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Genome-wide association studies (GWAS) of complex traits 
have been extremely successful in identifying loci harboring 
causal variants, but less successful in identifying the under-

lying causal variants, making the development of fine-mapping 
methods a key priority1,2. The power of fine-mapping methods3–12 
is limited due to strong linkage disequilibrium (LD), but it can be 
increased by prioritizing variants in functional annotations that are 
enriched for complex trait heritability7,8,10,13–17. However, previous 
functionally informed fine-mapping methods18–20 have computa-
tional limitations and can use only genome-wide-significant loci 
to estimate functional enrichment (or can incorporate only a small 
number of functional annotations10), severely limiting the benefit of 
functional data.

We propose PolyFun, a computationally scalable framework 
for functionally informed fine-mapping that makes full use of 
genome-wide data by specifying prior causal probabilities for 
fine-mapping methods such as SuSiE21 and FINEMAP22,23. PolyFun 
estimates functional enrichment using a broad set of coding, con-
served, regulatory, minor allele frequency (MAF) and LD-related 
annotations from the baseline-LF model24–26.

We show in simulations with in-sample LD that PolyFun is well 
calibrated and more powerful than previous fine-mapping meth-
ods, with a >20% power increase over nonfunctionally informed 
fine-mapping methods. In simulations with mismatched reference 
LD, PolyFun remains well calibrated when reducing the maximum 
number of assumed causal SNPs per locus. We apply PolyFun to 
49 complex traits from the UK Biobank27 (average n = 318,000) 
with in-sample LD and identify 3,025 fine-mapped variant–trait 
pairs with posterior causal probability >0.95, spanning 2,225 

unique variants. Of these variants, 223 were fine-mapped for mul-
tiple genetically uncorrelated traits, indicating pervasive pleiotropy. 
We further used the posterior mean per-SNP heritabilities from 
PolyFun + SuSiE to perform polygenic localization, finding sets of 
common SNPs causally explaining 50% of common SNP heritability 
that range in size across many orders of magnitude, from dozens to 
millions of SNPs.

Results
Overview of methods. PolyFun prioritizes variants in enriched 
functional annotations by specifying prior causal probabilities 
in proportion to predicted per-SNP heritabilities and provid-
ing them as input to fine-mapping methods such as SuSiE21 and 
FINEMAP22,23. For each target locus, PolyFun robustly specifies 
prior causal probabilities for all SNPs on the corresponding odd 
(respectively even) target chromosome by: (1) estimating func-
tional enrichments for a broad set of coding, conserved, regulatory 
and LD-related annotations from the baseline-LF 2.2.UKB model25 
(187 annotations; Methods and Supplementary Table 1) using an 
L2-regularized extension of S-LDSC17, restricted to even (respec-
tively odd) chromosomes; (2) estimating per-SNP heritabilities 
for SNPs on odd (respectively even) chromosomes using the func-
tional enrichment estimates from step 1; (3) partitioning all SNPs 
into 20 bins of similar estimated per-SNP heritabilities from step 
2; (4) re-estimating per-SNP heritabilities for all SNPs on the tar-
get chromosome by applying S-LDSC to the 20 bins, restricted to 
odd (respetively even) chromosomes excluding the target chromo-
some; and (5) setting prior causal probabilities for SNPs on the tar-
get chromosome proportional to per-SNP heritabilities from step 4.  
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The L2 regularization in step 1 improves the accuracy of per-SNP 
heritability estimation. The partitioning into odd and even chro-
mosomes in steps 1 and 2, and the exclusion of the target chromo-
some in step 4 prevent winner’s curse. The re-estimation of per-SNP 
heritabilities in step 4 ensures robustness to model misspecification.

PolyFun specifies prior causal probabilities in proportion to 
per-SNP heritability estimates:

P βi≠0jaið Þ / var βijai½ ; ð1Þ

where βi is the causal effect size of SNP i in standardized units (the 
number of s.d. increases in phenotype per 1 s.d. increase in geno-
type), ai is the vector of functional annotations of SNP i and var[βi|ai] 
is the estimated per-SNP heritability of SNP i from step 4 (Methods).

A key distinction between PolyFun and previous functionally 
informed fine-mapping methods10,18–20 is the use of the entire genome 
and a large number of functional annotations to estimate prior causal 
probabilities. We exploited the computational scalability of PolyFun 
(together with SuSiE21) to fine-map up to 2,763 overlapping 3-Mb 
loci spanning the entire genome (Methods). We subsequently used 
our fine-mapping results to perform polygenic localization, identify-
ing minimal sets of common SNPs causally explaining a given pro-
portion of common SNP heritability. Details of the PolyFun method 
are provided in Methods; we have released open-source software 
implementing PolyFun together with SuSiE21 and FINEMAP22. In 
all main simulations and analyses of real traits, we applied PolyFun 
using summary LD information estimated directly from the target 
samples (for running both S-LDSC and SuSiE or FINEMAP), as pre-
viously recommended for fine-mapping methods12,28.

Main simulations. We evaluated PolyFun via simulations using real 
genotypes from 337,491 unrelated UK Biobank British samples27. 
We analyzed 10 3-Mb loci on chromosome 1, each containing 
1,468–27,784 imputed SNPs with MAF ≥0.001 and INFO score ≥0.6 
(including short indels; Supplementary Table 2). We estimated prior 
causal probabilities using 18,212,157 genome-wide imputed SNPs 
with MAF ≥0.001 and INFO score ≥0.6. We simulated traits with 
heritability equal to 25% and a genome-wide proportion of causal 
SNPs equal to 0.5%, with each target locus including 10 causal SNPs 
jointly explaining heritability of 0.05%. We specified prior causal 
probabilities using the baseline-LF model25 with meta-analyzed 
functional enrichments from real data analyses (Supplementary 
Table 3). We generated summary statistics using n = 320,000 sam-
ples. Further details are provided in Methods.

We evaluated ten fine-mapping methods (Methods and Table 1). 
We assessed calibration via the proportion of false positives among 
SNPs with posterior causal probability (posterior inclusion prob-
ability (PIP)) above a given threshold (for example, PIP > 0.95), 
aggregating the results across all simulations; we refer to this quan-
tity as the false discovery rate (FDR). For each PIP threshold, we 
estimated the FDR as the 1 − PIP threshold, which is more conser-
vative than an exact estimate (Fig. 1a,b, Supplementary Note and 
Supplementary Table 4). No method except CAVIARBF2− and 
CAVIARBF2 had significantly inflated FDRs, although fastPAIN-
TOR and CAVIARBF1 had suggestive evidence of inflated FDRs. 
We assessed power via the proportion of true causal SNPs with a PIP 
above a given threshold, aggregating the results across all simula-
tions. PolyFun + FINEMAP was the most powerful method, identi-
fying >5% more causal SNPs with a PIP > 0.95 than PolyFun + SuSiE 
and >20% more causal SNPs with a PIP > 0.95 than FINEMAP; 
PolyFun + SuSiE was the second most powerful method, identifying 
>25% more causal SNPs with a PIP > 0.95 than SuSiE (Fig. 1c,d and 
Supplementary Table 4). These results demonstrate the benefits of 
prioritizing SNPs using functional annotations.

We evaluated the computational cost of each method. SuSiE 
and PolyFun + SuSiE were much faster than the other methods, 
fine-mapping a 3-Mb locus in 5 min on average (excluding fixed 
preprocessing time; see below) (Fig. 1e and Supplementary Table 
4). CAVIARBF methods allowing more than two causal SNPs per 
locus were not evaluated, owing to prohibitively slow computation 
time. PolyFun also requires fixed preprocessing time (steps 1–4; see 
Overview of methods) of 630 min on average; when restricting anal-
yses to subsets of loci, PolyFun + SuSiE was still faster than all other 
functionally informed methods when analyzing >23 loci (Fig. 1f).

We performed additional experiments to assess the robustness 
of PolyFun to model misspecification of functional architectures, 
to assess the individual impact of each of steps 1–5 of PolyFun 
on fine-mapping performance and to explore additional simula-
tion settings (Supplementary Note, Extended Data Figs. 1–5 and 
Supplementary Tables 4–6).

