Genetic association tests for rare variants

2025 International Statistical Genetics Workshop
Duncan Palmer

Learning objectives

Talk

- Understand rationale and methodology behind rare variant association testing
- Be aware of approaches to increase statistical power

Practical

- Perform simple burden tests using R
- Get SAIGE-gene running

- 1. Interpretability of results
- 2. Large effects
- 3. Translational opportunities

- 1. Interpretability of results
- 2. Large effects
- 3. Translational opportunities

- 1. Interpretability of results
- 2. Large effects
- 3. Translational opportunities

- 1. Interpretability of results
- 2. Large effects
- 3. Translational opportunities

Variants with large effects on protein function are often rare, due to **negative selection**.

Figure adapted from Karczewski et al. Nature 2020

Single-variant association tests are underpowered for rare variants

Sample size required to observe a variant with MAF = *p* with > 99.9% chance is...

MAF	0.1	0.01	0.001	0.0001
N	33	344	3,453	34,537

Variants with large effects on protein function are often rare, due to **negative selection.**

Collectively, rare variants are very common:

~200 very rare (MAF<0.1%) coding variants per person

Gudmondsson et al., 2021 "Variant interpretation using population databases: Lessons from gnomAD"

Rare variant collapsing tests

Rather than testing individual variants, we can **aggregate** across a gene or functional unit

Adapted from Cirulli et al. Nat Comms 2020

Simple burden test

Genotype is associated if prevalence of disease is different between genotype carriers vs. non-carriers:

Odds ratio =

Case/control ratio in carriers

Case/control ratio in non-carriers

= _	a/c	= _	a/b
	b/d		<mark>c</mark> /d

Calculating statistical significance:

Fisher's Exact Test

(a+b)!(c+d)!(a+c)!(b+d)!

a! b! c! d! (a+b+c+d)!

Duncan

 $\binom{28}{3}\binom{21}{9}$

10

Methods for region/gene-based tests

Consider the following question: Given *N* independent observations, and suppose we know:

- Phenotype we're interested in
- Covariates we need to adjust
- Genotype information of rare variants in a region

Can we get an appropriate *P*-value for association between rare variation in this region, and the phenotype?

Model

For continuous traits

$$Y = X\alpha + G_1\beta_1 + G_2\beta_2 + \dots G_q\beta_q + \varepsilon$$

For **binary** traits

$$logit(\pi) = log\left(\frac{\pi}{1-\pi}\right) = X\alpha + G_1\beta_1 + G_2\beta_2 + \dots G_q\beta_q$$

 π : probability of having disease given X and G

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_q = 0$$

Model for burden tests

Reduce the number of degrees of freedom

$$logit(\pi) = log\left(\frac{\pi}{1-\pi}\right) = X\alpha + \beta_c \left(G_1 + G_2 + \dots G_q\right)$$

Incorporate weights for each variant

$$logit(\pi) = X\alpha + \beta_c \left(w_1 G_1 + w_2 G_2 + \dots w_q G_q \right)$$

 $w_j \sim Beta(MAF, 1, 25)$

 π : probability of having disease given X and G

Score test to look for association between rare variant burden and a binary trait

Rare variant collapsing tests

Burden tests

(unidirectional, linear statistics)

- CAST [Morgenthaler & Thilly, 2007]
- CMC [Li & Leal, 2008]
- w-Sum [Madsen & Browning, 2009]
- SST [Morris & Zeggini, 2010]
- VT [Price et al., 2010]

Best powered when:

- All variants are causal
- All variants have the **same** direction of effect

Rare variant collapsing tests

Burden tests

(unidirectional, linear statistics)

- CAST [Morgenthaler & Thilly, 2007]
- CMC [Li & Leal, 2008]
- w-Sum [Madsen & Browning, 2009]
- SST [Morris & Zeggini, 2010]
- VT [Price et al., 2010]

Best powered when:

- All variants are causal
- All variants have the same direction of effect

What about when the effects vary in direction?

