
Common complex human traits1 — including quantitative 
traits and diseases — often result from multiple environ-
mental and genetic causes. Genome-​wide association studies 
(GWAS)1 have been widely used to identify the genomic 
regions on chromosomes that harbour genetic deter-
minants of complex traits2–8. To date, 47,681 statistical 
associations of single-​nucleotide polymorphisms (SNPs) 
with complex traits are summarized in the US National 
Human Genome Research Institute (NHGRI)–European 
Bioinformatics Institute (EBI) GWAS Catalog9, represent-
ing 2,185 traits with association P values less than 10−5. 
This success can be attributed to cost-​efficient genotyping 
microarrays containing a large number of SNPs. However, 
the SNPs on microarrays typically do not cause10 the trait. 
Rather, the SNPs on microarrays, called tag SNPs, are 
chosen because they are highly correlated (that is, have 
a large amount of linkage disequilibrium (LD)) with neigh-
bouring SNPs, thereby serving as surrogates for large 
genomic regions that contain unmeasured SNPs11,12. The 
association between a tag SNP and a trait can be indirect, 
resulting from a tag SNP associated with a causal SNP, 
which in turn is associated with a trait. Because patterns 
of LD among SNPs can be complex, it can be challenging 
to determine the underlying causal variants. This is when 
fine-​mapping can help13. The principles discussed here are 
also relevant for common genetic variants measured by 
whole-​genome sequencing studies.

Fine-​mapping seeks to determine the genetic variant 
(or variants) responsible for complex traits, given 
evidence of an association of a genomic region with 
a trait and assuming at least one causal variant exists. 
After an initial GWAS identifies at least one SNP strongly 

associated with a trait (for example, P value < 5 × 10−8), 
fine-​mapping typically proceeds by the general steps out-
lined in Fig. 1. These steps are discussed in detail below, 
but the general strategy is to use the GWAS list of SNPs 
associated with a trait to identify regions of interest. Each 
region is then visually explored for its LD structure and 
for genes known to be mapped to the region. Because it 
is simpler to fine-​map one causal variant at a time, each 
region is partitioned into subregions that have approx-
imately independent effects on the trait. Next, a fine-​
mapping strategy is chosen. The strategies we discuss 
are illustrated in Fig. 2. The selected SNPs are further 
evaluated for their likely function based on publicly avail-
able genomic annotation in order to prioritize costly and 
time-​consuming laboratory-​based functional studies.

The main focus of this Review is the statistical 
methods used to fine-​map each region of interest. The 
overarching goal is to determine which variants are most 
likely to be functional and to quantify the strength of 
evidence. This information can then be used for follow-​up 
studies, such as large-​scale replication studies of specific 
candidates, or laboratory functional studies. Although 
the initial GWAS can provide statistical evidence that a 
region is likely to harbour a causal variant, additional sta-
tistical methods are needed in order to discriminate likely 
functional variants from variants that are merely corre-
lated with the functional variants. A variety of methods 
have been used, ranging from simple heuristic methods, 
to the use of penalized regression for high-​dimensional 
data and to more refined Bayesian methods tailored for 
fine-​mapping (illustrated in Fig. 2). Some of the meth-
ods can be applied to a single study or to multiple studies 

Genome-​wide association 
studies
(GWAS). Scans of genetic 
markers, typically single-​
nucleotide polymorphisms 
(SNPs), across DNA of many 
subjects to find variants 
statistically associated with a 
complex trait.

Complex traits
Either quantitative traits (for 
example, blood pressure and 
height) or common diseases 
(for example, major cancers) 
that are caused by many 
genetic and environmental 
factors working together, each 
having a relatively small effect 
and few, if any, being 
absolutely required for disease 
to occur.
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combined by meta-​analysis techniques. When combining 
multiple studies, special techniques have been developed 
to simplify sharing of data based on summary statistics14. 
When the ethnic background of subjects differs across 
studies, trans-​ethnic fine-​mapping can sometimes improve 
the resolution of fine-​mapping. Each of these topics is 
discussed, emphasizing their strengths, weaknesses and 
challenges. We also present the main factors that influ-
ence power and resolution of fine-​mapping, which in 
turn offer guidance for study designs. We review the use 
of genomic annotation for fine-​mapping, as well as the 
integration of gene expression data with GWAS data. 
Finally, we discuss future challenges as our understanding 
of the genetic basis of complex traits evolves.

Interpreting lead SNPs from GWAS
The decision to fine-​map a region typically follows the 
discovery of genome-​wide significant results from a 
GWAS. It is common to summarize GWAS results with a 
Manhattan plot of all P values that measure the marginal 
association of one SNP at a time with a trait, followed 
with LocusZoom plots for regions of interest15 (Fig. 1). 
This allows one to focus on the SNPs with the smallest 
(that is, most significant) P values in distinct regions, 
sometimes called the lead or index SNPs. GWAS results 
are most reliable when SNP associations achieve the 
accepted genome-​wide statistical significance threshold 
of P value < 5 × 10−8 (Refs16,17), a threshold that accounts 
for multiple testing correction, although some investiga-
tors use a weaker threshold of P value < 10−6 to highlight 
regions that are suggestive of harbouring causal variants.

A limitation of the lead SNP is that there is a rea-
sonable chance that it is not the causal variant. This can 
occur because GWAS microarrays are based on tag SNPs, 
with the tag SNP merely correlated with the unmeasured 
causal SNP. Furthermore, even if the causal SNP is meas-
ured or imputed, there is a reasonable chance that the 
statistical association of the causal SNP with the trait is 
not the most significant association among all the associ-
ated SNPs when statistical power is not large. For example, 
based on simulations with 1,000 cases and 1,000 controls, 
there was a 79% chance that the lead SNP was found to 
be causal when the odds ratio (OR) for disease risk was 
1.5 and the risk allele frequency was 50% but only a 2.4% 
chance when the OR was 1.1 and the risk allele frequency 
was 5%18. Zaykin et al.19 considered multiple causal vari-
ants and the impact of LD and drew similar conclusions 
that true associations are not likely to result in the small-
est P values, in part owing to the small effect sizes of 
variants on complex traits. These findings emphasize the 
importance of caution when considering the lead SNP 
as likely causal and the importance of fine-​mapping in 
order to identify the causal variant or variants.

LD for population fine-​mapping
Fine-​mapping in population-​based studies leverages 
measures of nonrandom associations between pairs of 
loci. When loci are near each other and the frequency of 
recombination between them is low, the alleles from the 
different loci that occur on the same chromosome (called 
a haplotype) tend to be inherited as a unit. For alleles on a 
haplotype, occurrence together more than by chance is 

referred to as gametic association or more commonly as 
LD. Various measures of LD have been proposed20, but 
they all depend on the difference between the observed 
joint frequency of alleles occurring on the same hap-
lotype versus that expected by random chance. The 
most frequently used measure of LD is a standardized 
difference, which can be easily estimated by the Pearson 
correlation between the counts of the minor alleles (that 
is, less-​common alleles) for two SNPs. This correlation 
coefficient is directly related to statistical power, and it 
is a reasonable measure for fine-​mapping, although for 
case–control studies of rare diseases, measures such as 
attributable risk can perform better21.

