuned precision with
which we currently assess the effects of common variants. A

wealth of discoveries await us as we embark on this next phase of
incorporating rare genome sequencing information into truly
personalized medicine. We provide an interactive browser of
our results as a resource to the human genetics community
(https://ukb.research.helix.com/) to facilitate these discoveries.

Methods
Samples, phenotypes, and variant annotation. We conducted the UKB research
using the UK Biobank Resource under Application Number 40436. We utilized the
FE version43 of the UKB PLINK-formatted exome files (field 23160), a field-
standard and stringent method. It has been reported that this version is missing
some variants, specifically in regions of the genome with alternate haplotypes, but
we proceeded with this version as most genes are unaffected, we restricted to the
Genome in a Bottle high-confidence regions of the genome as described below, and
a new FE file had not yet been released at the time of this writing44,45. We also used
the imputed genotypes from GWAS genotyping (field 22801-22823). The HNP
study was reviewed and approved by the University of Nevada, Reno Institutional
Review Board (IRB, project 956068-12), and all participants provided informed
consent. The HNP samples were sequenced at Helix using the Exome+ assay, a
proprietary exome that combines a highly performant medical exome with a
microarray-equivalent SNP backbone into a single sequencing assay (www.helix.
com)46. Data were processed using a custom version of Sentieon and aligned to
GRCh38, with variant calling and phasing algorithms following GATK best
practices47. Imputation of common variants in the HNP data was performed by
pre-phasing samples and then imputing. Pre-phasing was performed using refer-
ence databases, which include the 1000 Genomes Phase 3 data. This was followed
by genotype imputation for all 1000 Genomes Phase 3 sites that have genotype
quality values <20. Imputation results were then filtered for quality so that only
high precision imputed variant calls were reported.

Variant annotation was performed with VEP 95.348. Coding regions were
defined according to Gencode version GENCODE 29, and the Ensembl canonical
transcript was used to determine variant consequence49,50. Variants were restricted
to CDS regions. Genotype processing was performed in Hail 0.2.2151.

For the collapsing analysis, samples were coded as a 1 for each gene if they had a
qualifying variant and a 0 otherwise. We defined “qualifying” as coding (stop_lost,
missense_variant, start_lost, splice_donor_variant, inframe_deletion,
frameshift_variant, splice_acceptor_variant, stop_gained, or inframe_insertion) and
not Polyphen or SIFT benign (Polyphen benign is <0.15, SIFT benign is >0.05)52,53.
We also ran a LoF model that only included LoF variants (stop_lost, start_lost,
splice_donor_variant, frameshift_variant, splice_acceptor_variant, or stop_gained).
We used a MAF cutoff of 0.1%. To pass the MAF filter, the variant must be below
that frequency cutoff in all gnomAD populations36 as well as locally within each
population analyzed: for the UKB exomes, this includes unrelated European,
African, East Asian, South Asian, and other ancestry groups. For the HNP exomes,
this includes unrelated European, African, East Asian, South Asian, Latino, Native
American, and other ancestry groups. For the HNP exomes, only PASS calls were
used in the analysis, with an average depth of 62.9×. Qualifying variants were also
restricted to the high-confidence regions of the genome as defined by the Genome in
a Bottle resource for NA1287844.

HNP phenotypes were collected from Epic/Clarity EHR data. Microsoft SQL
Server was used as a backend database for record storage. SAS 9.4 M5 with SAS/
ACCESS to SQL Server was used to perform ETL on these data in preparation for
analysis, also in SAS using Base SAS and SAS/STAT. UKB phenotypes were
processed using the Neale lab modified version of PHESANT, which rank-
transforms quantitative traits to normally distributed data and divides categorical
traits into binary sets; HNP quantitative phenotypes were also rank-
normalized54,55. ICD-10 diagnosis code phenotypes were coded with 1 if
participants had the ICD-10 code recorded at least once in their series of Electronic
Health Records (EHR), and otherwise with a 0; controls were restricted to one sex
when appropriate.

Phenotypes were chosen to have at least 50 cases for binary traits (with at least 5
from each cohort) and 400 phenotyped individuals for quantitative traits across the
combined UKB and HNP cohorts. For HNP phenotypes, there was an additional
step where the pre-transformed median of quantitative traits was taken when
multiple measurements were available for a person.

