

Power, Sample Size and Replication

David Evans^{1,2,3}

1 Institute for Molecular Bioscience, University of Queensland

2 University of Queensland Diamantina Institute

3 MRC Integrative Epidemiology Unit, University of Bristol

Outline

1. Aims

- 2. Statistical power
- 3. Estimate the power of association analysis Analytically Empirically
- 4. Multiple Testing
- 5. Replication

1. Aims

1. Know what type-I error and power are

2. Know that you can/should estimate the power of your association analyses (analytically or empirically)

3. Know that there a number of tools that you can use to estimate power


4. Be aware that there are many factors that increase type-l error and decrease power

5. Be able to understand strategy and criteria for replication

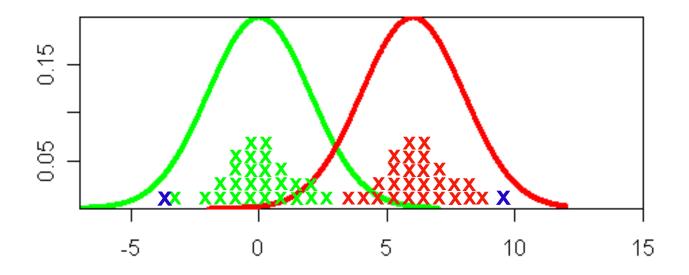
2. Statistical power

 H_0 : There is <u>NO</u> association between a marker and a trait

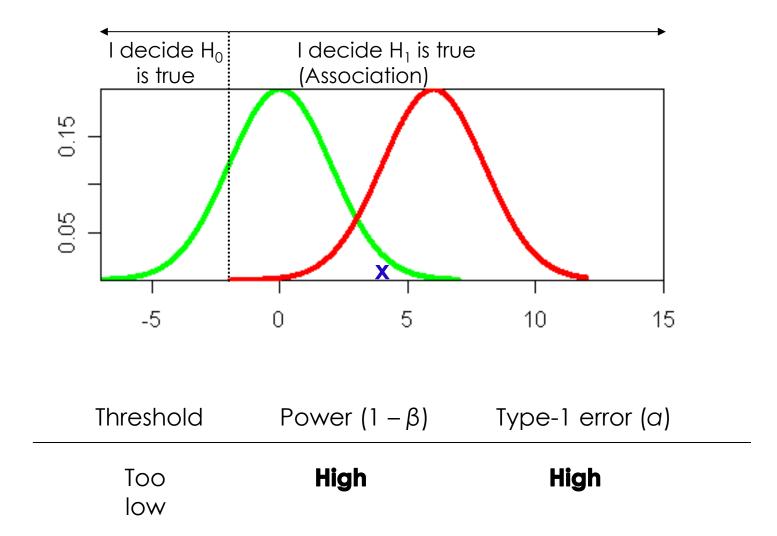
H₁: There is association between a marker and a trait

Power: probability of detecting association when H_1 is true.

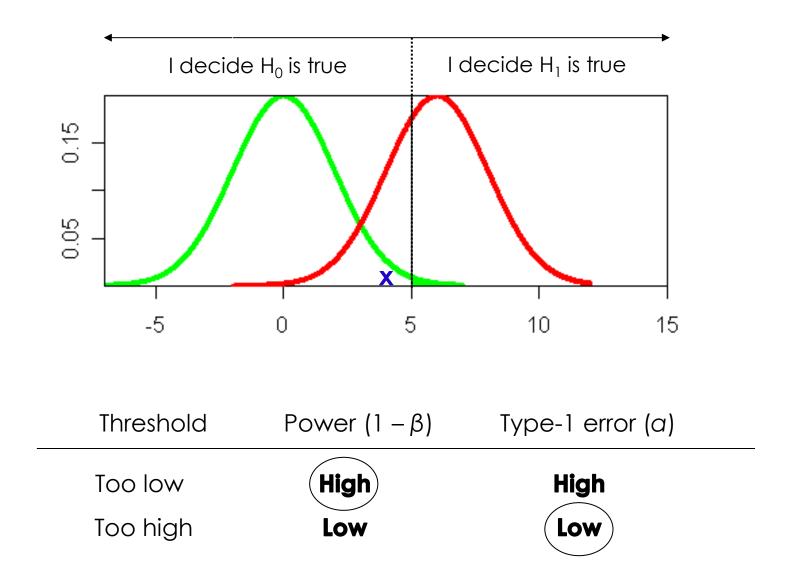
▶ <u>Power</u>

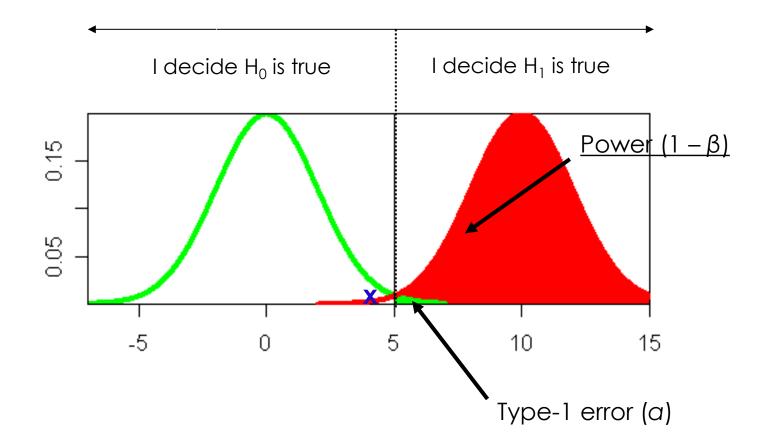

The probability of detecting a given size effect in a population from a sample size N, using significance criterion alpha

▶ <u>Type I error</u>

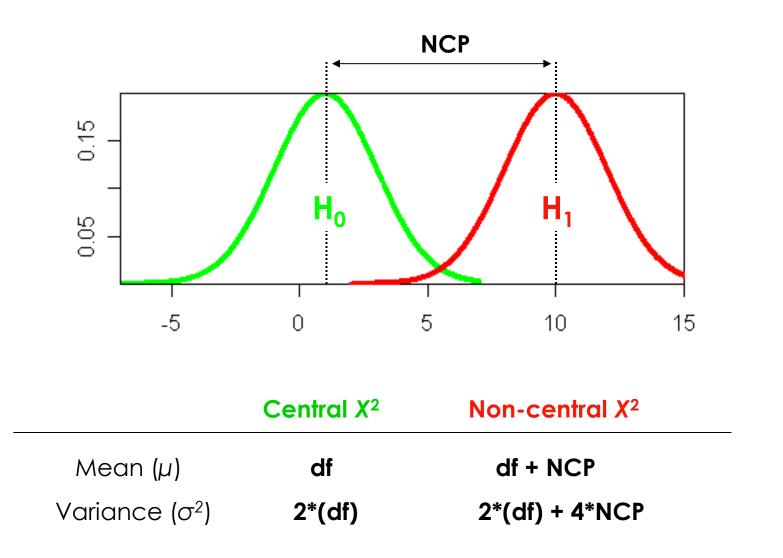

The probability of incorrectly rejecting the null hypothesis of no association

 H_0 : There is <u>NO</u> association between a marker and a trait H_1 : There is association between a marker and a trait