Using LD to fine-​map a complex trait is based on the 
premise that ancestral meiotic recombinations diminish 
LD, implying that the SNP with the strongest associa-
tion with a trait is either the causal variant or close to the 
causal variant. However, evaluating one SNP at a time can 
be misleading owing to the complex patterns of LD in a 
genomic region. A classic example is the association of 
Alzheimer disease with multiple SNPs around the APOE  
locus on chromosome 19. As the distance from APOE in-​
creases, the P values for the association of SNPs with 
disease do not follow a monotonic pattern but rather 
increase and decrease22. This initiated a debate of whether 
there are genes in this region other than APOE that cause 
Alzheimer disease. However, the large amount of LD in 
this region has made it challenging to resolve this issue23. 
Factors beyond recombination that influence LD are 
mutation rates of the genetic markers, natural selection, 
population migrations and admixture, population bottle-
necks and demographic history (for example, population 
size and mating patterns)24. Because LD is influenced by 
factors other than recombination, it is too limiting to rely 
solely on patterns of pairwise LD, or even haplotype blocks, 
to provide reliable fine-​mapping of complex traits.

Factors influencing fine-​mapping
A number of factors influence the performance of fine-​
mapping, including the number of causal SNPs in a 
region and their effect sizes on the trait, the local LD 
structure, sample size, SNP density and whether the 
causal variants can be measured. Careful definition of 
the phenotype to enrich for genetic causes (for example, 
disease severity and strength of family history) might 
increase the genetic effect size. The local LD structure is 
difficult to control, but trans-​ethnic meta-​analyses can 
capitalize on differences in LD structure. Factors that can 
be controlled in study designs are the sample size and 
SNP density. Sample size can be increased by pooling 
different studies or performing meta-​analyses, recog-
nizing that disease heterogeneity might increase, thus 
diluting efforts. Because it is critical to have high SNP 
density to capture the causal variants, in the following 
section, we focus on strategies to increase density.

Increasing SNP density
The density of SNPs can be increased by DNA sequenc-
ing, but the costs for sequencing the large sample sizes 
required for fine-​mapping can be prohibitive. Alternative 
cost-​efficient strategies include genotype imputation and 
additional genotyping.

Tag SNPs
Single-​nucleotide 
polymorphisms (SNPs) that are 
sufficiently correlated with 
neighbouring SNPs such that 
the tag SNP serves as a 
surrogate for unmeasured 
SNPs.

Linkage disequilibrium
(LD). Nonrandom association 
of alleles at different loci on a 
haplotype in a given 
population. LD is key to  
fine-​mapping because 
coinheritance without 
recombination of alleles from 
different variants implies that 
the variants are proximal on 
the same chromosome.

Causal variants
Genetic variants that 
mechanistically contribute to 
diseases or quantitative traits 
but are not fully penetrant in 
the sense that the variant may 
not be a sufficient cause in 
isolation.

Fine-​mapping
To refine the genomic 
localization of causal variants 
by the use of statistical, 
bioinformatic or functional 
methods.

Penalized regression
A way to estimate regression 
coefficients by maximizing the 
log-​likelihood of the data while 
placing a penalty that 
constrains the size of the 
regression coefficients, 
shrinking small coefficients 
towards zero, sometimes 
exactly to zero. Although this 
causes coefficient estimates to 
be biased, it improves the 
overall prediction of the model 
by decreasing the variance of 
the coefficient estimates.

Summary statistics
Measures of statistical 
association between a trait and 
one or more single-​nucleotide 
polymorphisms (SNPs) that 
summarize the size of effects of 
the SNPs on the trait, the 
variances of the effect sizes 
and how the effect sizes are 
correlated among themselves. 
For case–control studies, 
summary statistics include the 
estimated log-​odds ratios from 
logistic regression, the 
variances of the log-​odds ratios 
and the correlations among the 
log-​odds ratios.
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Genotype imputation. Imputation of SNPs can fill in 
sporadic missing genotypes, harmonize data from dif-
ferent GWAS genotyping arrays to perform a pooled 
or meta-​analysis and increase the density of SNPs for 
fine-​mapping25,26. Key criteria for imputation success 
are high correlation of directly assayed SNPs with the 
untyped SNPs and appropriate reference panels that 
provide templates for LD patterns and allele frequencies 
that are representative of the study sample25. Popular ref-
erence panels are the 1000 Genomes Project27 and the 
Haplotype Reference Consortium28. Although imputed 
SNPs tend to be robust to the choice of quality con-
trol filters29, power to detect associations with a trait 
decreases as imputation accuracy decreases25.

Additional genotyping. Because imputation accu-
racy depends on the local LD structure, regions with 
weak LD might require actual genotyping to accu-
rately evaluate their association with a trait. Situations 
where additional genotyping helps are: validation of 
imputed SNPs, possibly improving fine-​mapping by 
reducing genotype measurement error; discovery of 
low-​frequency SNPs that are not in strong LD with a 
lead SNP; identification of SNPs that are not well rep-
resented in a reference panel; and disentanglement of 

SNPs that appear to be in perfect LD because of a small 
reference sample30.

Cost-​efficient genotyping is becoming more acces-
sible with the development of custom genotyping 
arrays that target certain diseases or traits, such as 
OncoArray for common cancers31; Metabochip for 
metabolic, cardiovascular and anthropometric traits32; 
and Immunochip for major autoimmune and inflam-
matory diseases33. These specialized arrays are primar-
ily designed to evaluate associations of SNPs that are 
known to be associated with specific diseases or traits. 
Notable advantages of these arrays are increased density 
of SNPs in known gene regions and cost-​efficiency to 
achieve large sample sizes for fine-​mapping. However, 
there are limitations. First, array content is focused on 
SNPs or genes that are already known to be associated 
with specific diseases or traits, which might exclude 
the finding of novel genes. These arrays also contain a 
backbone of genome-​wide tag SNPs that might over-
come this limitation, albeit at a lower resolution than 
high-​density arrays that are typically used for initial 
GWAS discovery. Second, array content can be based 
on reference data with incomplete coverage. Third, 
array content is based on SNPs rather than struc-
tural variation. Fourth, SNPs may be excluded from 
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Fig. 1 | Flow of a typical process from initial GWAS to annotation of SNPs selected from fine-​mapping analyses. 
Based on genome-​wide association study (GWAS) P values summarized in a Manhattan plot112, a list of single-​nucleotide 
polymorphisms (SNPs) that achieve genome-​wide statistical significance (that is, P value < 5 × 10−8) is used to determine 
regions of interest for fine-​mapping. Each region is typically explored according to the structure of linkage disequilibrium 
(LD) among SNPs using Haploview plots. Statistical associations are viewed with LocusZoom plots that illustrate the 
patterns of association of each SNP with the lead SNP, as well as the annotation of genes in the region. The regions can 
then be partitioned into independent subregions to ease computational burden, based on statistical models that  
evaluate the simultaneous effects of multiple SNPs on a trait. Statistical fine-​mapping is conducted in each region, using 
one of the methods illustrated in Fig. 2. The SNPs selected from fine-​mapping are then annotated with genomic features  
to prioritize follow-​up functional studies. eQTL , expression quantitative trait locus. Figure is reproduced with permission 
from Ref.112, Springer.