We conclude from these experiments that PolyFun + FINEMAP 
and PolyFun + SuSiE outperformed all other methods, with a 3.4× 
faster runtime for the latter. Thus, we restricted our analyses in the 
remainder of this article to SuSiE and PolyFun + SuSiE.

Simulations with mismatched reference LD. Our main simula-
tions used in-sample LD computed directly from the target sam-
ples. Although we have publicly released summary LD information 

Table 1 | Summary of methods evaluated in main simulations

Method Functional data Max. no. of annotations Max. no. of causal SNPs Reference

fastPAINTOR− No N/A Unlimited 19

fastPAINTOR Yes 10 Unlimited 19

CAVIARBF1− No N/A 1 6

CAVIARBF1 Yes Unlimited 1 20

CAVIARBF2− No N/A 2 6

CAVIARBF2 Yes Unlimited 2 20

FINEMAP No N/A 10 22,23

PolyFun + FINEMAP Yes Unlimited 10 This article

SuSiE No N/A 10 21

PolyFun + SuSiE Yes Unlimited 10 This article

For each method we report whether it incorporates functional data, the maximum number of functional annotations that we specified under default simulation settings (for fastPAINTOR we selected the 
number of annotations that maximized power while maintaining correct calibration; Methods), the maximum number of causal SNPs modeled per locus (or the exact number for SuSiE and PolyFun + SuSiE), 
and the corresponding reference. For fastPAINTOR and CAVIARBF, − denotes the exclusion of functional data. For CAVIARBF, 1 or 2 denotes the maximum number of causal variants. PolyFun + FINEMAP 
uses a new version of FINEMAP introduced here that incorporates prior causal probabilities. N/A, not available.
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for British-ancestry UK Biobank samples as part of the present 
study, there are many settings in which researchers conducting 
fine-mapping cannot obtain in-sample LD, and instead use LD 
information from an external LD reference panel29. We performed 
extensive simulations to assess how fine-mapping performance is 
impacted by LD mismatch between the target sample and the LD 
reference panel. We specifically considered: (1) nonoverlapping tar-
get and reference samples; (2) sample sizes of the target sample and 
reference panel; (3) differences in ancestry; (4) presence of related 
individuals in the target sample; and (5) SNPs available for analysis 
in the target sample and reference panel.

We performed 19 experiments, described in detail in Table 2, 
the Supplementary Note and Supplementary Table 7. We quanti-
fied how mismatched reference LD impacts fine-mapping per-
formance via the maximum number of assumed causal SNPs per 
locus (denoted as L) which maintains FDR < 0.05 at a PIP = 0.95 
threshold. Based on these experiments we provide fine-mapping 
best-practice recommendations: (1) PolyFun + SuSiE should ideally 
use in-sample LD from the GWAS target sample, with L = 10; (2) 
PolyFun + SuSiE can alternatively use a nonoverlapping LD refer-
ence panel from the target population spanning ≥10% of the target 
sample size, with L = 10; (3), PolyFun + SuSiE can be used without 
an LD reference panel by specifying L = 1; we caution that use of 
an LD reference panel with even subtle population differences with 
L > 1 may lead to false-positive results; (4) PolyFun + SuSiE can be 
used in the presence of related individuals in the target sample (but 
these results apply to the typical levels of relatedness observed in 

the UK Biobank); and (5) PolyFun + SuSiE should include as many 
well-imputed SNPs from the target locus as possible to minimize the 
risk of omitting causal SNPs. The real-world implications of these 
best-practice recommendations are dealt with in the Discussion.

Functionally informed fine-mapping of 49 complex traits. We 
applied PolyFun + SuSiE to fine-map 49 traits in the UK Biobank, 
including 33 traits analyzed in refs. 30,31, 9 blood cell traits analyzed 
in ref. 12 and 7 metabolic traits (average n = 318,000; Supplementary 
Table 8). For each trait we fine-mapped up to 2,763 overlapping 
3-Mb loci spanning 18,212,157 imputed SNPs with MAF ≥ 0.001 
and INFO score ≥0.6 (including short indels; excluding three 
long-range LD regions and loci with close to zero heritability; 
Methods). To each SNP we assigned its PIP computed using the 
locus in which it was most central. We have publicly released the 
PIPs and the prior and posterior means and variances of the causal 
effect sizes for all SNPs and traits analyzed.

PolyFun + SuSiE identified: 3,025 fine-mapped SNP–trait pairs 
with PIP > 0.95, a >32% improvement versus SuSiE; 9,684 SNP–
trait pairs with PIP > 0.5, an improvement of >59% versus SuSiE; 
and 225,153 SNP–trait pairs with PIP > 0.05, an improvement of 
>84% versus SuSiE (Supplementary Table 9). The number of SNPs 
with PIP > 0.95 per trait ranged from 0 (number of children) to 
407 (height) (Fig. 2a and Supplementary Table 9). The 3,025 SNP–
trait pairs with PIP > 0.95 spanned 2,225 unique SNPs, including 
532 low-frequency SNPs (0.005 < MAF < 0.05) and 185 rare SNPs 
(0.001 < MAF < 0.005) (Supplementary Table 10). Only 39% of the 
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Fig. 1 | Calibration, power and computational cost of fine-mapping methods in main simulations. a,b, FDR at PIP = 0.95 (a) and PIP = 0.5 (b). Upper 
dashed horizontal lines denote conservative FDR estimates. Lower dotted horizontal lines denote anti-conservative FDR estimates, which are not 
recommended (Supplementary Note). c,d, Power at PIP = 0.95 (c) and PIP = 0.5 (d). The first bar of each method uses nonfunctionally informed 
fine-mapping (denoted as −) and the second uses functionally informed fine-mapping (denoted as +). e, The average runtime required to fine-map a 
3-Mb locus in a genome-wide analysis (log scale). The first bar of each method uses nonfunctionally informed fine-mapping (denoted as −) and the 
second uses functionally informed fine-mapping (denoted as +). f, The total runtime required to fine-map different numbers of loci, for functionally 
informed fine-mapping methods only (log scale). The runtimes of PolyFun + SuSiE and PolyFun + FINEMAP are sublinear because they include the fixed 
preprocessing cost of computing prior causal probabilities (630 min). Error bars denote the s.e. Numerical results, including results for CAVIARBF2− and 
CAVIARBF2, and the results in f for nonfunctionally informed methods, are reported in Supplementary Table 4.
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2,225 SNPs with PIP > 0.95 were also lead GWAS SNPs (defined 
as SNPs with MAF > 0.001 and P < 5 × 10−8 and no SNP with 
MAF > 0.001 and a smaller P value within 1 Mb) (Supplementary 
Table 10), demonstrating the importance of using fine-mapped 
SNPs rather than lead GWAS SNPs for downstream analysis. Of the 
SNPs with PIP > 0.95, 31% resided in coding regions and 22% were 
nonsynonymous (broadly consistent with previous fine-mapping 
studies8,12) (Supplementary Table 10). When restricting the analy-
sis to 16 genetically uncorrelated traits (|rg| < 0.2; Methods and 
Supplementary Tables 11 and 12) we identified 1,626 SNP–trait pairs 
with PIP > 0.95 spanning 1,496 unique SNPs, with a median distance 
of 9 kb between an SNP with PIP > 0.95 and the nearest lead GWAS 
SNP for the same trait (Supplementary Table 10). The 16 geneti-
cally uncorrelated traits included 5,314 genome-wide-significant 
locus–trait pairs (defined by 1-Mb windows around lead GWAS 
SNPs) harboring 0.28 SNPs with PIP > 0.95 per locus on aver-
age (Supplementary Table 13); 1,080 of the 5,314 locus–trait pairs 
(20%) harbored ≥1 SNP(s) with PIP > 0.95, harboring 1.37 SNPs 
with PIP > 0.95 on average (Supplementary Table 13). Of the 1,626 
SNP–trait pairs identified by PolyFun + SuSiE, 150 (9.2%) did not 
lie within genome-wide-significant loci, and 161 of the 1,626 SNP–
trait pairs (9.9%) had P > 5 × 10−8 (Supplementary Table 10).