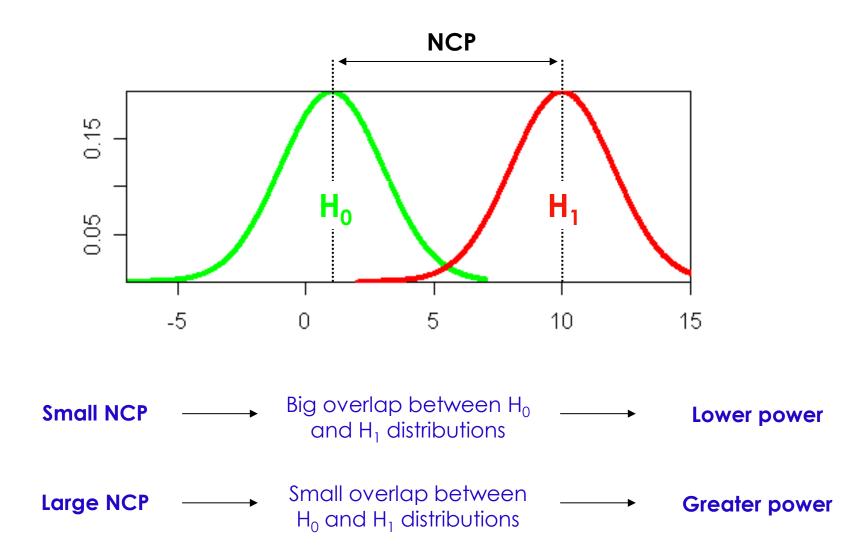

Association test statistic has different distributions under H₀ and H₁


<u>Where should I set the threshold to determine significance?</u>

<u>Where should I set the threshold to determine significance?</u>



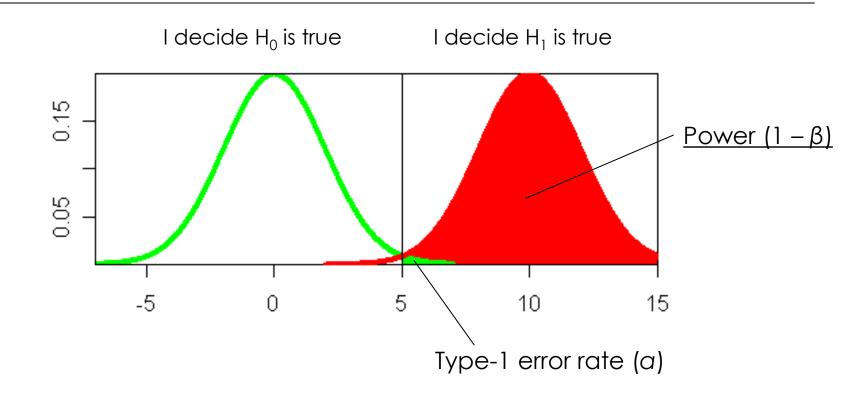
How do I maximise Power while minimising Type-1 error rate?



- 1. Set a high threshold for significance (i.e. results in low a [e.g. 0.05-0.0002])
- 2. Try to shift the distribution of the association test statistic when H_1 is true as far as possible from the distribution when H_0 is true.

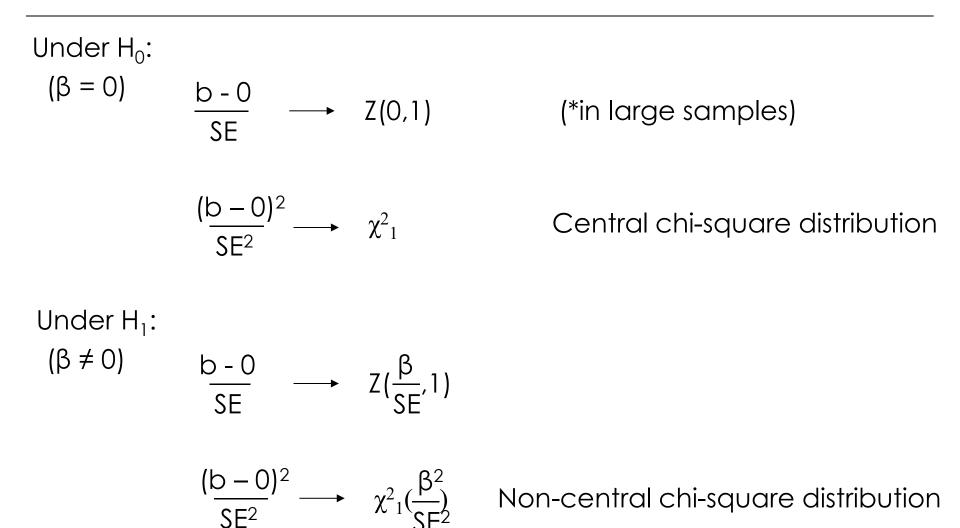
Non-centrality parameter

These distributions ARE NOT chi-sq with 1df!! Just for illustration... (Question- why do we use chi-sq?)



Sample size does NOT scale linearly with Power

▶ But, sample size scales linearly with NCP


3. Estimate power for association

Theoretical power estimation

- 1. Set type 1 error rate (e.g. $\alpha = 0.05$)
- 2. Determine what critical value this corresponds to on the X axis
- 3. Work out the non-centrality parameter of the test (NCP = $E(H_1) E(H_0)$)
- 4. Calculate the area to the right of the threshold under H_1

Trivial Example: OLS Linear Regression

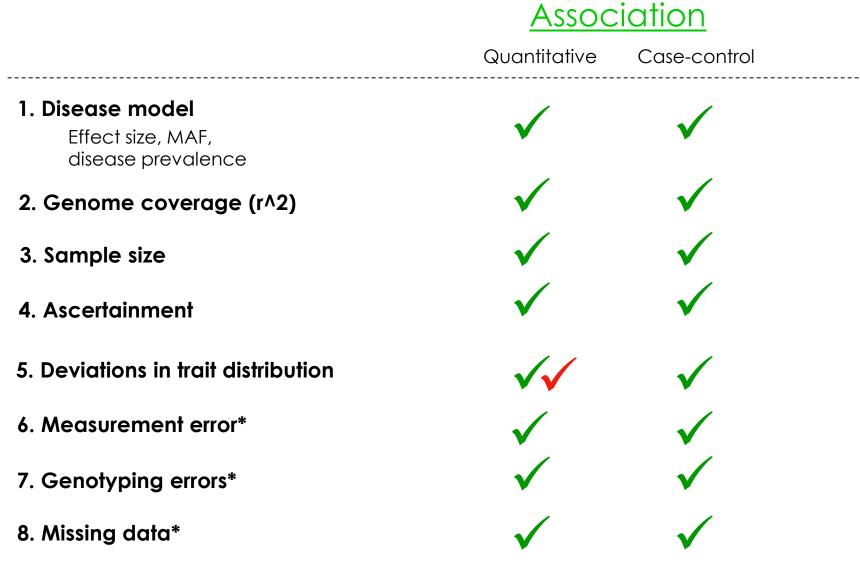
Trivial Example: OLS Linear Regression

$$\frac{(b-0)^2}{SE^2} \longrightarrow \chi^2_1(\frac{\beta^2}{SE^2})$$

- 1. Set type 1 error rate (e.g. $\alpha = 0.05$)
- 2. Determine what critical value this corresponds to on the X axis qchisq(p = 0.05, df = 1, ncp = 0, lower.tail = FALSE, log.p = FALSE) [1] 3.841459