Trans-​ethnic
A type of genetic association 
study that includes subjects 
from more than one ethnic 
background.

Multiple testing correction
When testing more than one 
statistical association, the 
probability of declaring at least 
one significant result increases 
as the number of statistical 
tests increases. If each of m 
independent statistical tests 
uses P value < α to declare 
significance, then the chance 
that at least one of the m tests 
is found to be significant is 
approximately mα. Multiple 
testing correction maintains 
the overall chance of declaring 
at least one significant result 
by using more stringent P value 
thresholds for each association 
tested. The Bonferroni 
correction uses P value < α/m to 
test each association.
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arrays owing to assay failure. Finally, array designs are 
primarily based on European ancestry.

Partition to independent regions
When analysing one SNP at a time, it is common to find 
multiple SNPs in a region to be marginally associated 
with a trait. This can occur when multiple non-​causal 
SNPs are correlated with a single causal SNP. The LD 
among the SNPs will make each SNP appear to be asso-
ciated with a trait when analysing one SNP at a time. 
By contrast, when analysing all SNPs jointly, only the 
causal SNP is expected to be associated with the trait 
when accounting for the LD among the SNPs, simpli-
fying fine-​mapping efforts. Alternatively, when there 
are in fact multiple causal SNPs and they are correlated 
with each other and with other non-​causal SNPs, fine-​
mapping can be more challenging because joint analyses 
are not expected to highlight just one causal SNP.

To simplify fine-​mapping, it can be advantageous 
to first partition the region of interest according to the 
independent effects of SNPs on the trait and then sepa-
rately fine-​map each partition. To determine if multiple 
marginally associated SNPs are driven by one or a few 
independent statistical associations, conditional forward 
stepwise regression is often used (for example, logistic 
regression for case–control studies or linear regression 
for quantitative traits). This entails conditioning on the 
lead SNP from a GWAS by treating it as an adjusting 
covariate in a regression model and testing the remain-
ing SNPs in the region of interest. If a secondary SNP 
is found to be statistically significant after adjusting for 
the primary SNP, sequential testing proceeds by treating 
some SNPs as adjusting covariates while screening the 
remaining SNPs until no conditional tests are significant. 
A challenge is to decide on the threshold for significance. 
Some investigators use the stringent GWAS threshold  

P value < 5 × 10−8, while others use more liberal thresholds, 
such as P value < 10−4 or even P value < 0.05.

There are several limitations of forward stepwise 
conditional regression. First, as the number of steps 
increases, the number of statistical tests increases. If 
there are m SNPs, then after k sequential steps, approxi-
mately km statistical tests will be performed, increasing 
the chance of a false positive result. Second, when m is 
large, perhaps close to the number of subjects in the sam-
ple, and when a liberal threshold is used to include SNPs 
at each step, the forward selection procedure becomes 
unstable34 and is overly optimistic regarding the trait 
variation explained by the selected SNPs35. Third, the 
probability (that is, statistical power) of detecting sec-
ondary signals diminishes as the correlation among 
SNPs increases.

To illustrate diminishing power to detect a secondary 
SNP by conditional analysis, we derived simple formulas 
(Supplementary Box 1) to examine power. We assumed 
90% power to detect the primary SNP when it explains 
1% of a quantitative trait variation. We set the effect size 
for the secondary SNP to be a fraction of that for the  
primary SNP (fraction 50–100%), and we assumed  
the stringent GWAS threshold P value < 5 × 10−8 for test-
ing the effect of the secondary SNP. Figure 3 shows a 
dramatic loss in power to detect secondary signals as 
the correlation of SNPs increases, even at levels of SNP 
correlation ρ = 0.2. Power also decreases as the effect size 
of the secondary SNP decreases. Hence, one should be 
cautious when using conditional testing to declare only 
a single SNP to be statistically significant because low 
power can cause missed secondary associations.

Types of fine-​mapping approaches
A number of approaches have been used to perform 
fine-​mapping. We present three main strategies that 
have been used in the literature: heuristic methods, 
penalized regression models and Bayesian methods 
(illustrated in Fig. 2). Heuristic approaches were the 
first to be used, having grown out of practical experi-
ence and educated guesses, but with loosely defined 
criteria. Penalized regression models were developed in 
other fields of statistics, with the aim to reduce high-​
dimensional predictor variables (for example, SNP data 
for fine-​mapping) to a much smaller set that are strongly 
associated with a trait. In recent years, Bayesian meth-
ods have been specifically tailored for fine-​mapping. The 
main features of these three approaches are discussed, 
along with their benefits and limitations.

Heuristic fine-​mapping approaches. Because the 
LD structure around the lead SNP from GWAS has a 
substantial role in fine-​mapping, it is popular to first 
examine the correlation among the SNPs surrounding 
a lead SNP. One approach is to filter SNPs according to 
their pairwise correlation (r2) with the lead SNP, retain-
ing as potentially causal only those SNPs with an r2 above 
a threshold. Alternatively, hierarchical clustering of all 
SNPs in a region based on their pairwise r2 has been used 
to create clusters. However, both of these approaches 
depend on arbitrary thresholds to filter or form clusters. 
More rigorous penalized models and Bayesian methods 

Statistical power
The probability of correctly 
rejecting a null hypothesis of 
no statistical association 
between a single-​nucleotide 
polymorphism (SNP) and a 
trait when in truth a statistical 
association exists. Power 
depends on the magnitude of 
the SNP effect, the sample size 
and the P value threshold for 
deciding statistical significance.

Haplotype
A combination of alleles found 
on the same chromosome.

Haplotype block
A set of highly associated 
alleles on a chromosome that 
tend to be inherited together.

Fig. 2 | Hypothetical examples of fine-​mapping strategies. All subfigures are based on 
LocusZoom-​style illustrations of marginal single-​nucleotide polymorphism (SNP) 
associations. The –log10 (P) values are presented on the left y axis, and variant positions 
are on the x axis. The gold diamond for each locus represents the peak SNP. The results 
for other SNPs are coloured by descending degree of linkage disequilibrium (LD) with the 
peak SNP (ordered red, orange, green and blue dots). The purple bars represent 
additional variant-​level statistics produced by fine-​mapping (that is, β-​values for 
penalized regression and posterior inclusion probabilities (PIPs) for Bayesian methods), 
and the corresponding scale is on the right y axis. The light grey boxes represent the 
regions selected by fine-​mapping. A | The heuristic approach is based on LD patterns 
with the peak SNP (rs12345). All SNPs that meet the orange LD category threshold have 
been selected. B | The penalized regression approach selects all SNPs whose effects  
(β, right axis) are not shrunk to zero. C | Bayesian fine-​mapping produces SNP-​level PIPs 
(right axis), which can be summed to form credible sets on the basis of a specified 
coverage probability threshold (for example, 95%). This example illustrates that the peak 
SNP does not correspond to the SNP with the highest PIP, which can occur because of the 
correlation structure among all SNPs in the region. D | Bayesian trans-​ethnic 
fine-mapping. Results for the same locus are illustrated for two diverse study populations 
(Pop. 1 (part Da) and Pop. 2 (part Db)) with different local LD structures. The peak SNPs for 
the two analyses differ (rs12345 versus rs23456), and combining the results through 
meta-​analysis yields a narrowed fine-​mapping credible region (part Dc). E | Joint analysis 
of multiple loci by integrating annotation in Bayesian fine-​mapping can improve 
fine-mapping by borrowing annotation information across loci. Presented are three 
example independent loci (parts Ea, Eb and Ec), along with two corresponding regional 
annotations, indicated by bands below each locus plot. For loci 1 and 2, the peak SNPs 
overlap with Annotation 1, indicating enrichment. This enrichment results in the SNP 
with the highest PIP in locus 3 to be different from the peak SNP in locus 3.