Analysis. We used BOLT-LMM for the main statistical analysis56. Briefly, this
method builds a LMM using common variants to account for the effects of
relatedness and population stratification. The covariates included are age and sex.
In the HNP analysis, the Helix bioinformatics pipeline version for alignment and
variant calling was also included as a covariate in the model to account for batch
effects across different versions of the pipeline.

A representative set of LD-pruned, high-quality common variants were
identified for both the creation of principal components and for the random effects
and trait heritability in the BOLT-LMM mixed model for collapsed gene analyses
and individual variant analyses. Inclusion in this set required MAF >1%,
imputation with reasonable accuracy in UKB (information score (INFO) >0.7) and
high coverage or imputation in Helix samples (>99% of samples with a sequence-
based call or an imputed call with genotype probability (GP) >0.95), LD-pruned
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(r2 < 0.6) to a set of 184,445 variants. This set of variants was genome-wide,
including both coding and noncoding regions.

Our main gene-based LMM analyses required at least five carriers of qualifying
variants in analyzed genes for quantitative traits and at least ten carriers of
qualifying variants to be expected in the smaller sample group for analyzed genes
for each binary trait, similar to previously suggested guidelines21.

Meta-analysis was performed using the weighted Z-score p value in METAL57

on the summary stats from each separate BOLT-LMM analysis. We required at
least one variant carrier from both the UKB and the HNP groups, the meta p value
to be lower (better) than the p values for either individual cohort, and, for binary
traits, at least 10 expected case carriers overall for each analyzed gene.

BOLT-LMM determined that 1438 phenotypes had 0 heritability based on the
184,445 common variants in the main European ancestry UKB analysis, and 359
phenotypes in the HNP cohort (for analyses including all ancestries, the phenotype
counts were 1287 in the UKB cohort and 82 in the HNP cohort). Analyses of rare
variants in these phenotypes therefore could not be completed using the BOLT-
LMM algorithm. When quantitative, these phenotypes were analyzed by linear
regression of unrelated European-ancestry individuals using PLINK 2.0 with age,
sex, and the first 10 European-specific principal components (calculated on these
184,445 variants) included as covariates58,59. When binary, these phenotypes were
analyzed by Fisher’s exact test using PLINK. Fisher’s exact test was chosen over
logistic regression due to its robustness and lack of test statistic inflation
in situations with a small number of case carriers. The Fisher’s exact test was also
used to identify associations when <10 cases were expected to be carrying
qualifying variants based on the overall prevalence. We then performed meta-
analysis on the summary stats from each separate PLINK analysis, again using the
weighted Z-score p value from METAL57. Information on which analyses were
performed for which phenotype can be found in Supplementary Data 2.

Information on additional models tried, including a SKAT model and CADD-
based cutoffs, can be found in the Supplementary Note.

A conservative Bonferroni correction for multiple tests was set for 17,365
coding model genes (342 unique to UKB, 1024 unique to HNP, and 15,999
overlapping) plus 16,650 LoF model genes (1802 unique to UKB, 1374 unique to
HNP, and 13,474 overlapping) × 4377 total phenotypes, thus 3.4 × 10−10. For
replication analyses, Bonferroni correction was set for the total number of tests
done for that particular replication.

We also performed a conditional analysis to test the effects of individual
variants on the overall significance of the statistically significant associations. We
identified the lead variant contributing to each gene-based signal, i.e., the variant
with the best p value per significant gene/phenotype combination. We then
performed the gene-based collapsing analysis including that lead variant as a
covariate and observed how the p value for the gene as a whole changed (see
Supplementary Data 2). For this analysis, we required the lead variant to have at
least 3 carriers in the UKB analysis.

Gene plots were made using trackViewer and Protter and annotated with Pfam
domains v. 32.060–62.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
UKB data are available for download (https://www.ukbiobank.ac.uk/). Summary statistics
for the UKB results are available for download at https://s3.amazonaws.com/helix-
research-public/ukbb_exome_analysis_results/README.txt, and also browseable with
an interactive web tool at https://ukb.research.helix.com. Summary statistics for the HNP
results are available upon request without restriction. Restrictions apply to the availability
of the HNP data, which were used under license for the current study, and thus are not
publicly available. The HNP data are available for qualified researchers upon reasonable
request to Craig.Kugler@dri.edu and Joe.Grzymski@dri.edu and with permission of the
Institute for Health Innovation and Helix. Researchers who would like to obtain the raw
data related to this study will be presented with a data user agreement, which requires
that the participants will not be re-identified and no data will be shared between
researchers or uploaded onto public domains.
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