 $\frac{\beta^2}{\mathsf{SF}^2}$

3. Work out the non-centrality parameter of the test


 $\beta = 0.1$ SE $\approx 1/\sqrt{N}$ (Assume N = 1000)

4. Calculate the area to the right of the threshold under H_1

```
pchisq(q=3.84, df=1, ncp = 0.1<sup>2</sup>/(1/1000), lower.tail = FALSE, log.p = FALSE)
```

[1] 0.8854512

Factors that influence power and type-1 error

*Assume random

Theoretical power estimation: Exercise

What case control sample size do we need to achieve 80% power for genome-wide significance for an odds ratio of 1.2 in a multiplicative model and an allele frequency of 20% when we directly type the locus for a disease with 5% prevalence?

http://zzz.bwh.harvard.edu/gpc/ (Note new location!)

🖉 Genetic Power Calculator - Windows Internet Explorer			- 7
🚱 🗢 🕖 http://pngu.mgh.harvard.edu/~purcell/gpc/		Google 🖌	ب م
File Edit View Favorites Tools Help			
🚖 🔅 👻 🧭 Internet Traffic Management 🔊 hewitt j and cherny :	s - PubM 🏾 🏉 Genetic Power Calculator	× 👌 • 🗟 • 🖶	🔹 🔂 Page 🔹 🍈 Tools 🔹 🎽
If you use this site, please reference the following <u>Bioinformatics</u>			•
design of linkage and association genetic mapping traits. Bioinformatics, 19(1):149-150.			=
Modules		ck this link	
Case-control for discrete traits Notes			
Case-control for threshold-selected quantitative traits Notes	1		
QTL association for sibships and singletons Notes			
TDT for discrete traits Notes			
TDT and parenTDT with ascertainment Notes			
TDT for threshold-selected quantitative traits Notes			
Epistasis power calculator Notes			
QTL linkage for sibships Notes			
Probability Function Calculator Notes			
Instructions for power calculations			
VC model calculations are based upon formula derived in Sham	et al (2000) [AJHG, 66, 1616-16	30]. Users of this site who are unsure of th	e nature of the VC
		🌍 😜 Internet	🔍 100% 🔹 🛒
🛃 start 🖉 🧭 📽 🛔 🔛 😭 epxde	🔽 Microsoft PowerPoint 🛛 💋	ienetic Power Calcul	🏔 👤 💟 🕎 🧐 🛄 23:12

🥹 Statistical Genetics Group - Mozilla Fire	fox	
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools	Help	
🔇 💽 - C 🗙 📄 http://pngu.mg	h.harvard.edu/~purcell/gpc/cc2.html	😭 🛷 🔹 💽 🔹 josity snp information content 🔎 📗
🖻 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotm	ail 🤹 Amazon.com: Statistic 💥 The Arreat Summit - It 📄 Share on Faceboo	ok and a second s
Gmail - Update: 🖂 🛛 📙 😡 workshop:2009:	🖾 🛛 📙 Index of /worksh 🔯 🕅 Wiley InterScien 🔯 📘 Hulu - Videos	📧 🚫 Cypriots and U.N 🖾 📑 Statistical Ge 🔀 🔹
Genetic Power Cal	culator	
Case - control for discrete traits	Allele freque	ency at the risk locus
High risk allele frequency (Å)	: 0.2 (0 - 1)	
Prevalence	: .05 (0.0001 - 0.9999)	
Genotype relative risk Aa	: 1.2 (>1)	
Genotype relative risk AA	: 1.44 (>1)	
D-prime	: 1 (0 - 1)	
Marker allele frequency (B)	: 0.2 (0 - 1)	
Number of cases	: 1000 (0 - 1000000)	
Control : case ratio	: 1 (>0)	
	(1 = equal number of cases and controls))
	Unselected controls? (* see below)	
User-defined type I error rate	: 5e-8 (0.00000001 - 0.5)	
User-defined power: determine N	: 0.80 (0 - 1)	
(1 - type II error rate)		
Process		
Created by Shaun Purcell 24.Oct.2008		
× Find: exclude	revious 🖌 Highlight all 🔲 Match case	
Bosoton: Wed 12:49 UK: Wed 17:49 Netherla	nds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	d 🚳 🚳 🚸
🛃 start 🔰 🥹2 F. 🔸 🖿 2 W 🔹 🗹	🔽 2 M. 👻 🗿 3 M. 👻 🕏 M. 👻 🧟 RG 🗒 ma 🛃 silv	🥜 👳 😰 🍹 🧧 92% 🕴 🖝 🖒 🕬 😋 🏹 📴 12:49 PM

🥹 Statistical Genetics Group - Mozilla Fire	efox	T T T
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools	Help	
	gh.harvard.edu/~purcell/gpc/cc2.html	☆ 🖉 🔹 🖸 🖸 🖸 🖸 🚺
🙍 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotm	nail 🤹 Amazon.com: Statistic 💸 The Arreat Summit - It 📄 Share on Faceboo	uk
🕅 Gmail - Update: 🖂 🛛 📙 😡 workshop:2009:	🔟 🛛 🔀 Index of /worksh 🖾 🛛 🕀 Wiley InterScien 🖾 📘 📘 Hulu - Videos	🖂 (Cypriots and U.N 🛛 📋 Statistical Ge 🛛
Genetic Power Cal	culator	2
Case - control for discrete traits	How commo	on disease is
High risk allele frequency (Å) Prevalence Genotype relative risk Åa Genotype relative risk ÅÅ D-prime Marker allele frequency (B) Number of cases Control : case ratio	<pre>: 0.2 (0 - 1) : 0.5 (0.0001 - 0.9999) : 1.2 (>1) : 1.44 (>1) : 1.44 (>1) : 0.2 (0 - 1) : 1000 (0 - 10000000) : 1 (>0) (1 = equal number of cases and controls) Unselected controls? (* see below)</pre>)
User-defined type I error rate User-defined power: determine N (1 - type II error rate)	: 5e-8 (0.00000001 - 0.5) : 0.80 (0 - 1)	
Process		
Created by Shaun Purcell 24.Oct.2008 Find: exclude	revious 🜮 Highlight <u>a</u> ll 📃 Mat <u>c</u> h case	
Bosoton: Wed 12:49 UK: Wed 17:49 Netherla	nds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	d 🕲 🚸
🥙 2 F. 🔸 🛅 2 W 🔹 🛙	💯 2 M. 🝷 💽 3 M. 🝷 🕱 5 M. 🍷 🖳 RG 📋 ma 🛃 silv	🥜 🕺 😰 🍹 🦳 92% 🖡 🖝 🔿 🕬 🗞 🏹 🔽 12:49 PM