◀
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that jointly model the simultaneous effects of multiple 
SNPs on a trait are more informative.

Another way to view correlation structure is by pair-
wise LD among SNPs within haplotypes, using software 
such as Haploview36 (Fig. 1). This gives a visual impres-
sion of discrete haplotype blocks37. Combining the 
GWAS lead SNP with SNPs in the same haplotype block 
is an alternative way to select potential causal SNPs. 
However, one should be cautious with this approach. 
Recombination hot spots strongly influence block fea-
tures, yet block boundaries can be arbitrary owing to 
the choice of statistical model parameters and compu-
tational method, as well as genetic marker density and 
allele frequencies38,39. Internal inconsistencies of blocks 
are troubling, such as when two markers in strong LD 
flank markers with little LD with one of the flanking 
markers38. The above heuristic methods to choose SNPs 
for functional follow-​up are too limiting because they do 
not account for the joint effects of the SNPs on the trait,  
and they do not give an objective measure of the confi-
dence that a SNP is causal but rather rely on somewhat 
arbitrary thresholds and subjective interpretations of 
correlations among SNPs.

Penalized regression models. An alternative fine-​
mapping approach is to use a regression model to jointly 
analyse all the SNPs in a region. Traditional model build-
ing is based on forward selection (or alternative stepwise 
methods), using P values to determine whether a SNP 
should be included in a model. However, a large num-
ber of SNPs and high correlation among the SNPs can 
make traditional regression models unstable. A more 
robust approach is provided by penalized regression 

models. These models simultaneously perform esti-
mation of SNP effect sizes and SNP selection into a 
model by shrinking small effect estimates towards zero. 
Popular penalized models are lasso40, elastic net41, min-
imax concave penalty42 and a normal-​exponential-γ 
shrinkage prior43 implemented in the HyperLasso soft-
ware. Simulation studies show that penalized models 
tend to perform better than forward selection. Forward 
selection can be too conservative when using a very 
stringent P value threshold to select SNPs, yet a liberal 
threshold increases the chance of falsely selecting SNPs44. 
Penalized models use tuning parameters to select SNPs 
into a model, with tuning parameters chosen to encour-
age SNPs with small effect sizes to be removed from 
the model. Tuning parameters are often estimated by 
cross-​validation to choose a model with minimum pre-
diction error. Penalized models tend to result in sparse 
models, selecting only one or a few SNPs belonging to 
a group of correlated SNPs. This can result in a good 
prediction model that includes non-​causal SNPs and 
excludes a causal SNP when they are highly correlated. 
In Supplementary Box 1, we provide R code for read-
ers to further see how high correlation combined with 
sparse models reduces the chance of selecting the causal 
variant. By contrast, Bayesian methods have been spe-
cifically designed for fine-​mapping, offering advantages 
over heuristic and penalized regression approaches.

Bayesian methods overview. The challenge of both 
penalized regression and Bayesian variable selection 
methods is determining which SNPs have non-​zero 
effect sizes (regression β-​values) on a trait. Although we 
refer to SNPs with non-​zero effect sizes as causal, it is 
important to realize that statistical methods alone can-
not determine causality. Penalized models choose SNPs 
based on cross-​validation that minimizes the error of 
predicting a trait. By contrast, Bayesian inference focuses 
on the probability of a specific hypothesis or specific 
model, thus providing probabilistic interpretation  
of models of interest.

A model for fine-​mapping can be represented by 
an indicator variable for each SNP, with values of 1 for 
causal and 0 for not, and by organizing these indicators 
for all SNPs of interest in vector c. For m SNPs, there 
are 2m possible c vectors (hence, 2m possible models), 
ranging from all values of c equal to 0 for no SNPs 
causal to all values equal to 1 for all SNPs causal. Using 
Bayes’ formula, the prior probability of a model can be 
combined with the likelihood of the data D (trait and 
SNPs) to compute the posterior probability of a specified 
model Mc, which we denote P(Mc | D). See Box 1 for 
how the posterior probability is calculated. There are 
several ways to specify the prior probability for a model, 
such as assuming that variants are independent and 
equally likely to be causal45,46 or assuming a fixed num-
ber of causal variants out of the total variants46,47 (see 
Supplementary Box 1 for more details). The posterior 
probabilities for different models can be used to deter-
mine the posterior probability of including each SNP in 
any of the models (posterior inclusion probability (PIP)), as 
well as determining the minimum set of SNPs required 
to capture the likely causal SNPs (credible sets). A variety 

Genotype imputation
A method for estimating 
(imputing) the unobserved 
genotypes of study subjects, 
both for individuals with 
missing or unreliable 
genotypes at a genotyped 
single-​nucleotide 
polymorphism (SNP) and for all 
individuals at an ungenotyped 
SNP.

Recombination hot spots
Genomic regions where the 
rate of recombination is much 
higher than the neutral 
expectation.

Cross-​validation
A technique to build a 
prediction model by randomly 
partitioning the sample into a 
training set to train the model 
(for example, determining 
which single-​nucleotide 
polymorphisms (SNPs) to 
include in a model) and a test 
set to measure its predictive 
performance (for example, 
average squared prediction 
error). It is common to split the 
original sample into ten equally 
sized subsamples, use nine to 
train and one to test, repeat 
this process ten times such 
that each of the ten 
subsamples is used as a test 
sample, and then average the 
predictive performance over 
the ten training subsamples.
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Fig. 3 | Power of conditional analysis. This figure illustrates 
how conditional analyses have weaker power to detect 
secondary associated single-​nucleotide polymorphisms 
(SNPs) than does an initial genome-​wide association study 
(GWAS). Power of conditional analyses diminishes as the 
correlation of a primary SNP (indicated by SNP1) and a 
secondary SNP (indicated by SNP2) increases and when the 
effect size of a secondary SNP is weaker than that for a 
primary SNP. For this figure, the power for an initial GWAS to 
detect a primary SNP1 is 90% for an effect size of R2 = 1% of 
explained trait variation. The effect size of a secondary SNP2 
is varied from 100% to 50% of the effect size of primary SNP1.
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of Bayesian fine-​mapping methods have been developed 
and are summarized in Table 1.