Score test for rare variant association using variance components

Collapsing tests

Burden tests

(unidirectional, linear statistics)

- CAST [Morgenthaler & Thilly, 2007]
- CMC [Li & Leal, 2008]
- w-Sum [Madsen & Browning, 2009]
- SST [Morris & Zeggini, 2010
- VT [Price et al., 2010]

Better powered when:

- Not all variants are causal
- Variants have **different** directions of effect

Variance component

(bidirectional, quadratic statistics)

- C-alpha [Neale et al., 2011]
- SKAT [Wu et al., 2011]

Collapsing tests

Burden tests

(unidirectional, linear statistics)

- CAST [Morgenthaler & Thilly, 2007]
- CMC [Li & Leal, 2008]
- w-Sum [Madsen & Browning, 2009]
- SST [Morris & Zeggini, 2010]
- VT [Price et al., 2010]

Variance component

(bidirectional, quadratic statistics)

- C-alpha [Neale et al., 2011]
- SKAT [Wu et al., 2011]

Hybrid tests

(combining both)

- SKAT-O [Lee et al., 2012]
- Minimum P [Derkach et al., 2013]
- Fisher's statistic [Derkach et al., 2013]

What about combining the two?

$$Q_{B} = \left[\sum_{i=1}^{n} (y_{i} - \hat{\pi}_{i}) \left(\sum_{j=1}^{m} w_{j} g_{i,j}\right)\right]^{2} \qquad \begin{array}{c} \beta > 0 \\ \beta = 0 \\ \beta < 0 \end{array}$$

$$Q_{S} = \sum_{j=1}^{m} w_{j}^{2} \left[\sum_{i=1}^{n} g_{i,j} (y_{i} - \hat{\pi}_{i})\right]^{2} \qquad \begin{array}{c} \beta > 0 \\ \beta = 0 \\ \beta < 0 \end{array}$$

SKAT-O is more powerful that Burden and SKAT

Variants can be split into functional 'categories'

For many genes full **loss-of-function** may be needed to cause disease

For others, an effect may be limited to **missense** variants impacting a specific protein domain

Variants can be split into functional 'categories'

For many genes full **loss-of-function** may be needed to cause disease

For others, an effect may be limited to **missense** variants impacting a specific protein domain

Software for gene-level testing

"Perhaps the single greatest challenge facing rare-variant analyses is the issue of scalability"

- Povysil et al. Nature Reviews Genetics 2019

Software for gene-level testing

SAIGE-GENE

Zhou et al. Nature Genetics 2020

Technical Report | Published: 18 May 2020

Scalable generalized linear mixed model for regionbased association tests in large biobanks and cohorts

Wei Zhou ²³, Zhangchen Zhao, Jonas B. Nielsen, Lars G. Fritsche, Jonathon LeFaive, Sarah A. Gagliano Taliun, Wenjian Bi, Maiken E. Gabrielsen, Mark J. Daly, Benjamin M. Neale, Kristian Hveem, Goncalo R. Abecasis, Cristen J. Willer & Seunggeun Lee ²³

Nature Genetics 52, 634-639 (2020) Cite this article

10k Accesses | 103 Citations | 16 Altmetric | Metrics

Regenie

Mbatchou et al. Nature Genetics 2021

Technical Report | Published: 20 May 2021

Computationally efficient whole-genome regression for quantitative and binary traits

Joelle Mbatchou, Leland Barnard, Joshua Backman, Anthony Marcketta, Jack A. Kosmicki, Andrey Ziyatdinov, Christian Benner, Colm O'Dushlaine, Mathew Barber, Boris Boutkov, Lukas Habegger, Manuel Ferreira, Aris Baras, Jeffrey Reid, Goncalo Abecasis, Evan Maxwell & Jonathan Marchini [⊠]

Nature Genetics 53, 1097–1103 (2021) Cite this article

67k Accesses | 395 Citations | 41 Altmetric | Metrics

Note: Possible (but now outdated) to code gene burden as variant-level genotypes and use variant-level testing frameworks (see Cirulli et al., 2020 using BOLT-LMM)

SAIGE-GENE+

Improved computational efficiency Improved type 1 error Improved power Multiple functional annotations, e.g. • LoF • LoF+non-synonymous Multiple max-MAF cutoffs, e.g.