🥹 Statistical Genetics Group - Mozilla Fire	fox	
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools	Help	
C X http://pngu.mg	h.harvard.edu/~purcell/gpc/cc2.html	😭 🛷 🔹 🔀 Information content 🔎
혿 Most Visited 🚞 Smart Bookmarks 🏄 Free Hotm	ail 🤹 Amazon.com: Statistic 💸 The Arreat	Summit - It 📋 Share on Facebook
Gmail - Update: 🖂 🛛 📙 🛛 BG workshop:2009:	🔟 🛛 🚯 Index of /worksh 🔯 🕅 🕅 Wiley In	terScien 📧 📙 Hulu - Videos 🛛 💿 Cypriots and U.N 🔯 📑 Statistical Ge 🔯
Genetic Power Cal	culator	
Case - control for discrete traits		This is the relative risk—not the
High risk allele frequency (Å) Prevalence	0.2 (0 - 1) 0.05 (0.0001 - 0.9999)	odds ratio. The OR is
Genotype relative risk Aa	: 1.2 (>1)	approximately equivalent to the PP
Genotype relative risk AA	: 1.44 (>1)	approximately equivalent to the RR
D-prime	: 1 (0 - 1)	for small values of RR.
Marker allele frequency (B)	: 0.2 (0 - 1)	
Number of cases	: 1000 (0 - 1000000	0
Control : case ratio	$\begin{array}{c c} \vdots & 1 \\ & (>0) \\ & (1 = equal number \end{array}$	of cases and controls)
	Unselected controls? (* see below)
User-defined type I error rate	: <u>5e-8</u> (0.0000001 -	0.5)
User-defined power: determine N (1 - type II error rate)	: 0.80 (0 - 1)	
Process Reset		
Created by Shaun Purcell 24.Oct.2008 Find: exclude Next Pr	revious 🖌 Highlight <u>a</u> ll 🔲 Mat <u>c</u> h case	8
		Los Angeles: Wed 09:49 Stopped 🚳 🚸
	2 2 M 💽 3 M 🔀 5 M 🖳 R	

😂 Statistical Genetics Group - Mozilla Fire	fox	
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools	Help	
	h.harvard.edu/~purcell/gpc/cc2.html	😭 🖉 🔹 josity snp information content 🔎 📗
🖻 Most Visited 🚞 Smart Bookmarks 🏄 Free Hotm	ail 🤹 Amazon.com: Statistic 💥 The Arreat S	iummit - It 🗋 Share on Facebook
🛛 🕅 Gmail - Update: 🖾 🛛 📴 workshop:2009:	🖂 🛛 📴 Index of /worksh 🖂 🛛 🛞 Wiley Int	erScien 🖂 📘 Hulu - Videos 🛛 🔀 🍥 Cypriots and U.N 🖂 📄 Statistical Ge 🔯
Genetic Power Cal	culator	
Case - control for discrete traits		Risk of the AA genotype. Note that
High risk allele frequency (A)	: 0.2 (0 - 1)	the model of risk is defined by the
Prevalence	: .05 (0.0001 - 0.9999)	J. J
Genotype relative risk Aa	: 1.2 (>1)	relationship between Aa and AA.
Genotype relative risk AA	: 1.44 (>1)	· ·
D-prime	: 1 (0 - 1)	We have a multiplicative model
Marker allele frequency (B)	: 0.2 (0 - 1)	
Number of cases	: 1000 (0 - 1000000)	because 1.44 = 1.2*1.2.
Control : case ratio	: 1 (>0)	
		of cases and controls)
	Unselected controls? (*	' see below)
User-defined type I error rate	: 5e-8 (0.00000001 - 0	0.5)
User-defined power: determine N	: 0.80 (0 - 1)	
(1 - type II error rate)		
Process Reset		
Created by Shaun Purcell 24.Oct.2008		
	revious 🔎 Highlight <u>a</u> ll 🔲 Mat <u>c</u> h case	
		Los Angeles: Wed 09:49 Stopped 🙆 🧐 🕠
🯄 start 🔰 🥹 २ ह. 👻 🔁 🔁 👻 🗸	🛛 2 M 💽 3 M 📧 5 M 🖳 RG	📋 ma 🧬 silv 🥜 🐖 😰 🗘 🥊 92% 🖡 🖝 🔇 🖫 12:49 PM

🥹 Statistical Genetics Group - Mozilla Firefox			
<u>Eile E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp			
Kara Kara Kara Kara Kara Kara Kara Kara	rd.edu/~purcell/gpc/cc2.html	☆ ·	🖸 🔹 josity snp information content 🔎 📗 🔹
🖻 Most Visited 🚞 Smart Bookmarks ಶ Free Hotmail 🧕 A	Amazon.com: Statistic 💸 The Arreat Sun	nmit - It 📄 Share on Facebook	
🛛 M Gmail - Update: 🖂 🛛 IBG workshop:2009: 🖂 🗍 IBG	🜀 Index of /worksh 🖂 📔 🛞 Wiley Inters	5cien 🖂 📘 👆 Hulu - Videos 🛛 🖂 🔛 Cypriot	s and U.N 🖂 📄 Statistical Ge 🔞 🔹
Genetic Power Calcula	ator		~
Case - control for discrete traits		The LD statistic D' w	hich represents
High risk allele frequency (A) : 0 .		recombination patter	ns historically.
Prevalence : .0 Genotype relative risk Aa : 1.		· · · ·	,
Genotype relative risk AA : 1.	.44 (>1)	D' + allele frequency	at the typed
D-prime : 1 Marker allele frequency (B) : 0.		locus information yie	lds r ²
Number of cases : 10	000 (0 - 1000000)		
Control : case ratio : 1	(>0)		
	(1 = equal number of	cases and controls)	
	Unselected controls? (* :	see below)	
User-defined type I error rate : 5 User-defined power: determine N : 0. (1 - type II error rate)		5)	
Process			
Created by Shaun Purcell 24.Oct.2008			
× Find: exclude ↓ Next 1 Previous 4	🖌 Highlight <u>a</u> ll 📃 Mat <u>c</u> h case		
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlands: Wed	d 18:49 Hong Kong: Thu 01:49 🔤 Lo	s Angeles: Wed 09:49 Stopped	i 🕲 🚸
🛃 start 🔰 🥹 2 F. 🝷 🛅 2 W 👻 🗹 2 M.	🝷 💽 3 M. 👻 🔀 5 M. 👻 🖳 RG	📋 ma 🧬 silv 🧷 🕺 🕄 🌹	92% 📔 🖝 🔇 🕬 🔡 🎲 🏣 12:49 PM 🚽