Bayesian methods: posterior inclusion probability. 
Bayesian methods for fine-​mapping have been special-
ized in order to focus on the SNPs that have the largest 
chance of being causal45,48. The PIP for a SNP is the prob-
ability of including a SNP as causal in any of the models.  
For SNP j, the PIP is computed by the sum of the 
posteriors over all models that include SNP j as causal,

( ) ∑PIP P c D P M D= = 1 = ( )j j
M c, =1j

After the posterior probabilities for the different 
models are computed, the PIP is rapid to compute and 
is an output from many Bayesian fine-​mapping soft-
ware packages (Table 1). Ranking SNPs by their PIP is 
a convenient way to select putative causal SNPs46. For 
example, the top k SNPs ranked by their PIP maximize 
the expected number of causal SNPs across all possible 
subsets of size k47. However, caution is warranted when 
multiple SNPs in a region are highly correlated and all 
are approximately equally correlated with the phenotype. 
In this situation, none of the individual PIPs would be 
very large. It would be better to estimate the poste-
rior expected number of causal SNPs by summing the 
estimated PIPs for all SNPs in the region45.

Bayesian methods: credible sets. Bayesian methods can 
be used to determine the credible set49, the minimum set 
of SNPs that contains all causal SNPs with probability 
α. When assuming only one causal SNP, α is the sum of 
PIPs for SNPs in a set. This means that an α credible set 

is equivalent to ranking SNPs from largest to smallest 
PIPs50 and taking the cumulative sum of PIPs until it is 
at least α.

Bayesian methods can also allow for multiple causal 
SNPs in a region. Although computation time increases 
because of the larger number of models required for 
multiple causal SNPs, recent developments46,51–54, nota-
bly the JAM software55, make it feasible to stochastically 
search over a wide array of possible models. An excellent 
demonstration of the benefits of Bayesian fine-​mapping 
is provided by a fine-​mapping analysis of 84 prostate can-
cer GWAS loci using 143,804 subjects56. Single signals of 
causal variants were found in 63 regions, and 12 regions 
showed evidence of multiple independent causal variants. 
Furthermore, only 15 (5.4%) of the 280 original GWAS tag 
SNPs remained as potential causal variants.

There are numerous advantages to Bayesian meth-
ods for fine-​mapping. First, unlike P values, posterior 
probabilities for SNPs can be directly compared. Second, 
they tend to select fewer SNPs as potentially causative 
compared with selecting SNPs on the basis of their cor-
relation with the lead SNP18. Third, simulation studies 
have shown Bayesian methods to perform better than 
both conditional stepwise regression46,55,57 and penalized 
regression models47. Finally, because Bayesian models 
are based on the joint effects of SNPs, they control for 
SNPs with large effects, improving power to detect SNPs 
with lesser effects. See Fig. 2 for visual aspects of Bayesian 
fine-​mapping.

Combining studies and meta-​analyses
Combining data from multiple cohorts can increase 
fine-​mapping resolution, and the fine-​mapping strate-
gies discussed above can be used when individual-​level 
data are pooled. However, because it can be challenging 
to obtain individual-​level data from multiple cohorts, 
summary statistics for the associations of a trait with 
SNPs can be used14. This strategy is gaining popularity 
because it simplifies data sharing and computational 
issues. When summary statistics are appropriately 
chosen, there is no loss of information compared with 
using individual-​level data58. Most summary statis-
tics focus on marginal regression β-​values and their 
variances. To obtain the joint effects of multiple SNPs 
using individual-​level data, one must regress trait y on 
all SNPs simultaneously, y = XβJ + e, where βJ is a vector 
of the joint effects of SNPs, X is a matrix of the coded 
SNP effects (for example, counts of minor alleles) and 
e is random error. By contrast, in summary data when 
only the marginal β-​values are available, it is still possible 
to determine the joint effects of SNPs needed for fine-​
mapping. When effect sizes are small, there is a simple 
relationship between the joint and marginal effects59, 
determined by βJ = R−1βM, where βM is a vector of the 
marginal effects and R−1 is the inverse of the matrix of 
pairwise SNP correlations (assuming the columns of X 
are standardized to have a mean of 0 and a variance of 1).  
The key aspect is the SNP correlation matrix, which 
summarizes the LD among the SNPs. When the original 
data are used to estimate the SNP correlations, there is 
no loss of information relative to analysing individual-​
level data58. In practice, an appropriate reference sample 

Box 1 | Bayesian methods

The goal of Bayesian methods is to compute the probability of a specific model, 
conditional on the observed data, denoted D, which includes the trait and single-​
nucleotide polymorphisms (SNPs). For a model Mc specified by a vector c of indicator 
variables, with each indicator variable having a value of 1 if a SNP is causal and 0 if a 
SNP is non-​causal, the posterior probability of model Mc is

where the sum in the denominator is over all models from a specified model space. For 
example, if the model space were to allow exactly one causal SNP out of k SNPs, there 
would be k possible c vectors and k possible models in the space.

The term P(D|Mc) is the probability of the data under an assumed model. If only a fixed 
set of β-​values were considered, P(D|Mc) would be the likelihood of the data, denoted 
P(D|β). This is the same likelihood used in frequentist analyses. However, Bayesian 
inference treats the β-​values as random in order to account for their uncertainty. This is 
accomplished by assuming a prior distribution for the β-​values, which we denote 
P(β|Mc), and averaging over their possible values. This leads to the marginal likelihood, 
computed by integrating over the distribution of β-​values:

The ingredients of Bayesian methods are the likelihood (P(D|β)) and the assumed prior 
distribution of the models and their parameters. Details regarding choices of likelihood 
models and prior probabilities for Bayesian fine-​mapping, as well as approximate Bayes 
factors, are discussed in Supplementary Box 1.

∈∑
P M D

P D M P M
P D M P M

( ) =
( ) ( )

( ) ( )M
c

c c

M

Prior probability
In Bayesian probability theory, 
the probability distribution 
assigned to parameters of 
interest, specified to represent 
prior knowledge of their values 
before observing the data.

Posterior probability
In Bayesian probability theory, 
the updated probability 
distribution of parameters of 
interest, conditional on the 
observed data.

Posterior inclusion 
probability
(PIP). The marginal probability 
that a single-​nucleotide 
polymorphism (SNP) is 
included in any causal model, 
conditional on the observed 
data, thereby providing weight 
of evidence that a SNP should 
be included as potentially 
causative.

∫P D M P D β P β M β( ) = ( ) ( )∂c c
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is often used to estimate the SNP correlations, such as 
the 1000 Genomes Project, allowing marginal summary 
statistics from single SNP analyses to be combined for 
a joint analysis59. However, if the LD patterns in the ref-
erence sample do not represent those in the analysed 
samples, the estimated joint effects can be biased, lead-
ing to errors in fine-​mapping. Furthermore, the size of 
the reference sample should not be too small and should 
increase in size as the GWAS sample size increases60.

Trans-​ethnic fine-​mapping
Comparisons of GWAS findings across ethnically 
diverse populations have revealed that associations of 
SNPs with complex traits are often consistent across 
populations, with similar direction of effects of alleles 
on traits61,62. Trans-​ethnic meta-​analyses that combine 
GWAS results of the same trait across genetically diverse 
populations can aid fine-​mapping by capitalizing on 
ethnic differences in LD patterns63,64 (Fig. 2).