We estimated the SNP heritability (h2g
I

) tagged by fine-mapped 
SNPs with PIP > 0.95 (which is probably close to the heritability 
causally explained by these SNPs, if most of the tagged SNP heri-
tability originates from SNPs with PIP > 0.95). The h2g

I
 tagged by 

SNPs with PIP > 0.95 captured a large proportion of the h2g
I

 tagged 
by lead GWAS SNPs (median proportion = 42%; Fig. 2b; Methods 
and Supplementary Table 14). This proportion was substantially 
larger than the proportion of GWAS loci harboring SNPs with 

PIP > 0.95 (20%; see above), because fine-mapping power is higher 
at loci with larger causal effects (Supplementary Table 4). However, 
fine-mapped SNPs tagged a smaller proportion of the total h2g

I
 caus-

ally explained by all genome-wide SNPs with MAF > 0.001 (median 
proportion = 19%; Fig. 2b; Methods and Supplementary Table 14), 
indicating that substantially larger sample sizes are required to com-
prehensively fine-map all heritable SNP effects.

Among the 2,225 unique SNPs with PIP > 0.95 fine-mapped for at 
least one trait, 223 were fine-mapped for multiple genetically uncor-
related traits (selecting a different subset of genetically uncorrelated 
traits for each SNP; Methods), including 55 SNPs fine-mapped for 
≥3 genetically uncorrelated traits, indicating pervasive pleiotropy 
(Extended Data Fig. 6 and Supplementary Table 15); 118 pleiotro-
pic SNPs resided in coding regions and 93 were nonsynonymous 
(Supplementary Table 15). The 17 SNPs fine-mapped for at least 4 
traits are reported in Table 3. Previous studies have reported that 
genetically uncorrelated traits often share association signals at the 
same loci32, but did not fine-map those signals to individual SNPs 
as performed here.

To better understand the improvement of PolyFun + SuSiE over 
SuSiE, we examined the 121 loci where PolyFun + SuSiE identified a 
fine-mapped common SNP (PIP > 0.95) but SuSiE did not (PIP < 0.5 
for all SNPs within 1 Mb) (Fig. 3 and Supplementary Table 16). In 
each case, functional annotations prioritized one SNP out of several 
candidates, greatly improving fine-mapping resolution.

We validated the motivation for performing functionally 
informed fine-mapping by verifying that fine-mapped SNPs are 
enriched for functional annotations, as previously shown for auto-
immune diseases7,8,10 and blood traits12 (using nonfunctionally 
informed SuSiE to avoid biasing the results). For each of 50 main 

Table 2 | Summary of mismatched reference LD simulations

Expt GWAS LD Generative SNPs SNPs analyzed Max. L

a 44K UK 44K UK (44,000 overlap) UKB UKB 10

b 44K UK 44K UK UKB UKB 10

c 44K UK 4K UK UKB UKB 10

d 44K UK 400 UK UKB UKB 1

e 44K UK None UKB UKB 1

f 293K UK 44K UK UKB UKB 10

g 293K UK 4K UK UKB UKB 2

h 293K UK 4K UK (4,000 overlap) UKB UKB 2

i 44K EUR 44K UK UKB UKB 3

j 44K EUR 4K UK UKB UKB 2

k 44K EUR 400 UK UKB UKB 1

l 22K EUR + 22K UK 44K UK (22,000 overlap) UKB UKB 3

m 44K UK-REL 44K UK UKB UKB 10

n 44K EUR-REL 44K UK UKB UKB 3

o 44K UK 3.6K UK10K UKB UK10K∩UKB –

p 44K UK 3.6K UK10K UK10K∩UKB UK10K∩UKB 2

q 44K UK 3.6K UK10K UK10K∩UKB∩INF UK10K∩UKB∩INF 10

r 44K UK 3.6K UK10K UK10K∩UKB∩COM UK10K∩UKB∩COM 1

s 44K UK 4K UK UK10K∩UKB UK10K∩UKB 10

For each experiment (Expt) we report: GWAS: the sample size and population of the target sample (UK denotes British-ancestry individuals from the UK Biobank; EUR denotes non-British 
European-ancestry individuals from UK Biobank; REL indicates that pairs of related individuals are included in the sample). LD: the sample size and population of the LD reference panel (UK denotes 
British-ancestry individuals from UK Biobank; UK10K denotes individuals from the UK10K cohort; numbers in parentheses indicate how many individuals overlap the target sample, if any. ‘None’ indicates 
that there is no LD reference panel). Generative SNPs: the set of SNPs from which we sampled causal SNPs (UKB: the set of UK Biobank-imputed SNPs with INFO score >0.6 and UKB MAF > 0.1%. UK10K: 
the set of UK10K SNPs. INF: the set of UKB-imputed SNPs with INFO score >0.9. COM: the set of UKB-imputed SNPs with MAF > 1% in British-ancestry individuals). SNPs analyzed: the set of SNPs that 
was used for fine-mapping. Max. L: the maximum number of causal SNPs per locus assumed by PolyFun + SuSiE that maintain FDR < 0.05 at a threshold of PIP = 0.95 (selected from the options 1, 2, 3 and 
10; – indicates that none of these options maintains FDR < 0.05). Horizontal lines indicate the partitioning into types of experiments described in the Supplementary Note. Numerical results are reported in 
Supplementary Table 7.
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binary annotations from the baseline-LF model24, for various PIP 
ranges, we computed the functional enrichment of fine-mapped 
common SNPs in the PIP range, defined as the proportion of com-
mon SNPs in the PIP range lying in the annotation divided by the 
proportion of genome-wide common SNPs lying in the annotation, 
and meta-analyzed the results across genetically uncorrelated traits 
(Methods; Fig. 4 and Supplementary Table 17). SNPs with PIP > 0.95 
were strongly and significantly enriched for nonsynonymous SNPs 
(51× enrichment, P = 6.8 × 10−185) and SNPs in conserved regions 
(16× enrichment, P < 10−300), significantly enriched for SNPs in 
various regulatory annotations (for example, promoter-ExAC 

and H3K4me3), and significantly depleted for SNPs in repressed 
regions, consistent with previous literature on functional enrich-
ment of fine-mapped SNPs7,8,10–12 and disease heritability17,24,25,33. We 
observed qualitatively similar but weaker enrichments at lower PIP 
ranges (Fig. 4 and Supplementary Table 17).

We compared our fine-mapping results with those of two previous 
studies. First, we compared our results with ref. 12, which performed 
nonfunctionally informed fine-mapping for 9 blood cell traits using 
approximately 115,000 of the individuals included in our analyses. 
PolyFun + SuSiE identified 4.4× more SNPs than ref. 12, including all 
4 SNPs that were functionally validated via luciferase reporter assays 
in ref. 12 (PIP > 0.999 for all 4 SNPs; Methods and Supplementary 
Tables 18–20). Second, we compared our results with those of ref. 7, 
which performed nonfunctionally informed fine-mapping for seven 
of our traits, using a nonfunctionally informed method (PICS) and 
independent smaller datasets. PolyFun + SuSiE identified 35× more 
SNPs than ref. 7 (Supplementary Tables 21 and 22). Further details 
of the comparison are provided in the Supplementary Note.

We performed a further six secondary analyses, described in the 
Supplementary Note, Extended Data Figs. 7–9, and Supplementary 
Tables 10 and 23–28.

In summary, we leveraged the improved power of PolyFun + SuSiE 
to robustly identify thousands of fine-mapped SNPs, providing a 
rich set of potential candidates for functional follow-up. Our results 
further indicate pervasive pleiotropy, with many SNPs fine-mapped 
for two or more genetically uncorrelated traits.

Polygenic localization of 49 complex traits. SNPs with PIP > 0.95 
tag a large proportion of the SNP heritability (h2g

I
) tagged by lead 

GWAS SNPs (median proportion = 42%) but a small proportion 
of total genome-wide h2g

I
 (median proportion = 19%) (Fig. 2b), 

implying that they causally explain a small proportion of h2g
I

. We 
thus propose polygenic localization, which has the aim of identify-
ing a minimal set of common SNPs causally explaining a specified 
proportion of common SNP heritability. A key difference between 
polygenic localization and previous studies of polygenicity34–38 is 
that polygenic localization aims to identify (not just characterize) 
such SNPs.