😂 Statistical Genetics Group - Mozilla Fire	fox	
<u> Eile Edit View History Bookmarks Tools</u>	Help	
	h.harvard.edu/~purcell/gpc/cc2.html	😭 🖉 🔹 josity snp information content 🔎 🚺
🔟 Most Visited 🚞 Smart Bookmarks 🍂 Free Hotm	ail 🚨 Amazon.com: Statistic 💥 The Arreat Summit - It 📄 Share on Facebook	
🔀 Gmail - Update: 🖂 🛛 📙 😡 workshop:2009:	🔟 🛛 📙 Index of /worksh 🖂 🕅 Wiley InterScien 🖂 📘 Hulu - Videos	🛛 😸 Cypriots and U.N 🖾 📄 Statistical Ge 🔞 🔹
Genetic Power Cal	culator	2
Case - control for discrete traits	Sample size	for cases
High risk allele frequency (A)	: 0.2 (0 - 1)	
Prevalence	: .05 (0.0001 - 0.9999)	
Genotype relative risk Aa	: 1.2 (>1)	
Genotype relative risk AA	: 1.44 (>1)	
D-prime Marker allele frequency (B)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Number of cases Control : case ratio	: 1000 (0 - 10000000) : 1 (>0)	
	(1 = equal number of cases and controls)	
	Unselected controls? (* see below)	
User-defined type I error rate User-defined power: determine N (1 - type II error rate)	: 5e-8 (0.00000001 - 0.5) : 0.80 (0 - 1)	
Process		
Created by Shaun Purcell 24. Oct. 2008 X Find: exclude	evious 🖌 Highlight all 🔲 Match case	3
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlan	nds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	🥶 🥹 🕠
🛃 start 🔰 🥹 2 F. 🔸 🖿 2 W 🔸 🖬	🛛 2 M. 🔹 🐻 3 M. 👻 S M. 👻 🖳 RG 📋 ma 🛃 silv	🥜 👳 😰 🌻 🥊 92% 📔 🖝 🔇 🕬 📚 🏹 🚰 12:49 PM

🥹 Statistical Genetics Group - Mozilla Fire	fox	
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools		
C X http://pngu.mg	h.harvard.edu/~purcell/gpc/cc2.html	🟠 🗹 🔹 💽 🔹 josity snp information content 🔎 📕
🙍 Most Visited 🚞 Smart Bookmarks 🍂 Free Hotm	ail 🤹 Amazon.com: Statistic 💥 The Arreat Summit - It 📄 Share on Faceboo	k
🔀 Gmail - Update: 🖂 🛛 📴 workshop:2009:	🖂 🛛 📴 Index of /worksh 🖂 🛛 🛞 Wiley InterScien 🖂 📘 👆 Hulu - Videos	🖂 🛛 🧼 Cypriots and U.N 🖂 📄 Statistical Ge 😣 🔹
Genetic Power Cal	culator	
Case - control for discrete traits	Ratio of Con	trols to Cases
High risk allele frequency (Å)	: 0.2 (0 - 1)	
Prevalence	: .05 (0.0001 - 0.9999)	
Genotype relative risk Aa	: 1.2 (>1)	
Genotype relative risk AA	: 1.44 (>1)	
D-prime	: 1 (0 - 1)	
Marker allele frequency (B)	: 0.2 (0 - 1)	
Number of cases	: 1000 (0 - 10000000)	
Control : case ratio	: 1 (>0)	
	(1 = equal number of cases and controls)	
	Unselected controls? (* see below)	
User-defined type I error rate	: 5e-8 (0.0000001 - 0.5)	
User-defined power: determine N	(0.80) $(0 - 1)$	
(1 - type II error rate)		
Process Reset		
Created by Shaun Purcell 24,Oct.2008		· · · · · · · · · · · · · · · · · · ·
	evious 🖌 Highlight <u>a</u> ll 🔲 Mat <u>c</u> h case	
	nds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	i 🚳 😻 🛧
🛃 start 🛛 🕲 2 F. 🔹 🖻 2 W 🔹 🗹	🛛 2 M. 🔹 💽 3 M. 👻 🕅 🔹 🖳 RG 🗎 ma 💕 silv	🥜 🕺 😰 ᅾ 🛛 🤧 🌓 🖝 🔿 🔊 🗞 🎦 12:49 PM

😂 Statistical Genetics Group - Mozilla Fire	fox		×
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools	Help		12
Karaka Ka	h.harvard.edu/~purcell/gpc/cc2.html	🏠 🛷 🔹 🔀 sosity snp information content 🔎 📗	-
📄 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotma	ail 🤹 Amazon.com: Statistic 💸 The Arreat S	Summit - It 🗋 Share on Facebook	
🔀 Gmail - Update: 🖂 🛛 📙 🛛 🔀 Workshop:2009:	🖂 🛛 🚯 BG Index of /worksh 🖂 🛛 🐼 Wiley Inte	erScien 🖂 📘 Hulu - Videos 🛛 🚫 🌔 Cypriots and U.N 🖾 📑 Statistical Ge 🔀	•
Genetic Power Cal	culator		^
Case - control for discrete traits		Genome-wide significance threshold	
High risk allele frequency (Å)	: 0.2 (0 - 1)	We'll learn about this later in the	
Prevalence	: .05 (0.0001 - 0.9999)		
Genotype relative risk Aa	: 1.2 (>1)	session	
Genotype relative risk AA	: 1.44 (>1)	oooolon	
D-prime	: 1 (0 - 1)		
Marker allele frequency (B)	: 0.2 (0 - 1)		
Number of cases	: 1000 (0 - 1000000))	
Control : case ratio	: 1 (>0)		
	(1 = equal number o	of cases and controls)	
	Unselected controls? (*	* see below)	
User-defined type I error rate	: 5e-8 (0.00000001 - 0 : 0.80 (0 - 1)	J.5)	
User-defined power: determine N (1 - type II error rate)	: 0.00 (0 - 1)		
Process Reset			
Created by Shaun Purcell 24.Oct.2008			~
	evious 🖌 Highlight <u>a</u> ll 📃 Mat <u>c</u> h case		
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlan	nds: Wed 18:49 Hong Kong: Thu 01:49 🔤	Los Angeles: Wed 09:49 Stopped 🚳 😽	*
🛃 start 🔰 🥹 2 F. 🔸 🚞 2 W 🔸 🕅	🛛 2 M 💽 3 M 💌 5 M 🖳 RG.	🗒 ma 🛃 silv 🥜 😰 🕄 📍 92% 🖡 🖝 🔇 🖬 12:49 Pf	ч