A critical issue is the choice of ethnic groups. Analyses 
based on a mix of different European ancestries or a mix 
of European and Asian ancestries provide little gain for 

fine-​mapping30,65. Rather, simulations have shown that a 
substantial reduction in the size of Bayesian fine-​mapping 
credible sets can be attained by including subjects of 
African ancestry65 because they have much narrower 
LD. Including Hispanic ancestry might also improve 
fine-​mapping over using only European or Asian ances-
tries65. The balance of ethnic groups can also impact 
fine-​mapping performance. Simulations have shown that 
equal proportions of African and European ancestry are 
optimal for fine-​mapping18. Although current samples 
with African ancestry tend to be much smaller than those 
with European ancestry, including African ancestry can 
still improve fine-​mapping resolution65.

Trans-​ethnic analyses are often conducted as meta-​
analyses of summary statistics using random-​effects 
methods, recognizing that a SNP can have different effect 
sizes across different ethnic groups. This heterogeneity 
can result from differences in study designs, differences 
due to interactions with other SNPs or differences due 
to environmental or lifestyle factors that influence the 
effects of genes. METASOFT66, which implements 
a modified form of the traditional random-​effects 

Table 1 | Commonly used Bayesian fine-​mapping software

Software Trait typea Input 
covariatesb

Uses 
summary 
statistics?

Maximum 
number 
of causal 
variantsc

Input 
annotation?

Causal 
search

Main output Refs

BIMBAM v1.0 qt and binary No No Fixed No Exhaustive Bayes factor 113,114

mvBIMBAM v1.0.0 mqt No Yes 1 No Exhaustive Bayes factor 115,116

SNPTEST v2.5.4-beta3 qt, binary , mqt and 
multinomial

No No 1 No Exhaustive Bayes factor 117

piMASS v0.9 qt and binary No No Computed No MCMC Bayes factor and PIP 45

BVS v4.12.1 Binary Yes No Computed Yes MCMC Bayes factor and PIP 97,118,119

FM-​QTL qt No No Computed Yes MCMC Bayes factor and PIP 96

DAP v1.0.0 qt Yes Yes 1, fixed and 
computed

Yes Exhaustive Bayes factor and PIP 52

Fine-​mapping Multinomial Yes No Computed No Greedy PIP 30

Trinculo Multinomial Yes No Computed No Greedy Bayes factor and PIP 30,120

BayesFM Binary Yes No 20 No MCMC PIP 30

ABF qt and binaryd Yes Yes 1 No Exhaustive Bayes factor 121

fgwas v0.3.6 qt and binaryd No Yes 1 Yes Exhaustive Bayes factor and PIP 95

CAVIAR/eCAVIAR qt and binaryd No Yes Fixed No Exhaustive ρ probability 
confidence set and 
PIP

46,101

PAINTOR v3.0 qt, binaryd and mqt No Yes Fixed and 
computed

Yes Exhaustive 
and MCMC

Bayes factor and PIP 54,57,71

CAVIARBF v0.2.1 qt and binaryd No Yes Fixed Yes Exhaustive Bayes factor and PIP 47,94

FINEMAP v1.1 qt and binaryd No Yes Fixed No Shotgun 
stochastic 
search

Bayes factor and PIP 53

JAM in R2BGLiMS v0.1 qt and binaryd No Yes Fixed and 
computed

No Exhaustive 
and MCMC

Bayes factor and PIP 55

MCMC, Markov chain Monte Carlo; PIP, posterior inclusion probability. aTrait types are binary , single binary trait; mqt, multiple quantitative traits; multinomial, trait 
with more than two categories; and qt, single quantitative trait. bFor software that does not allow covariates to be input, the traits can be adjusted for covariates by 
first regressing out the covariates (that is, subtracting trait predicted by covariates from trait values). cA fixed number is specified by the user to reduce computational 
cost. It is usually small (for example, three) when the number of candidate variants is large. When computed, the number of causal variants is determined by the 
software. As indicated, some software allow different options for whether the maximum number of causal variants is fixed by the user or computed by the software. 
dApplication to binary traits is based on linear regression, an approximation assuming small effect sizes and large sample sizes.
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approach, is popular among trans-​ethnic studies67–70. 
Alternative methods that model the heterogeneity can 
improve fine-​mapping resolution. One approach is based 
on Bayesian methods, as implemented in the PAINTOR 
software71. Other approaches that use GWAS SNP data 
to explicitly adjust for heterogeneity include MANTRA 
and MR-​MEGA. MANTRA is based on a computation-
ally intensive Bayesian partition method that creates 
discrete clusters of ethnically similar subjects, assum-
ing that subjects within the same cluster have the same 
allelic effects for a variant, in contrast to subjects from 
different clusters having different allelic effects72. A good 
example of trans-​ethnic fine-​mapping with MANTRA, 
followed by use of PAINTOR and CAVIAR software to 
estimate PIPs and credible sets, as well as use of func-
tional annotation, is provided in a large fine-​mapping 
study of high-​density lipoprotein cholesterol73. In 
contrast to the discrete clusters created by MANTRA,  
MR-​MEGA considers allelic heterogeneity on a contin-
uum, uses principal components of genetic similarity 
among subjects to determine axes of genetic variation and  
then uses the principal components to adjust for hetero
geneity of allelic effect sizes74. Simulations show that 
MR-​MEGA can offer improved fine-​mapping over other 
methods while retaining computational efficiency74.

Factors affecting Bayesian PIPs for fine-​mapping
A number of factors influence the resolution and 
power of fine-​mapping. To quantify this influence, we 
derived a simple formula for the expected Bayes PIP of 
a single causal SNP when studying a quantitative trait 
(Supplementary Box 1). This expected posterior prob-
ability depends on the effect size of the causal SNP on a 
trait (measured by multiple regression R2, the per cent 
of trait variation explained by the causal SNP) and the 
sample size (N). Importantly, these two factors com-
bine into the non-​centrality parameter that determines 
power, λ = NR2 / (1 – R2). Other factors that influence the 
expected posterior probability are the number of SNPs 
in the fine-​mapping effort (we assume one causal SNP 
and m non-​causal SNPs) and SNP correlation structure. 
To simplify the correlation structure, we assume that all 
SNPs are equally correlated with correlation ρ, as might 
occur when examining a small genomic region or filter-
ing on SNPs to achieve a correlation threshold. Finally, 
the assumed prior probabilities that SNPs are causal 
also influence the posterior probability. Based on these 
assumptions, the expected posterior probability for a 
causal SNP can be expressed as,

∕∑
post

pr
pr pr exp ρ NR R

=
+ {−(1− ) (1− )}c

c

c i i c
m

i=1 ≠
2 2

Where pri is the prior probability that the ith SNP is 
causal, and subscript c is for the causal SNP.