Given a ranking of SNPs by posterior per-SNP heritability 
(that is, the posterior mean of their squared effect size; Methods), 
we define M50% as the size of the smallest set of top-ranked com-
mon SNPs causally explaining 50% of common SNP heritability 
(respectively Mp for proportion p of common SNP heritability). We 
estimate M50% (respectively Mp) by: (1) partitioning SNPs into 50 
ranked bins of similar posterior per-SNP heritability estimates from 
PolyFun + SuSiE and stratifying the lowest-heritability bin into 10 
equally sized MAF bins, yielding 59 bins; (2) running S-LDSC using 
a different set of samples to re-estimate the average per-SNP heri-
tability in each bin; and (3) computing the number of top-ranked 
common SNPs (with respect to the original ranking) whose esti-
mated per-SNP heritabilities (from step 2) sum up to 50% (respec-
tively the proportion p) of the total estimated SNP heritability. We 
refer to this method as PolyLoc. The analysis of new samples in step 
2 of PolyLoc prevents winner’s curse; although PolyFun + SuSiE 
is robust to winner’s curse, PolyLoc would be susceptible to it if it 
reused the data analyzed by PolyFun + SuSiE. We note that M50% 
relies on an empirical ranking and is thus larger than the size of the 
smallest set of SNPs causally explaining 50% of common SNP heri-
tability, denoted as M*

50%
I

 (M50% ≥ M*
50%

I
). We performed extensive 

simulations to confirm that PolyLoc produced robust upper bounds 
for M*

50%
I

 (Supplementary Note and Supplementary Tables 29 and 
30). Further details of PolyLoc are provided in Methods; we have 
released open-source software implementing PolyLoc.

We applied PolyLoc to the 49 complex traits from the UK 
Biobank (Supplementary Table 8). We ranked SNPs using 
n = 337,000 unrelated British-ancestry samples (steps 1 and 2) 
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Fig. 2 | Summary of fine-mapping results for UK Biobank traits. a, The 
number of SNPs with PIP > 0.95 identified by SuSiE (black bars) and 
PolyFun + SuSiE (gray bars) across 16 genetically uncorrelated traits in the 
UK Biobank. Traits are ordered by PolyFun + SuSiE results. The numbers 
in the legend refer to the sum of all 49 traits analyzed. b, The proportion 
of SNP heritability causally explained by all genome-wide SNPs with 
MAF > 0.001 (h2g

I
) that is tagged by lead GWAS SNPs (gray bars) and by 

PolyFun + SuSiE SNPs with PIP > 0.95 (black bars). Traits are ordered as in a. 
For hair color, the h2g

I
 tagged by SNPs with PIP > 0.95 is >h2g

I
 tagged by lead 

GWAS SNPs. BMD, bone mineral density; DBP, diastolic blood pressure; 
FEV1:FVC, ratio of forced expiratory volume in 1 s to forced vital capacity; 
HLSRC, high light scatter reticulocyte count; MC, monocyte count, MCH: 
mean corpuscular hemoglobin; MPV, mean platelet volume. Numerical 
results are reported in Supplementary Tables 9 and 14.
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and re-estimated average per-SNP heritabilities in each of 59 SNP 
bins using S-LDSC applied to n = 122,000 European-ancestry UK 
Biobank samples that were not included in the n = 337,000 set to 
avoid winner’s curse (step 3). Estimates of M50% ranged widely from 
28 (hair color) to 3,400 (height) to 2 million (number of children) 
(Fig. 5 and Supplementary Table 31). The median estimate of M50% 
across 16 genetically uncorrelated traits was 8,900; the median esti-
mate of M5% was 8; and the median estimate of M95% was 4.4 mil-
lion (of 7.0 million total common SNPs) (Supplementary Table 31). 
Pigmentation traits were the least polygenic traits whereas number 
of children was the most polygenic trait, having an M50% 3.7× larger 
than the second most polygenic of the 16 independent traits (chro-
notype, having an M50% = 553,000), consistent with ref. 34. We per-
formed seven secondary analyses, described in the Supplementary 
Note and Supplementary Tables 32 and 33. We note that far fewer 
than 2 million SNPs may causally explain 50% of the common SNP 
heritability of number of children, because M50% is a (possibly loose) 
upper bound.

Our results demonstrate that half of the common SNP herita-
bility of complex traits is causally explained typically by thousands 
of SNPs (median M50% = 8,900), and the remaining heritability is 
spread across an extremely large number of extremely weak-effect 
SNPs (median M95% = 4.4 million), consistent with extremely poly-
genic but heavy-tailed trait architectures1,34–36,39–43.

Discussion
We have introduced PolyFun, a framework that improves 
fine-mapping by prioritizing variants that are initially more likely 
to be causal based on their functional annotations. Across 49 UK 
Biobank traits, PolyFun + SuSiE confidently fine-mapped 3,025 
SNP–trait pairs (PIP > 0.95), a 32% increase over nonfunctionally 
informed SuSiE. Of the fine-mapped SNPs, 223 were fine-mapped 
for multiple genetically uncorrelated traits, indicating pervasive 
pleiotropy. We further leveraged the results of PolyFun to perform 
polygenic localization by constructing minimal SNP sets causally 

explaining a given proportion of common SNP heritability, dem-
onstrating that 50% of common SNP heritability can be explained 
by sets ranging in size from 28 (hair color) to 3,400 (height) to 2 
million (number of children). We note that these set sizes impose a 
(possibly loose) upper bound on the size of the smallest sets caus-
ally explaining 50% of common SNP heritability. We have publicly 
released the PIPs and the prior and posterior means and variances 
of effect sizes for all SNPs and traits analyzed.

We recommend applying PolyFun using in-sample LD from the 
GWAS target sample (that is, using exactly the same samples in 
both the target and reference samples), assuming ten causal SNPs 
per locus; we have facilitated this option for UK Biobank research-
ers by publicly releasing summary LD information for n = 337,000 
British-ancestry UK Biobank samples. As a second-best option we 
recommend applying PolyFun using an LD reference panel from 
the target sample population, spanning at least 10% of the target 
sample size, while assuming ten causal SNPs per locus. However, 
we caution that even subtle population differences may lead to 
false-positive results. Hence, our published summary LD informa-
tion files are unsuitable for analysis of summary statistics involving 
non-British UK Biobank individuals, or data from other cohorts or 
consortia44–46. However, researchers may use larger subsets of UK 
Biobank data to identify genome-wide-significant loci, which they 
can fine-map using summary statistics and LD reference data based 
on n = 337,000 British-ancestry individuals. In the absence of a ref-
erence panel from the target sample population spanning >10% of 
the target sample size, we recommend applying PolyFun without 
using an LD reference panel, by restricting it to assume a single 
causal SNP per locus.