😻 Statistical Genetics Group - Mozilla Firef	fox	
<u> E</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools !	Help	
	n.harvard.edu/~purcell/gpc/cc2.html	😭 🖉 🔹 🔀 🕻 🖓 🖬 🖓 🔛
🔎 Most Visited 🚞 Smart Bookmarks 🏄 Free Hotma	ail 🚨 Amazon.com: Statistic 💥 The Arreat Summit - It 📄 Share on Facebook	
M Gmail - Update: 🖂 🛛 📙 🛛 🔀 workshop:2009:	🖂 🛛 📙 Index of /worksh 🖂 🛛 🛞 Wiley InterScien 🖂 🛛 👆 Hulu - Videos	🖂 () Cypriots and U.N 🖂 📑 Statistical Ge 🛛 🔹
Genetic Power Calo	culator	<u>^</u>
Case - control for discrete traits	Power level-	-what we're interested
High risk allele frequency (A)	: 0.2 (0 - 1) in observing	
Prevalence	: .05 (0.0001 - 0.9999) III ODSCI VIIIY	
Genotype relative risk Aa	: 1.2 (>1)	
Genotype relative risk AA	: 1.44 (>1)	
D-prime	: 1 (0 - 1)	
Marker allele frequency (B)	: 0.2 (0 - 1)	
Number of cases	: 1000 (0 - 10000000)	
Control : case ratio	: 1 (>0)	
	(1 = equal number of cases and controls)	
	Unselected controls? (* see below)	
User-defined type I error rate User-defined power: determine N (1 - type II error rate)	: 5e-8 (0.00000001 - 0.5) : 0.80 (0 - 1)	
Process		
Created by Shaun Purcell 24.Oct.2008		· · · · · · · · · · · · · · · · · · ·
	evious 🔎 Highlight <u>a</u> ll 🔲 Mat <u>c</u> h case	
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlan	ds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	🍅 🧶 🚸
🛃 start 📄 😻 2 F. 🔹 🖿 🗹 💌	2 M. 🝷 👩 3 M. 👻 5 M. 👻 🧖 RG 🗒 ma 🛃 silv	🥜 🕺 😰 🗘 🧧 92% 🕴 🖝 🔿 🕬 🏹 🏹 🚰 12:49 PM

🕹 Statistical Genetics Group - Mozilla Firef	σx	
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>t</u>		
C 🗙 http://pngu.mgh	.harvard.edu/~purcell/gpc/cc2.html	☆ 🖉 🔹 josity snp information content 🔎 👢
🔎 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotma	il 🤹 Amazon.com: Statistic 🞇 The Arreat Summit - It 🗋 Share on Facebook	
🛛 M Gmail - Update: 🖂 🛛 📙 🛛 BG workshop:2009:	🔟 🛛 📴 Index of /worksh 🖾 🛛 🛞 Wiley InterScien 🖾 📘 🚹 Hulu - Videos 🛛 🔊	🗿 🌔 Cypriots and U.N 🔯 📄 Statistical Ge 🔯 🕞
Genetic Power Calo	culator	
Case - control for discrete traits		
High risk allele frequency (Å) Prevalence Genotype relative risk Åa Genotype relative risk ÅÅ D-prime Marker allele frequency (B) Number of cases Control : case ratio	<pre>: 0.2 (0 - 1) : .05 (0.0001 - 0.9999) : 1.2 (>1) : 1.44 (>1) : 1.44 (>1) : 1.44 (>1) : 1000 (0 - 1) : 0.2 (0 - 1) : 1000 (0 - 10000000) : 1 (>0) (1 = equal number of cases and controls)</pre>	
User-defined type I error rate User-defined power: determine N (1 - type II error rate) Process Reset	: 5e-8 (0.00000001 - 0.5) : 0.80 (0 - 1) Click here to process	
Created by Shaun Purcell 24.Oct.2008 Find: exclude Next Pre	vious 🖌 Highlight all 🔲 Match case	
	ds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	(1)
🛃 start 🔰 🥹2 F. 🔸 🖿 2 W 🔹 🕎	2 M. 🔹 👩 3 M. 👻 🗴 M. 👻 🥐 RG 🗒 ma 🧬 silv 🧷	👳 😰 🚏 🧧 92% 📔 🖝 🔇 🕬 📚 🏹 🚰 12:49 PM

Souther the second seco	u/~purcell/cgi-bin/cc2k.cgi	😭 🛷 🔹 🔽 🥵 Josity snp information content 🔎
	on.com: Statistic 💥 The Arreat Summit - It 📄 Sha	re on Facebook
🔀 Gmail - Update: 🖂 🛛 🤀 workshop:2009: 🖾 🛛 🔢 Inc	lex of /worksh 🖂 🛛 🟵 Wiley InterScien 🖂 📘 H	Hulu - Videos 🛛 🛞 Cypriots and U.N 🛛 📑 Genetic Powe 👔
Alpha	Power	N cases for 80% power
0.1	0.4374	2803
1.05	0.3177	3559
.01	0.1377	5296
.001	0.0355	7742
ie-08	3.674e-05	17958
-	Power	N cases for 80 % power
-	Power	N cases for 80% power
lpha	Power 0.716	N cases for 80% power 1240
lpha		
Alpha .1 .05	0.716	1240
Apha .1 .05 .01	0.716 0.6002	1240 1 <i>5</i> 50
ample NCP = 6.216 Alpha).1 0.05 0.01 0.001 5e-08	0.716 0.6002 0.3609	1240 1550 2233
Apha .1 .05 .01 .001 ie-08 ase-control statistics: allelic 1 df test (B versus b) mple NCP = 6.224	0.716 0.6002 0.3609 0.1451	1240 1550 2233 3163 6920
Apha .1 .05 .01 .001 ie-08 ase-control statistics: allelic 1 df test (B versus b) mple NCP = 6.224 Apha	0.716 0.6002 0.3609 0.1451 0.0007464 Scroll to the bottom for	1240 1550 2233 3163 6920 7 ANSWER
Alpha .1 .05 .01 .001 ie-08 ase-control statistics: allelic 1 df test (B versus b) ample NCP = 6.224 Alpha .1	0.716 0.6002 0.3609 0.1451 0.0007464 Scroll to the bottom for Power	1240 1550 2233 3163 6920 T ANSWER N cases for 80% power
Alpha 0.1 0.05 0.01 0.001 5e-08	0.716 0.6002 0.3609 0.1451 0.0007464 Scroll to the bottom for Power 0.8024	1240 1550 2233 3163 6920 T ANSWET N cases for 80% power 993
Alpha 1.1 1.05 1.01 1.001 1.001 5e-08 asse-control statistics: allelic 1 df test (B versus b) ample NCP = 6.224 Alpha 1.1 1.05	0.716 0.6002 0.3609 0.1451 0.0007464 Scroll to the bottom for Power 0.8024 0.7037	1240 1550 2233 3163 6920 ANSWET 993 1260