Assuming R2 = 1%, a relatively small effect size, we 
illustrate in Fig. 4 that large sample size and small SNP 
correlations provide the ideal setting to achieve a high 
posterior probability for a causal SNP. Increasing the 
number of non-​causal SNPs tends to decrease the poste-
rior probability by spreading out the posterior probabil-
ity among multiple non-​causal SNPs, particularly when 

the non-​centrality parameter λ is not large. Figure 4 also 
emphasizes that it is difficult to achieve a large posterior 
probability for a causal SNP when SNPs are highly cor-
related. Hence, it might be premature to pre-​filter SNPs 
to have a large correlation with a lead SNP before per-
forming fine-​mapping efforts because the SNPs without 
large correlations could still be viable candidates. 
Furthermore, when power is weak or SNP correlation is 
large, well-​informed prior probabilities are most critical 
because in these situations they have a larger effect on 
the posterior probabilities. Of course, mis-​specified 
prior probabilities can result in a non-​causal SNP having 
a large posterior probability, misleading fine-mapping 
efforts.

Genomic annotation
Genomic annotation that assigns biological function 
to DNA sequences can be informative about the likely 
function of SNPs selected by fine-​mapping analyses and 
can aid prioritization of follow-​up functional studies. 
Large-​scale initiatives have increased publicly available 
resources, including Gene Ontology75, GENCODE76, 
ENCODE 77,  FANTOM5 78 and the  Roadmap 
Epigenomics Project79. By integrating multiple datatypes 
for a variety of tissues and cell types, current annotations 
provide functional context for approximately 80% of the 
human genome80. Analyses of published GWAS findings 
have identified significant enrichment for functional 
annotations among complex trait associations81–83, moti-
vating the use of annotation to improve fine-​mapping 
resolution. Annotations are generally categorized on the 
basis of whether they occur in protein-​coding versus 
non-​protein-coding sequences.

Protein-​coding annotation. Annotation for SNPs in 
genes that code for proteins focuses on their impact on 
the resulting protein structure. Examples of annotation 
include whether a SNP occurs in an exon, an intron or a 
splice site or whether it is involved in alternative splicing. 
A large number of bioinformatics annotation methods 
are available to functionally characterize coding SNPs 
and provide impact scores that predict their deleteri-
ous effect84,85. Although prediction accuracy can be low 
from individual methods, combining methods can lead 
to improved predictions, such as by the CADD86 and 
REVEL87 methods.

Non-​protein-coding annotation. The Encyclopedia of 
DNA Elements (ENCODE) project has shown that the 
genome is pervasively transcribed and that the majority 
of bases are found in primary transcripts, including 
non-​protein-coding transcripts88. Genetic variation  
in non-​coding regions is often involved in gene regu-
lation. Some examples of non-​coding annotation are 
promoters, enhancers, long non-​coding RNA loci, tran-
scription start sites, transcription factor binding sites, 
regulatory sequences, features of chromatin accessi-
bility and histone modification patterns and DNaseI 
hypersensitive sites. Variant impacts on putative tran-
scription factor binding site (TFBS) motifs can be esti-
mated by position weight matrices from databases, such  
as TRANSFAC89 and JASPAR90. Annotation tools, such as  
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FIRE91, RegulomeDB92 and CADD86, provide regula-
tory impact scores for non-​coding SNPs by aggregating 
multiple evidence sources of functional importance.

Integrating annotation into fine-​mapping. Ad hoc 
review of SNP annotations is often applied to SNPs 
selected by fine-​mapping analyses in order to identify 
patterns of annotation enrichment and prioritize candi-
dates for functional validation. This subjective approach 
can be cumbersome and biased. Alternative methods can 
improve fine-​mapping, such as using functional annota-
tion to weight SNPs93 in regression models or extending 
Bayesian models to allow the prior probability that a SNP 
is causal to depend on annotation57,94–97 (Supplementary 
Box 1). Advantages of Bayesian methods are that the 
weights given to functional annotation are inferred 
from the data, and that jointly mapping multiple regions 
simultaneously provides a way to share annotation 
information across different regions57,95. Most meth-
ods allow for a relatively small number of annotation 
features, which requires screening each annotation one 
at a time in order to select a subset for a final model. 

An alternative approach that incorporates automatic 
selection of annotations from a large number of features 
overcomes this limitation94. Bayesian mapping software 
that allows use of annotation is highlighted in Table 1.

The broad impact of the use of annotation on  
fine-mapping is yet unknown. By simulations, Van de  
Brunt et al.18 found that incorporating annotation into 
Bayesian prior probabilities gave modest benefit for 
fine-mapping by increasing the frequency of small credible 
sets (for example, less than ten SNPs) from 27% without 
annotation to 36% with annotation. In real applications of 
fine-​mapping four blood lipid traits, the 90% credible set 
size reduced from an average of 17.5 SNPs without use of 
annotation to 13.5 SNPs with use of annotation57. When 
using a Bayesian method to fine-​map three diseases in 
the Wellcome Trust Case Control Consortium, very few 
SNPs in the credible sets were found to have annotated 
functions50. Therefore, use of annotation information can 
be limiting from two angles: first, incorporation of anno-
tation into prior probabilities has limited impact on well-​
powered studies, and second, current understanding of 
broad genomic function may be too limiting to accurately 
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Fig. 4 | Posterior probability for a single causal SNP when 5–40 SNPs are in a region of interest. The prior probability 
that a single-​nucleotide polymorphism (SNP) is causal is assumed to be equal for all SNPs. Sample size (N) ranges from 
500–20,000, and the per cent of trait variation explained by the causal variant, R2, is 1%. SNPs are assumed to be equally 
correlated with magnitude ρ. The horizontal dotted line is for equal prior probabilities for SNPs, and the posterior 
probability approaches this line when the data have little information to distinguish causal from non-​causal SNPs.
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improve prior probabilities of causation. Conversely, 
annotation might help when association signals are at best 
moderate, in regions of high LD, when there are multiple 
causal SNPs in a region, or when different regions share 
enrichment for specific annotation features.

Integrating GWAS with gene expression. More than 
90% of trait-​associated alleles discovered by GWAS 
map to non-​coding regions, with strong evidence of 
enrichment for regulatory elements, such as enhancers, 
promoters, insulators and silencers81. Furthermore, SNPs 
associated with complex traits are significantly more 
likely to be expression quantitative trait loci (eQTLs) than 
other SNPs on genotype arrays with the same allele fre-
quencies98. This suggests that SNPs discovered by GWAS 
influence the amount of expression of nearby genes, and 
this altered expression ultimately influences the trait.

Statistical methods have been developed to integrate 
eQTL data with GWAS data to quantify the evidence 

of a causal pathway from SNP to gene expression to a 
complex trait. The intermediate variable, mRNA, is the 
mediator between a SNP and a trait. One approach to 
test a causal pathway is by a causal inference test99, with 
small P values inferring causality. Alternative Bayesian 
approaches focus on the posterior probability that a 
single SNP is causally related to both mRNA level and 
the trait100,101. Mendelian randomization is yet another 
approach that can be used to distinguish whether a single 
SNP influences both gene expression and the trait versus 
whether separate SNPs in LD influence gene expression 
and the trait102. Details of these various approaches are 
provided in Supplementary Box 1.

A critical issue for integrating eQTL and GWAS 
results is the type of tissue for which the expression 
was measured. Complex diseases often result from 
dysfunction of multiple tissues or cell types, and the 
expression of genes varies widely across different types 
of tissues. Selecting relevant tissue types for a given 
disease process or complex trait can be a substantial 
challenge. Numerous public resources facilitate the 
exploration of gene expression in different tissues, such 
as the Genotype-​Tissue Expression (GTEx) project, 
which includes genotypes, gene expression, and histo-
logical and clinical data for 449 human donors across  
42 distinct tissues103.