Our fine-mapping analysis differs from several previous 
fine-mapping studies in two aspects. First, we applied PolyFun 
genome wide. However, we envision that the PolyFun software 
will primarily be used to fine-map genome-wide-significant loci, 
which harbor most SNPs with PIP > 0.95. We discuss possible 
reasons for identifying SNPs with PIP > 0.95 and P > 5 × 10−8 in 

Table 3 | Pleiotropic fine-mapped SNPs for UK Biobank traits

SNP Position MAF Closest gene(s) Annotation Traits

rs13107325 chr4:103188709 0.08 SLC39A8 Nonsynonymous BMI, balding, cholesterol, DBP, FVC, height, RBC, WHR (8)

rs1229984 chr4:100239319 0.02 ADH1B Nonsynonymous BMI, LDL, MCH, MPV, SBP, vitamin D (6)

rs76895963 chr12:4384844 0.02 CCND2, CCND2-AS1 Conserved BMD, height, RBC, SBP, triglycerides (5)

rs140584594 chr1:110232983 0.27 GSTM1 Nonsynonymous HDL, height, MC, MPV (4)

rs3811444 chr1:248039451 0.33 TRIM58 Nonsynonymous HLSRC, HbA1c, platelet count, RBC (4)

rs1260326 chr2:27730940 0.39 GCKR Nonsynonymous Cholesterol, height, platelet count, RBCDW (4)

rs2270894 chr3:9975386 0.2 CRELD1, IL17RC Conserved BMD, FEV1/FVC, height, platelet count (4)

rs11556924 chr7:129663496 0.39 ZC3HC1 Nonsynonymous Age at menarche, cardiovascular, height, platelet count (4)

rs3918226 chr7:150690176 0.08 NOS3 Conserved Eczema, height, high cholesterol, MPV (4)

rs150813342 chr9:135864513 0.01 GFI1B Conserved Eosinophil count, HLSRC, MCH, platelet count (4)

rs964184 chr11:116648917 0.13 ZPR1 DHS Cholesterol, MPV, RBCDW, vitamin D (4)

rs35979828 chr12:54685880 0.07 NFE2 Conserved Eosinophil count, platelet count, RBC, RBCDW (4)

rs2277339 chr12:57146069 0.1 PRIM1 Nonsynonymous Height, LC, RBC, RBCDW (4)

rs72681869 chr14:50655357 0.01 SOS2 Nonsynonymous FVC, hair color, HbA1c, SBP (4)

rs61745086 chr16:88782050 0.01 PIEZO1, CTU2 Nonsynonymous HLSRC, HbA1c, height, RBC (4)

rs34557412 chr17:16852187 0.01 TNFRSF13B Nonsynonymous HbA1c, MC, MPV, RBC (4)

rs77542162 chr17:67081278 0.02 ABCA6 Nonsynonymous HbA1c, height, LDL, platelet count (4)

We report SNPs fine-mapped (PIP > 0.95) for ≥4 genetically uncorrelated traits (|rg| <0.2). For each SNP we report its name (SNP), position (hg19), MAF in the UK Biobank, closest gene(s) (using data 
from the GWAS catalog64), top annotation (Methods) and fine-mapped traits (and number of fine-mapped traits). SNPs are ordered first by the number of fine-mapped traits and then by genomic position. 
BMI, body mass index; cardiovascular: cardiovascular-related disease; cholesterol: total cholesterol; DBP, diastolic blood pressure; HbA1c, glycated hemoglobin; HDL, HDL-cholesterol; HLSRC, high light 
scatter reticulocyte count; LC, lymphocyte count; MC, monocyte count; MCH, mean corpuscular hemoglobin; MPV, mean platelet volume; RBC, red blood cell count; RBCDW, red blood cell distribution 
width; SBP, systolic blood pressure; WHR, waist:hip ratio (adjusted for BMI). Results for all 223 pleiotropic fine-mapped SNPs are reported in Supplementary Table 15.
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the Supplementary Note. Second, PolyFun fine-maps all signals 
in a locus jointly to maximize power5,28. Researchers wishing to 
use PolyFun for a partitioned analysis47 may still do so by first 
partitioning a locus into multiple signals using a separate tool 

(for example, GCTA-COJO47) and then applying PolyFun to each  
signal separately, restricting PolyFun to assume a single causal 
SNP per signal.

Our results provide several opportunities for future work. First, 
the fine-mapped SNPs that we identified could be prioritized for 
functional follow-up. Second, fine-mapping results (posterior 
mean effect sizes) can be used to compute transethnic polygenic 
risk scores48 which may be less sensitive to LD differences between 
populations than existing methods49,50. Third, the proximal pairs 
of coding and noncoding fine-mapped SNPs that we identified 
(Supplementary Table 25) may aid efforts to link SNPs to genes51–

53. Fourth, SNPs that were fine-mapped for multiple genetically 
uncorrelated traits may shed light on shared biological pathways54. 
Fifth, sets of SNPs causally explaining 50% of common SNP heri-
tability can potentially be used for gene and pathway enrichment 
analysis55,56. Finally, PolyFun can incorporate additional functional 
annotations at negligible additional computational cost, motivating 
further efforts to identify conditionally informative annotations.

Our work has several limitations. First, our estimates of the FDR 
of PIP > 0.95 SNPs in PolyFun and other methods are conservative, 
demonstrating the challenges of exact calibration in fine-mapping. 
Second, subtle population stratification may lead to spurious 
fine-mapping results57. However, our fine-mapped SNPs are concen-
trated in associated loci with larger estimated effects, which are rela-
tively less likely to be spurious. Third, we restricted fine-mapping 
to n = 337,000 unrelated British-ancestry individuals, consistent 
with previous studies12. Hence, our published summary LD infor-
mation files do not support fine-mapping of UK Biobank data that 
include non-British individuals. Fourth, PolyLoc requires analyz-
ing samples distinct from the samples analyzed by PolyFun to avoid 
winner’s curse. Researchers with access to individual-level genetic 
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data can partition the samples as we have done (we recommend  
using approximately 75% of the data for fine-mapping and 25% 
for polygenic localization). Fifth, PolyFun does not support 
X-chromosome analysis. Sixth, PolyLoc provides only an upper 
bound on the proportion of SNPs causally explaining a given pro-
portion of SNP heritability. Finally, multiethnic fine-mapping58 and 
incorporation of tissue-specific functional annotations9,13,15,17 may 

further increase fine-mapping power. Incorporating these into our 
fine-mapping framework is an avenue for future work.
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Fig. 5 | Polygenic localization results for UK Biobank traits. a, M50% 
estimates across 16 genetically uncorrelated traits. For each trait, we report 
the number of top-ranked common SNPs (using PolyFun + SuSiE posterior 
per-SNP heritability estimates for ranking) causally explaining 50% of 
common SNP heritability, and its s.e. (log scale). The horizontal dashed line 
denotes the total number of common SNPs in the analysis (7.0 million). 
b–d, The proportion of common SNP heritability of hair color (b), height (c) 
and number of children (d) explained by different numbers of top-ranked 
SNPs, for all 7.0 million common SNPs (left) and the 5,000 top-ranked 
common SNPs (right). Gray shading denotes the s.e. Dashed black lines 
denote a null model with a constant per-SNP heritability. We also report 
the number of top-ranked SNPs causally explaining 50% of common 
SNP heritability, denoted as M50%. Discontinuities in the slope indicate 
transitions between SNP bins. Numerical results for all 49 UK Biobank 
traits are reported in Supplementary Table 31.
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Methods
PolyFun fine-mapping method. PolyFun first estimates prior causal probabilities 
for all SNPs and then applies fine-mapping methods such as SuSiE21 and 
FINEMAP22,23 with these prior causal probabilities. Below, we describe estimation 
of the prior causal probabilities.

We model standardized phenotypes y using the linear model y ¼ P
i xiβi þ ϵ

I
, 

where xi denotes standardized SNP genotypes, βi denotes effect size and ϵ is a 
residual term. We use a point-normal model for βi:

βijai 
N 0; var βijβi≠0½ ð Þ with probability P βi≠0jaið Þ
0 otherwise;

�

where ai are the functional annotations of SNP i, P βi≠0jaið Þ
I

 is its prior causal 
probability and var βijβi≠0½ 

I
 is its causal variance, which we assume is independent 

of ai. This assumption is motivated by our recent work showing that functional 
enrichment is primarily due to differences in polygenicity rather than differences in 
effect-size magnitude, which is constrained by negative selection34.

The key quantity that PolyFun uses to estimate prior causal probabilities 
is the per-SNP heritability of SNP i, var[βi|ai] (we refer to this quantity as 
per-SNP heritability because the total SNP heritability var

P
i xiβija

 

I
 is equal 

to 
P

i var βijai½ 
I

, assuming that causal SNP effects have zero mean and are 
uncorrelated with other SNP effects and with other SNPs conditional on a). 
PolyFun relates the prior causal probability P βi≠0jaið Þ

I
 to the per-SNP heritability 

var[βi|ai] via the law of total variance:

P βi≠0jaið Þ ¼ var βijai½ 
var βijβi≠0½  : ð2Þ

Equation (1) in the main text follows because P βi≠0jaið Þ
I

 is proportional to 
var[βi|ai] with the proportionality factor 1=var βijβi≠0½ 

I
.