🛛 Most Visited 🚞 Smart Bookmarks 🦓 Free Hotmail 👶 4	rd.edu/~purcell/cgi-bin/cc2k.cgi	☆
	· · · · · · · · · · · · · · · · · · ·	
	Amazon.com: Statistic 👯 The Arreat Summit - It 🔝	Share on Facebook
🔀 Gmail - Update: 🖾 🛛 📙 🛛 🔀 🔤 🛛 🔤	3G Index of /worksh 🖂 🛛 🛞 Wiley InterScien 🖂 🗌	👆 Hulu - Videos 🛛 🖂 🍥 Cypriots and U.N 🖂 📄 Genetic Powe 👔
Alpha	Power	N cases for 80% power
0.1	0.4374	2803
.05	0.3177	3559
.01	0.1377	5296
.001	0.0355	7742
ie-08	3.674e-05	17958
1	0.716	1240
Գիհո	Power	N cases for 80% power
	0.716	1240
	0,000	1440
	0.6002	1550
.01	0.3609	2233
.01 .001	0.3609 0.1451	2233 3163
.05 .01 .001 	0.3609 0.1451 0.0007464	2233 3163 6920
.01 .001 ie-08 ase-control statistics: allelic 1 df test (B versus b) umple NCP = 6.224	0.3609 0.1451 0.0007464 Scroll to the bottom f	2233 3163 6920 Or answer
01 001 e-08 se-control statistics: allelic 1 df test (B versus b) mple NCP = 6.224 lpha	0.3609 0.1451 0.0007464 Scroll to the bottom f	2233 3163 6920 Or answer N cases for 80% power
01 001 e-08 use-control statistics: allelic 1 df test (B versus b) mple NCP = 6.224 lpha 1	0.3609 0.1451 0.0007464 Scroll to the bottom f Power 0.8024	2233 3163 6920 Or answer 993
01 001 e-08 se-control statistics: allelic 1 df test (B versus b) mple NCP = 6.224 lpha 1 05	0.3609 0.1451 0.0007464 Scroll to the bottom f Power 0.8024 0.7037	2233 3163 6920 Or answer 993 1260
01 001 e-08 mple NCP = 6.224 Jpha .1 .05 .01	0.3609 0.1451 0.0007464 Scroll to the bottom f Power 0.8024 0.7037 0.4677	2233 3163 6920 Or answer 993 1260 1876
01 001 e-08 se-control statistics: allelic 1 df test (B versus b) mple NCP = 6.224 lpha 1 05	0.3609 0.1451 0.0007464 Scroll to the bottom f Power 0.8024 0.7037	2233 3163 6920 Or answer 993 1260

6,362 case samples required: total sample size 12,724

What power do we have to detect a locus with an odds ratio of 1.5 at genome-wide significance assuming a multiplicative disease model, a disease allele frequency of 5%, a disease prevalence of 0.5% and 3000 cases and controls?

	🕒 Statistical Genetics Grou	x +		_	D	×
\leftarrow	$ ightarrow$ C $\$	https://zzz.bwh.harvard.edu/gpc/cc2.html	A" to	£ @		
	enetic Powe	r Calculator				
Hig Pre Gen Gen	h risk allele frequenc valence otype relative risk Aa otype relative risk AA					
	rime ker allele frequency ()					
	ber of cases trol : case ratio	: 3000 (0 - 1000000) : 1 (>0) (1 = equal number of cases and controls) Unselected controls? (* see below)				
Use (1	r-defined type I error r-defined power: deter - type II error rate) cess Reset					
Crea	tted by <u>Shaun Purcell</u> 24.	icates a true random population sample (e.g. for a 1% disease, 1% of controls would	also, by chance, have the disease); if this is u B 🗉 🧧 🏾 😪 📭 🔌 ᡝ 🎯 🚾 🖇 📁 🗘	1:3 × FNG	<i>the</i> 0 PM 6/2022	26

	C Genetic Power Calculator X +							-	D	×
\leftarrow	$ ightarrow$ C $ m \raineq$ https://zzz.bwh.harvard.edu/cgi-bin/cc2k.c	gi		A»	0	τ ο	₹_	Ē		•••
0.01		0.2124	11085							
0.001		0.06518	16206							
5e-08		0.0001204	37587							

Case-control statistics: general 2 df test (BB versus Bb versus bb)

Sample NCP = 28.11

Alpha	Power	N cases for 80% power
0.1	0.9995	822
0.05	0.9986	1028
0.01	0.9916	1481
0.001	0.9553	2098
5e-08	0.3425	4590

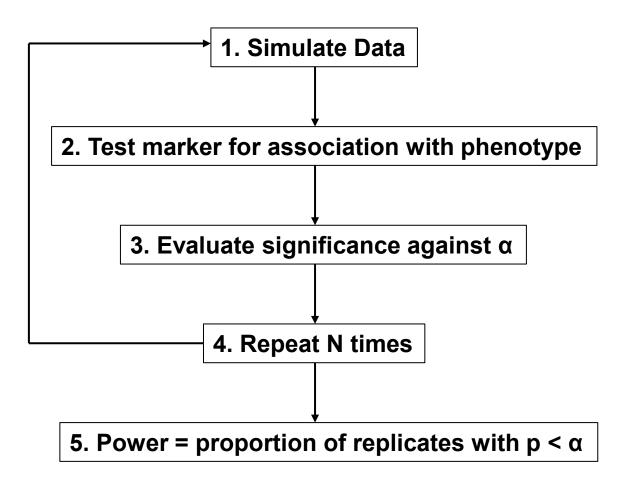
Case-control statistics: allelic 1 df test (B versus b)

Sample NCP = 28.18

Power	N cases for 80% power
0.9999	658
0.9996	835
0.9969	1243
0.9782	1818
0.443	4216
	0.9999 0.9996 0.9969 0.9782

Controls are selected (i.e. screened for not being a case)

0


0

μi

🗘 💀 🧾 Ų 🕲 🧔 🚍 🛟 🗉 💷 🦉 🧐 🚱 🔯 👞 🎧 🎯 🚾 🖇 🛱 💭 🗘 ENG

.

Empirical power estimation

rm(list=ls())

}

set.seed(12345) #Set seed to enable repeatability

- p <- 0.5 #(Decreaser) Allele frequency
- q <- 1 p #Other allele
- Nsample <- 1000 #Set sample size
- Nrep <- 1000 #Set number of replications
- Nsig <- 0 #Count variable for number of significant replicates
- threshold <- 0.05 #Threshold for declaring significance
- beta <- 0.1 #Effect size
- a <- sqrt(1/(2*p*q)) #Additive value
- residvar <- 1 beta^2 #Residual variance
- for (i in seq(1,Nrep)) { #Loop over replicates
- #Simulate genotypes assuming HWE
 - x <- sample(x=c(-a,0,a) ,size=Nsample, replace=TRUE, prob=c(p^2,2*p*q,q^2))
 - y <- beta*x + rnorm(n=Nsample, mean=0, sd=sqrt(residvar))

```
if(summary(lm(y~x))$coefficients[2,4] < threshold) {Nsig=Nsig+1}
```

```
power = Nsig/Nrep #Power is proportion of significant replicates
Power #0.885
```

Trivial Example: OLS Linear Regression

$$\frac{(b-0)^2}{SE^2} \longrightarrow \chi^2_1(\frac{\beta^2}{SE^2})$$

- 1. Set type 1 error rate (e.g. $\alpha = 0.05$)
- 2. Determine what critical value this corresponds to on the X axis qchisq(p = 0.05, df = 1, ncp = 0, lower.tail = FALSE, log.p = FALSE) [1] 3.841459

 $\frac{\beta^2}{\mathsf{SF}^2}$

3. Work out the non-centrality parameter of the test

 $\beta = 0.1$ SE $\approx 1/\sqrt{N}$ (Assume N = 1000)