Conclusions
Fine-​mapping efforts have made considerable advance-
ments to refine the most likely genetic variants discov-
ered by large-​scale genetic association studies of complex 
traits. We reviewed a variety of analytical methods, with 
the more sophisticated and relevant methods based on 
Bayesian fine-​mapping. A common underlying basis of 
all methods is LD between measured SNPs and causal 
variants, which makes fine-​mapping feasible, as well as 
challenging. Although the details of a particular study 
will determine the success of fine-​mapping, general 
guidelines for evaluating the robustness of fine-​mapping 
efforts are provided in Box 2.

Most of this Review discusses SNPs. Other types of 
genetic variants can be analysed with similar strategies, 
such as small insertions or deletions (indels) analysed as 
binary variables. Currently, there are few general meth-
ods to incorporate large structural variants into GWAS 
fine-​mapping. However, germline structural rearrange-
ments have helped to discover simple Mendelian disease 
genes, such as partial deletion of chromosome 15 leading 
to discovery of the gene UBE3A that causes Angelman 
syndrome104 or a 1.5 Mb inversion on chromosome 17q12 
leading to renal cysts and diabetes syndrome (RCAD), 
an autosomal dominant disorder105. Genetic variants 
with more than two alleles would require extension of 
current methods. For example, the human leukocyte 
antigen (HLA) locus on chromosome 6 is highly poly
morphic and is involved with immune response and 
multiple diseases. This region has unique fine-​mapping 
challenges, some of which can capitalize on GWAS data 
(Supplementary Box 1).

As fine-​mapping efforts proceed, an important 
consideration is the expected level of resolution. Using 
simulations that closely align with genomic structure of 

Expression quantitative 
trait loci
(eQTLs). Genomic regions that 
harbour one or more 
nucleotide variants that 
influence the amount of 
expression of a gene.

Box 2 | Guidelines for evaluating fine-​mapping

The goal of fine-​mapping is to determine which variants in a genomic region are most 
likely to be causally related to a trait after accounting for how the variants in the region 
are correlated. One challenge with Bayesian fine-​mapping can be that the output 
credible sets contain a large number of variants. A way to reduce the number of 
putative causal variants is the improved use of annotation, perhaps by careful selection 
of relevant cell types for gene regulation annotation. Another way is to increase sample 
size. With large samples, Bayesian fine-​mapping can sometimes result in a credible set 
of only a few variants or perhaps a single variant. To gain confidence in fine-​mapping 
results, it is worthwhile to evaluate the robustness of the results. Some guidelines for 
evaluating robustness are given below.

•	What is the spread of the posterior inclusion probability (PIP) values for the variants  
in a credible set? If the PIPs are similar for multiple variants in a credible set,  
it can be worthwhile to view the correlation among the variants and the effect sizes  
of the variants with the effects of variants adjusted for each other. Large correlations 
among variants with similar effect sizes can suggest that it is not possible to 
distinguish among the variants with the available sample.

•	When using summary statistics and a reference panel to estimate the SNP 
correlations, how well does the reference panel match the study sample? When 
possible, it is worthwhile to compare the correlations among the variants in the study 
sample with the correlations in the reference panel. Large differences between the 
study sample and reference panel warrant further fine-​mapping analyses with the 
correlations obtained by the study sample. When correlations among SNPs from the 
study sample are not available, comparisons of allele frequencies between the 
reference panel and study sample can sometimes reveal problems, such as large 
differences in allele frequencies.

•	Because highly correlated SNPs can make fine-​mapping difficult, sometimes 
compromising numerical computations, it is worthwhile to examine the correlations 
among the SNPs chosen on the basis of fine-​mapping. High correlations (for example, 
more than 0.98) might warrant more careful scrutiny.

•	Different software for fine-​mapping make different assumptions, and the 
computational methods can be implemented differently. To evaluate the robustness of 
a finding, it can sometimes be worthwhile to compare results across different software 
packages. Consistent results can improve confidence in the fine-​mapping findings. 
However, inconsistent results can be caused by multiple factors, including different 
modelling assumptions, rounding errors or differences in stochastic search methods. 
Hence, although comparing results across different software packages can be useful, 
expertise in the software is required in order to adequately interpret the results.

•	Trans-​ethnic fine-​mapping assumes that the set of causal SNPs are the same for all 
populations but accounts for differences in effect sizes across populations. For this 
reason, it can be worthwhile to evaluate the estimated effect sizes of the SNPs 
selected by fine-​mapping to determine if just one, or a few, of several populations 
have effect sizes that dominate the fine-​mapping.
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the UK 10,000 Genomes (UK10K) sample of 3,642 unre-
lated subjects of European ancestry, Wu et al.106 found 
that at least 80% of common variants identified in pub-
lished GWAS that used imputed data were within 33.5 kb 
of causal variants. This provides optimism for fine-​
mapping GWAS results when using the study designs 
and computational methods discussed in this Review. 
Sharing of data in large meta-​analyses and improved 
genomic annotation will probably improve resolution.

The frequency of variants has a large effect on the 
success of fine-​mapping by statistical methods. Wu 
et al.106 found that rare untyped causal variants (minor 
allele frequency less than 0.01) are unlikely to map to 
a common variant in GWAS, whether using imputed 
data or whole-​genome sequencing. Less-​common vari-
ants tend to have lower levels of LD with other variants, 
making it challenging to impute less-​common variants 
by statistical methods. However, low levels of LD can 
be advantageous for fine-​mapping when the variants are 
accurately genotyped or imputed and a study has high 
power to detect associations with single variants. Whole-​
exome sequencing and whole-​genome sequencing open 
new avenues to discover rare variants. A challenge of 
these types of sequencing studies is the very large sam-
ple size (for example, approximately 100,000 subjects) 
needed to discover regions that harbour rare causal var-
iants for complex traits107. Furthermore, the statistical 

methods for rare-​variant associations with a trait do not 
focus on single rare variants but rather evaluate an entire 
region108. Therefore, the initial discovery of a region pro-
vides little evidence of specific variants that are likely 
to be causal. Nonetheless, whole-​genome sequencing can 
be informative for fine-​mapping rare variants, but in this 
situation, various sources of annotation of variants will 
be key to success109. Alternative approaches that combine 
functional assay results with computational prediction of 
function110 might prove useful for fine-​mapping, albeit 
with the requirement of functional assays developed for 
each specific region of interest.

Our understanding of the genetic basis of human dis-
ease has evolved from single major genes influencing rare 
Mendelian disorders to multiple genes — polygenic —  
influencing common complex traits. Future fine-​
mapping challenges will face complex traits driven by 
a large number of variants with small effects, possibly 
based on a genetic architecture of regulatory networks 
composed of a small number of core genes that directly 
affect a trait but with a large number of genes outside 
the core that indirectly affect the trait — an omnigenic 
model111. Understanding the genetic architecture of reg-
ulatory networks offers new opportunities to integrate 
this information into future fine-​mapping strategies.
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