To derive equation (2) we define the causality indicator ci ¼ I βi≠0jai½ 
I

 and 
apply the law of total variance to var [βi|ai]:

var βijai½  ¼ Eci var βijai; ci½ ½  þ varci E βijai; ci½ ½ 
¼ Eci var βijai; ci½ ½  þ varci 0½ 
¼ P ci ¼ 0ð Þ ´ 0þ P ci ¼ 1ð Þvar βijai; ci ¼ 1½ 
¼ P βi≠0jaið Þvar βijai; βi≠0½ 
¼ P βi≠0jaið Þvar βijβi≠0½ :

The last equality holds because we assume that the causal effect size variance is 
independent of functional annotations, as explained above.

PolyFun avoids directly estimating the proportionality factor 1=var βijβi≠0½ 
I

 by 
constraining the prior causal probabilities P βi≠0jaið Þ

I
 in each tested locus to sum to 

1.0. This constraint implies that each locus is initially expected to harbor one causal 
SNP, consistent with previous fine-mapping methods5,6,22 (this constraint is ignored 
by PolyFun + SuSiE because it is invariant to scaling of prior causal probabilities). 
Hence, the main challenge is estimating the per-SNP heritabilities var[βi|ai].

To estimate var[βi|ai], PolyFun incorporates a regularized extension of 
S-LDSC with the baseline-LF model17,24–26, which we extend to a new version 
2.2.UKB (Supplementary Table 1 and see below). S-LDSC uses the linear model 
var βijai½  ¼ P

c τ
caci

I
 and jointly estimates all τc parameters by minimizing the term P

i χ2i � n
P

c τ
cl i; cð Þ � nb� 1

� 2
I

, where c iterates over functional annotations, τc 
is the coefficient of annotation c, χ2i

I
 is the χ2 statistic of SNP i, n is the sample size, 

b measures the contribution of confounding biases and l i; cð Þ ¼ P
j r

2
ija

c
j

I
.

Although S-LDSC produces robust estimates of functional enrichment, it 
has two limitations in estimating var[βi|ai]: (1) these estimates can have a large 
s.e. in the presence of many annotations, and (2) the model may not be robust to 
model misspecification. To address the first limitation, PolyFun incorporates an 
L2-regularized extension of S-LDSC. To address the second limitation, PolyFun 
employs special procedures to ensure robustness to model misspecification. The 
key idea is to approximate arbitrary complex functional forms of var[βi|ai] via a 
piecewise-constant function. To do this, PolyFun partitions SNPs with similar 
estimated values of var[βi|ai] (estimated via a possibly misspecified model) into 
nonoverlapping bins, estimates the SNP heritability causally explained by each 
bin b, and specifies var[βi|ai] for SNPs in bin b as the SNP heritability causally 
explained by bin b divided by the number of SNPs in bin b. PolyFun avoids 
winner’s curse by using different data for partitioning SNPs and for per bin 
heritability estimation.

In detail, PolyFun robustly specifies prior causal probabilities for all SNPs on a 
target locus on a corresponding odd (respectively even) target chromosome via the 
following procedure:
	(1)	 Estimate annotation coefficients τ̂ceven

I
 and intercepts b̂even

I
 using only 

SNPs in even chromosomes via an L2-regularied extension of S-LDSC 
that minimizes 

P
i χ2i � n

P
c τ̂

c
evenl i; cð Þ � nb̂even � 1

 2
þ λ

P
c τ̂ceven
� 2

I

 

(respectively using τ̂codd
I

 and b̂odd
I

). We select the regularization strength λ 
from a geometrically spaced grid of 100 values ranging from 10−8 to 100, 
selecting the one that minimizes the average out-of-chromosome error P

r

P
i2r χ2i � n

P
c τ̂

c
evennrl i; cð Þ � nb̂evennr � 1

 2

I

, where r iterates over even 
(respectively odd) chromosomes, and τ̂cevennr

I
, b̂evennr
I

 are the S-LDSC τ and 

b estimates, respectively, when applied to all SNPs on even chromosomes 
except for chromosome r (respectively for odd chromosomes).

	(2)	 Compute per-SNP heritabilities cvar βijai½  ¼
P

c τ̂
c
evena

c
i

I
 for each SNP i in an 

odd chromosome (respectively 
P

c τ̂
c
odda

c
i

I
).

	(3)	 Partition all SNPs into 20 bins with similar values of cvar βijai½ 
I

 using the 
Ckmedian.1d.dp method59. This method partitions SNPs into 20 maximally 
homogeneous bins such that the average distance of cvar βijai½ 

I
 to the median 

cvar βijai½ 
I

 of the bin of SNP i is minimized. Even though this step uses func-
tional annotations data of the target chromosome, it does not use the sum-
mary statistics of SNPs in the target chromosome, which ensures robustness 
to winner’s curse.

	(4)	 Apply S-LDSC with non-negativity constraints to estimate per-SNP heritabili-
ties in each of the 20 bins of all SNPs in odd (respectively even) chromosomes 
except for the target chromosome r (to avoid using the same data that will 
be used in fine-mapping), denoted σ̂2r;1; ¼ ; σ̂2r;20

I
. Afterwards, regularize the 

estimates by setting all values smaller than q ´ maxb σ̂2r;b

� �

I

 to q ´ maxb σ̂2r;b

� �

I

, 
using q = 1/100 by default, and rescaling the σ̂2r;b

I
 estimates to have the same 

sum (over all genome-wide SNPs) as before. The regularization prevents 
SNPs from having a zero per-SNP heritability, which would exclude them 
from fine-mapping. We did not apply L2 regularization in this step because 
we require approximately unbiased estimates, and because the s.e. values are 
relatively small under a small number of nonoverlapping annotations.

	(5)	 Specify a prior causal probability proportional to σ̂2r;b
I

 for each SNP that is in 
bin b and resides in a target locus in chromosome r, such that the prior causal 
probabilities in the target locus sum to one.

PolyFun uses v.2.2.UKB of the baseline-LF model, which differs from the 
original baseline-LF model25 by including SNPs with MAF ≥ 0.001 and several 
new annotations, and omitting annotations that could not be easily extended 
to account for SNPs with MAF < 0.005 (Supplementary Table 1). Briefly, we 
use 187 overlapping functional annotations, including 10 common MAF bins 
(MAF ≥ 0.05), 10 low-frequency MAF bins (0.05 > MAF ≥ 0.001), 6 LD-related 
annotations for common SNPs (levels of LD, predicted allele age, recombination 
rate, nucleotide diversity, background selection statistic, CpG content), 5 
LD-related annotations for low-frequency SNPs, 40 binary functional annotations 
for common SNPs, 7 continuous functional annotations for common SNPs, 40 
binary functional annotations for low-frequency SNPs, 3 continuous functional 
annotations for low-frequency SNPs and 66 annotations constructed via windows 
around other annotations17. We did not include a base annotation that includes 
all SNPs, because such an annotation is linearly dependent on all the MAF bins 
when S-LDSC uses the same set of SNPs to compute LD scores and to estimate 
annotation coefficients.

Main fine-mapping simulations. We simulated summary statistics for 18,212,157 
genotyped and imputed autosomal SNPs with MAF ≥ 0.001 and INFO score ≥0.6 
(including short indels, excluding three long-range LD regions; see below), using 
n = 337,491 unrelated British-ancestry individuals from UK Biobank release 3. In 
most simulations we computed an effect variance βi for every SNP i with annotations 
ai using the baseline-LF (v.2.2.UKB) model, var βijai½  ¼ P

c
τcaci

I

, where c is an 
annotation and τc estimates are taken from a fixed-effects meta-analysis of 16 
well-powered, genetically uncorrelated (|rg| < 0.2) UK Biobank traits, scaled such 
that 

P
i var βijai½ 

I
 is the same across all traits (Supplementary Table 3). In some 

simulations we generated values of var[βi|ai] under alternative functional architectures 
to evaluate the robustness of PolyFun to modeling misspecification (Supplementary 
Note). Each SNP was set to be causal with probability proportional to var[βi|ai], such 
that the average causal probability was equal to the desired proportion of causal SNPs. 
We provide technical details about the simulations in the Supplementary Note.