4. Calculate the area to the right of the threshold under H_1

```
pchisq(q=3.84, df=1, ncp = 0.1<sup>2</sup>/(1/1000), lower.tail = FALSE, log.p = FALSE)
```

[1] 0.8854512

4. Multiple Testing

Genome-wide Association

High throughput genotyping

Other Multiple Testing Considerations

- Genome-wide association is really bad
 - At 1 test per SNP for 500,000 SNPs
 - 25,000 expected to be significant at p<0.05, by chance alone

Other Multiple Testing Considerations

- Genome-wide association is really bad
 - At 1 test per SNP for 500,000 SNPs
 - 25,000 expected to be significant at p<0.05, by chance alone
- To make things worse
 - Dominance (additive/dominant/recessive)
 - Epistasis (multiple combinations of SNPs)
 - Multiple phenotype definitions
 - Subgroup analyses
 - Multiple analytic methods

Bonferroni Correction

- For testing 500,000 SNPs
 - 5,000 expected to be significant at p<0.01
 - 500 expected to be significant at p<0.001

-

- 0.05 expected to be significant at p<0.0000001
- Suggests setting significance level to $\alpha = 10^{-7*}$
- Bonferroni correction for m tests
 - $-\,$ set significance level for p-values to $\alpha=0.05$ / m $\,$
 - (or adjust the p-values to m \times p, before applying the usual α = 0.05 significance level)

• *See Risch and Merikangas 1999

Genome-wide Significance

- Multiple testing theory requires an estimate of the number of 'independent tests'
- Risch and Merikangas 1996 estimated a threshold of $10^{-6} = (0.05/(5*10,000))$
- HapMap 2005 estimate 10⁻⁸ based on encode deep sequencing in ENCODE regions
- Dudbridge and Gusnato, and Pe'er et al. 2008 Genetic Epidemiology estimate based on 'infinite density' like Lander and Kruglyak 1995 generate 5x10⁻⁸

5. Replication

Replication

- Replicating the genotype-phenotype association is the "gold standard" for "proving" an association is genuine
- Most loci underlying complex diseases will not be of large effect
- It is unlikely that a single study will unequivocally establish an association without the need for replication

Winner's Curse

If the location of a variant and its phenotypic effect size are estimated from the same data sets, the effect size will be over-estimated, in many cases substantially. Statistical significance and the *estimated* magnitude of the parameter are highly correlated.

H Göring et al. Am J Hum Genetics 2001;69:1357-69

Guidelines for Replication

Replication studies should be of sufficient size to demonstrate the effect

Replication studies should conducted in independent datasets

Replication should involve the same phenotype

Replication should be conducted in a similar population The same SNP should be tested

The replicated signal should be in the same direction

Joint analysis should lead to a lower p value than the original report

Well designed negative studies are valuable

Mendelian randomization Power

http://cnsgenomics.com/shiny/mRnd/

\rightarrow D $\widehat{\mathbf{m}}$ O cnsgenomics.com/shiny/mRnd/		
nd: Power calculations for Mendel	lian Randomization	
ut	Continuous outcome Binary outcome derivations Citation About	
	Two-stage least squares	
alculate:	Power 0.05	
Power	NCP 0.00 Non-Centrality-Parameter	
) Sample size	F-statistic 11.10 The strength of the instrument	
Provide:		
Sample size	Power or sample size calculations for two-stage least squares Mendelian Randomization studies using a genetic instrument Z (a SNP or allele score), a continuous exposure variable X (e.g. body mass index	
1000	$rac{kg}{m^3}]$) and a continuous outcome variable Y (e.g. blood pressure [mmHg]).	
	YZ association	
x		
0.05	Power 0.05	
Type-I error rate	NCP 0.00 Non-Centrality-Parameter	
	Power or sample size calculations for the regression association of a genetic instrument Z (e.g. a BMI SNP), with a continuous outcome variable Y (blood pressure).	
Jyz	Working Example	
0	WORKING EXample If we are interested in calculating the minimum required sample size for performing a Mendelian Randomization (MR) study ascertaining the causal effects of body mass index (BMI) on systolic blood pressure	
The regression coefficient β_{yx} for the true underlying causal association between the exposure (X) and outcome (Y) variables	in we are meeting on carculating the minimum required sample size for performing a wenderial realidomization (wrx) study ascentiating the causar effects of body mass more (bin) on system body pressure in children, the required parameters for this online calculator could be taken from, for example, results from a published observational epidemiology study reporting associations between BMI and SBP and a St instrument that is reliably associated with BMI.	
	In an observational study reporting the association of BMI and SBP in children ^[1] , the regression coefficients for the association between BMI and SBP (averaged coefficients for boys and girls) was observed to	
	1.41 mmBg (no confounder-adjustment) and 1.30 mmBg (*) (adjusted for confounders). The SD for SBP in this sample (from the paper's online supplementary data) was 10.8, with an SD (standard deviation)	
Bols	for BMI.	
0	Assume that the causal effect of BMI on SBP is 1.30 $\frac{mmHg}{SD}$ [*] and that the population regression coefficient of BMI on SBP, including the effects of confounders, is 1.41 $\frac{mmHg}{SD}$. Also assume that for the MR structure is the struct	
0	we have a genetic instrument that explains $R_{xx}^2 = 0.01$ of variation in BMI (based on e.g. FTO SNP, which explains $\sim 1\%$ of the variation in BMI) ^[2] . Then we can calculate the power of an MR study using the following parameters:	
The regression coefficient β_{OLS} for the observational association between the exposurand outcome (Y) variables	$\beta_{OLS} = 1.41 \frac{mmHg}{SD}$	
	$eta_{yx} = 1.3 rac{mmHg}{SD}^{[n]}$	
	$\sigma^2(x) = 1$	
R_{xz}^2	$\sigma^2(y) = 10.8^2 = 116.6 \ mmHq^2$	
0.01	For an α of 0.05 and power of 0.8, the calculated minimum sample size for the Mendelian Randomization study is $N = 53, 218$. The reason why this sample size is so large is because BMI explains a small amount of variation in SBP in this case and because the genetic instrument explains a small proportion of variance in BMI.	

Mendelian randomization Power

http://cnsgenomics.com/shiny/mRnd/

→ O ŵ ⊙ cnsgenomics.com/shiny/mRnd/	1 mar 1 mar 1 mar	
nd: Power calculations for Mendelian Ra	andomization	
ut	Continuous outcome Binary outcome Binary outcome derivations Citation About	
	Power NA	
alculate:	NCP NA Non-Centrality-Parameter	
) Power	F-statistic 11.10 The strength of the instrument	
) Sample size		
rovide: ample size		
1000		
í		
0.05		
ype-I error rate		
·		
0		
roportion of cases in the study		
0R		
0		
rue odds ratio of the outcome variable per standard deviation of the exposure variable		
12 2.2		
0.01		
roportion of variance explained for the association between the SNP or allele score (Z) and ne exposure variable (X)		