- 0.01%
- 0.1%
- 1%

Recent applications

Regeneron UKB 450k exomes Backman et al. *Nature* 2021

Genebass UKB 450k exomes

Karczewski et al. Cell Genomics 2022

Pan-ancestry ~750k (UKB, AoU, MGB)

Jurgens et al. Nature Genetics 2024

Recent applications

genebass

Regeneron UKB 450k exomes

Genebass Karczewski et al. *Cell Genomics* 2022

Pan-ancestry ~750k (UKB, AoU, MGE

Jurgens et al. Nature Genetics 2024

номе			Sear	Search by gene or phenotype			0.12.0-051a7e9c-202208				
ene: MYBPC3 (ENSG00000	134571) Burden set: • pl	_oF									
20 pLoF gene burden associati	ons with MYBPC3										
Iter phenotypes											
len test Irden SKAT SKAT-0	25 - • (d) 01										
P-value coloring 0 > ○ 1e-4 > ○ 2.5e-6			in the second			and which die the features		and the second	la China	<u>i nam</u>	
10P cutoffs	평 0.2 -			Bandlas 13		All and a shift of a				A realized of	the billion of
autoffa i i i i i 27	ă oi ∢≪≪(anc (C				· · ·			(min d a		[
		Burden s	urden set				Multi-phenotype selection				
	pLoF missen		missense LC	elLC synonymous		Select top Clear selected					
options			le filtered					Filter to selected			
P-value ordered	Description		Phenotype	Trait type	Sex	Category	Info N case	s N controls	P-Value (SKAT-O)	Beta	Select
Log Log Plot	I42 Cardiomyopathy		131338	ICD10	Both	Health-related outcomes > First occurren	0 1	333 393008	• 2.09e-27	• 2.04e-1	0
noi'es	Cardiomyopathy		20002 1079	Categorical	Both	UK Biobank Assessment Centre > Verbal i	0	322 394461	2.19e-14	2.65e-1	0
how case	I50 Heart failure		131354	ICD10	Both	Health-related outcomes > First occurren	0 8	386822	● 4.03e-6	○ 5.92e-2	0
B ological samples (79)	Amiodarone		20003 1140	Categorical	Both	UK Biobank Assessment Centre > Verbal i	0	342 394441	O 4.81e-6	• 2.2e-1	0
Health-related outcomes	heart failure custom		heart_failure	Categorical	Both	Health-related outcomes > Cardiac/Meta	0 12	323 381907	0 6.21e-6	○ 6.71e-2	0
(2232)	Afib custom		Afib_custom	Categorical	Both	Health-related outcomes > Cardiac/Meta	0 27	325912	O 1.2e-5	O 4.71e-2	0
 Online rollow-up (108) Reputation characteristics (1) 	I48 Atrial fibrillation and flutter		131350	ICD10	Both	Health-related outcomes > First occurren	0 20	125 374716	0 1.28e-5	0 5.14e-2	0

app.genebass.org

Lecture summary

- 1. Low power to detect single-variant associations with low frequency
- 2. Grouping rare variants increases power
- 3. Various methods to test grouped variants (e.g. burden, SKAT, SKAT-O)
- 4. Various software to make this scalable (e.g. SAIGE, Regenie)

Next up: Put this knowledge into practice and do some association testing! Questions and instructions are here:

https://gimr.az1.gualtrics.com/jfe/form/SV_5vZEC9z5y2RXckS

Slides adapted from earlier versions from Nicky Whiffin and Nik Baya

Reading list

Review articles:

- Lee et al., 2014 *
- Povysil et al., 2019 ***

Applications:

- Questions:
 - What methods are used to annotate variants with consequence? What variant masks are used?
 - What association tests are used? (e.g. burden, SKAT, SKAT-O)
 - What multiple testing correction do they use?
- <u>Cirulli et al., Nature Comms 2020 (first phenome-wide burden testing: 4.2k phenos, 50k + 22k individuals)</u>
- Backman et al. Nature 2021 (Regeneron 450k WES flagship)
- Karczewski et al. Cell Genomics 2022 (Genebass, 4.5k phenos, 400k individuals)
- Jurgens et al. Nature Genetics 2024 (Pan-ancestry, 601 diseases, ~750k individuals across 3 biobanks)

Methods:

- CMC (early burden testing) Li & Leal 2008
- SKAT-O: Lee et al., 2012