We performed fine-mapping in each of the ten selected 3-Mb loci on 
chromosome 1 using methods based on SuSiE21, FINEMAP22,23, CAVIARBF20 and 
fastPAINTOR19. Following previous literature12,28 all methods used in-sample LD 
(that is, summary LD information based on the genotypes of the same 337,491 
individuals used to generate summary statistics), computed via LDstore28. For 
fastPAINTOR−, fastPAINTOR, SuSiE and PolyFun + SuSiE, we specified a causal 
effect size variance using an estimator that we developed based on a modified 
version of HESS60 rather than using the estimator implemented in these methods, 
because it improved FDR and power in most simulation settings (Supplementary 
Note and Supplementary Table 4).

We ran SuSiE v.0.7.1.0487 with default values for all parameters except the 
following: (1) we used ten causal SNPs per locus; and (2) we estimated a per-locus 
causal effect size variance (the scaled_prior_variance parameter) via our modified 
HESS approach. We specified prior causal probabilities via the prior_weights 
parameter. We modified the SuSiE source code to avoid performing the LD matrix 
diagnostics (positive definiteness and symmetry) because they greatly increased 
memory consumption.

We ran FINEMAP v.1.3.1.b with a maximum of ten causal SNPs per locus 
and with default settings for all other parameters. We specified prior causal 
probabilities via the --prior-snps argument.

We ran CAVIARBF v.0.2.1 with an Akaike information criterion-based 
parameter selection, using ridge regression with regularization parameter λ 
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selected from {2−10, 2−5, 2−2.5, 20, 22.5, 25, 100, 1000, 10000, 100000}, with a single 
locus and up to either one or two causal SNPs per locus, owing to computational 
limitations.

We ran fastPAINTOR v.3.1 in MCMC mode. We specified a per-locus causal 
effect size variance (specified via the -variance argument) using our modified 
HESS approach (as in PolyFun + SuSiE). We avoided truncating the LD matrix 
(using prop_ld_eigenvalues = 1.0) because we used in-sample summary LD 
information. As fastPAINTOR is generally not designed to work with more than 
10 annotations18,19 (and was too slow in our simulations to estimate the significance 
of each annotation and include only conditionally significant annotations as done 
in ref. 18), we selected a subset of ten highly informative annotations by: (1) scoring 
each annotation based on its average contribution to effect variance aci τc

�� ��
I

 across 
all SNPs, using the true τc of the generative model; and (2) iteratively selecting 
top-ranked annotations such that no annotation has correlation >0.3 (in absolute 
value) with a previously selected annotation, until selecting ten annotations. We 
determined that ten annotations yielded approximately optimal power while 
maintaining correct calibration (Supplementary Table 4).

For each PIP threshold, we conservatively estimated FDRs by setting all PIPs 
greater than the threshold to the threshold, yielding a uniform false-discovery 
threshold (Supplementary Note and Supplementary Table 4).

We computed P values of FDR differences and power differences of analyses 
with perturbed PolyFun steps via a Wald test, using a jackknife over simulated 
datasets to estimate the s.e. (Supplementary Note).

Simulations with mismatched reference LD. Our mismatched reference LD 
simulations differed from our main simulations in several ways: (1) we generated 
summary statistics using up to n = 44,000 unrelated (or related) European-ancestry 
(British or non-British) UK Biobank target samples in most experiments, 
compared with n = 320,000 in our main simulations, because the UK Biobank 
includes only 44,000 unrelated UK Biobank individuals of non-British European 
ancestry (we used n = 293,000 unrelated British-ancestry UK Biobank target 
samples in a subset of experiments to more closely match our main simulations); 
(2) we computed summary LD information using n = 400, n = 4,000 or n = 44,000 
unrelated British-ancestry UK Biobank reference samples (either nonoverlapping 
or overlapping with the target samples), or using n = 3,567 reference samples from 
the UK10K cohort61 (compared with in-sample LD based on the target samples in 
the main simulations); (3) we generated summary statistics using individual-level 
genotypes rather than summary LD information (as required when the target 
sample and the LD reference panel are not the same); (4) we simulated three causal 
SNPs per locus that jointly explain 0.5% of trait variance, compared with ten causal 
SNPs that jointly explain 0.05% of trait variance in our main simulations, to obtain 
sufficient power despite having a smaller sample size; and (5) in some experiments 
we used a subset of SNPs for generating causal SNPs or for fine-mapping analysis. 
We provide technical details of these simulations in the Supplementary Note.

Functionally informed fine-mapping of 49 complex traits in the UK Biobank. 
We applied SuSiE and PolyFun + SuSiE to fine-map 49 traits in the UK Biobank, 
using the same data and the same parameter settings described in Main 
fine-mapping simulations. We performed basic quality control on each trait 
as described in our previous publications30,31. Specifically, we removed outliers 
outside the reasonable range for each quantitative trait, and applied quantile 
normalizing within-sex strata after correcting for covariates for nonbinary traits 
with non-normal distributions. We computed summary statistics with BOLT-LMM 
v.2.3.3 (ref. 31) adjusting for sex, age and age squared, assessment center, genotyping 
platform and the top 20 principal components (computed as described in ref. 31),  
and dilution factor for biochemical traits. As the noninfinitesimal version of 
BOLT-LMM does not estimate effect sizes, we computed z-scores for fine-mapping 
by taking the square root of the BOLT-LMM χ2 statistics and multiplying them by 
the sign of the effect estimate from the infinitesimal version of BOLT-LMM.

We partitioned all autosomal chromosomes into 2,763 overlapping 3-Mb-long 
loci with 1 Mb spacing between the start points of consecutive loci. We computed a 
PIP for each SNP based on the locus with the center closest to the SNP (excluding 
SNPs >1 Mb away from the closest center and loci wherein all SNPs had squared 
marginal effect sizes <0.00005). We excluded the MHC region (chr6 25.5–33.5 M) 
and two other long-range LD regions (chr8 8–12 M, chr11 46–57 M)62 from 
all analyses, following our observations that both FINEMAP and SuSiE tend 
to produce spurious results in these regions, finding many SNPs with PIP = 1 
across many traits regardless of their BOLT-LMM P values. We verified that other 
previously reported long-range LD regions62 do not harbor a disproportionate 
number of SNPs with PIP > 0.95. We specified per-locus causal effect variances 
for SuSiE and PolyFun + SuSiE via our modified HESS approach. For all S-LDSC 
and fine-mapping analyses, we specified a sample size corresponding to the 
BOLT-LMM effective sample size31 (given by the true sample size multiplied by the 
median ratio between χ2 statistics of BOLT-LMM and linear regression across SNPs 
with BOLT-LMM χ2 > 30).

All S-LDSC analyses used LD scores computed from in-sample summary LD 
information (based on imputed SNP dosages rather than sequenced genotypes 
as in previous publications24–26, assigning to each SNP the LD score computed 
in the locus in which it was most central), because they provide better coverage 

of low-frequency SNPs and are consistent with the fine-mapping analyses. We 
computed genetic correlations with LDSC, using the same summary statistics used 
for fine-mapping and restricting the analysis to common SNPs.

We selected a subset of 16 genetically uncorrelated traits by ranking all 
traits according to the number of PolyFun + SuSiE SNPs with PIP > 0.95 and 
greedily selecting top-ranked traits such that no selected trait has |rg| > 0.2 with 
a previously selected trait, excluding traits having either (1) h2g

I
 estimates <0.05 

in either the PolyFun dataset (n = 337,000) or the PolyLoc dataset (n = 122,000) 
(see the h2g

I
 estimation description below) or (2) traits with an effective sample size 

<100,000 in the n = 337,000 dataset (using 4/((1/no. of cases) + (1/no. of controls)) 
for binary traits).

We estimated h2g
I

 tagged by SNPs with PIP > 0.95 and by lead GWAS SNPs via a 
multivariate linear regression. We regressed all the covariates used in BOLT-LMM 
out of the phenotypes, performed multivariate linear regression on the residuals 
(using all SNPs with PIP > 0.95 as explanatory variables) and reported the adjusted 
R2 as the h2g

I
 tagged by these SNPs. We verified that the results remained nearly 

identical regardless of whether we excluded related individuals (Supplementary 
Table 14). We estimated the heritability causally explained by all genome-wide 
SNPs with MAF > 0.001 for trait selection and for Fig. 2b by running S-LDSC 
with all the baseline-LF annotations. We overrode the automatic removal of very 
large-effect SNPs employed by S-LDSC for hair color, because this removal led to 
h2g
I

 estimates that were smaller than the linear regression-based estimates, due to 
the large proportion of SNP heritability originating from very large-effect SNPs.

We defined top annotations for Table 3, Fig. 3 and Supplementary Tables 15 
and 16 by first ranking all annotations according to their functional enrichment 
among SNPs with PIP > 0.95 (as in Fig. 4; see below), and associating each SNP 
with its top-ranked annotation, using meta-analyzed enrichment.

We selected a subset of genetically uncorrelated traits for each SNP (used 
in Extended Data Fig. 6, Table 3 and Supplementary Table 15), aiming to 
select traits from as diverse a set of groups as possible (anthropometric, lipids/
metabolic, blood, cardiovascular/metabolic disease, other; Extended Data Fig. 6 
and Supplementary Table 8). To this end, we iterated over trait groups cyclically. 
For each group containing one or more unselected traits with PIP > 0.95 for the 
analyzed SNP, we selected the trait having the smallest average |rg| with unselected 
traits from other groups (if there remained any) or from all remaining traits 
(otherwise), selecting among all traits having |rg| < 0.2 with previously selected 
traits, until no more eligible traits remained. We plotted the ideogram in Extended 
Data Fig. 6 using the PhenoGram63 software.

We computed enrichment of functional annotations among fine-mapped SNPs 
(Fig. 4) as the ratio between the proportion of common SNPs with PIP above a 
given threshold having a specific annotation and the proportion of common SNPs 
having the annotation. We excluded continuous annotations and annotations 
constructed via windows around other annotations, and merged concordant 
annotations for common and low-frequency variants. We computed P values using 
Fisher’s exact test (meta-analyzed across traits via Fisher’s method). We computed 
the s.e. by: (1) computing the s.e. s of the log of the enrichment via the standard 
formula for the s.e. of relative risk (exploiting the fact that enrichment and relative 
risk are both ratios of proportions) and (2) computing the s.e. of the enrichment via ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 es2 � 1ð Þ
p

I
 (that is, the s.d. of the exponent of a normal random variable), where r 

is the original enrichment estimate (meta-analyzed across traits using a fixed-effect 
meta-analysis). We excluded traits having fewer than ten SNPs with PIP > 0.95 
from the meta-analysis. The annotations shown in Fig. 4 are nonsynonymous, 
Conserved_LindbladToh (denoted Conserved), Human_Promoter_Villar_ExAC 
(denoted Promoter-ExAC), H3K4me3_Trynka (denoted H3K4me3) and 
Repressed_Hoffman (denoted Repressed) (see Supplementary Table 1 for details).

To compare our fine-mapping results with those of refs. 7,12, we restricted the 
comparison to SNPs that were not excluded from our fine-mapping procedure 
(SNPs with MAF ≥ 0.001 in the UK Biobank n = 337,000 dataset, INFO score ≥0.6, 
distance <1 Mb away from the closest locus center and not residing in one of the 
excluded long-range LD regions). When the same SNP had multiple reported PIPs 
in ref. 12, we used the entry with the larger PIP. We caution that the comparison 
with ref. 12 is not a replication analysis because the datasets of ref. 12 and of 
PolyFun + SuSiE are correlated.

We selected five traits for down-sampling analysis (analyzing n = 107,000 
individuals) as the set of traits having: (1) the largest number of 3-Mb loci 
harboring a genome-wide-significant SNPs; (2) >10 SNPs with PIP > 0.95 in the 
SuSiE n = 107,000 analysis; and (3) |rg| < 0.2 with another selected trait.

Polygenic localization. Polygenic localization aims to identify a minimal set 
of SNPs causally explaining a given proportion of common SNP heritability. To 
define polygenic localization, we first define M*

p

I
 as the smallest integer k such 

that 
P

i2 s1 ;¼ ;skf g β
2
i =

Pm
i¼1 β

2
i ≥P

I
, where βi is a standardized SNP effect size, sj 

denotes a ranking of β2i
I

 such that β2s1 ≥β2s2 ≥ ¼ ≥β2sm
I

 and m is the number of 
common SNPs. Unfortunately, β2i

I
 is unknown in practice. Polygenic localization 

therefore estimates an upper bound of M*
p

I
, denoted as Mp. We define Mp as the 

smallest integer k′ such that 
P

i2 s01 ;¼ ;s0k0f g β
2
i =

Pm
i¼1 β

2
i ≥P

I

, where s′ is a possibly 
nonoptimal ranking of SNPs. We note that Mp≥M*

p

I
 by construction. We provide a 

full derivation of polygenic localization in the Supplementary Note.
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We now provide a brief conceptual description of PolyLoc (a full description is 
provided in the Supplementary Note). Briefly, PolyLoc proceeds by: (1) partitioning 
SNPs with similar β2i

I
 posterior mean estimates (using PolyFun + SuSiE estimates) 

into bins; (2) treating βi as a zero-mean random variable and jointly estimating 
var βi½ 
I

 in every bin using S-LDSC; and (3) finding the smallest integer k such that P
i2 ŝ1 ;¼ ;̂skf g var βi½ =Pm

i¼1 var βi½ ≥P
I

, where ̂sj denotes the original ranking of β2i
I

 
posterior mean estimates from PolyFun + SuSiE. The use of var βi½  ¼ E β2i

� �
� E βi½ 2

I
 

instead of β2i
I

 uses the assumption that βi has zero mean in each bin. The partitioning 
into bins in step 1 induces a piecewise-linear approximation of the function 
kð Þ ¼

P
i2 ŝ1 ;¼ ;̂skf g β

2
i =

Pm
i¼1 β

2
i

I
. We use different datasets to estimate β2i

I
 posterior 

means and var βi½ 
I

 to prevent winner’s curse. Our approach is conservative by design 
due to using an imperfect ranking compared with the true ranking s1; ¼ ; sm

I
. The 

degree of conservativeness is a function of fine-mapping power, and thus depends 
on factors affecting fine-mapping power such as sample size, levels of LD at causal 
SNPs, MAFs of causal SNPs and trait polygenicity.

In secondary analyses, we compared PolyLoc with an alternative method  
that performs polygenic localization based on prior estimates of per-SNP 
heritability from functional annotations, rather than posterior estimates.  
This alternative method uses per-SNP heritability estimates and SNP bins  
from step 4 of PolyFun, based only on the n = 337,000 dataset (noting that it  
does not suffer from winner’s curse because PolyFun applies partitioning  
into odd and even chromosomes).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
PolyFun fine-mapping results generated in the present study are available for public 
download at http://data.broadinstitute.org/alkesgroup/polyfun_results. Summary 
LD information generated in the present study is available for public download 
at https://data.broadinstitute.org/alkesgroup/UKBB_LD. Baseline-LF v2.2.UKB 
annotations and LD scores for UK Biobank SNPs are available at https://data.
broadinstitute.org/alkesgroup/LDSCORE/baselineLF_v2.2.UKB.tar.gz. Access to 
the UK Biobank resource is available via application (http://www.ukbiobank.ac.uk).

Code availability
PolyFun and PolyLoc software is available at https://github.com/omerwe/polyfun. 
SuSiE software is available at https://github.com/stephenslab/susieR. FINEMAP 
software is available at http://www.christianbenner.com/#.
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Extended Data Fig. 1 | Assessing the individual impact of step 1 of PolyFun (estimating functional enrichment) via perturbation analysis, by randomly 
shuffling different proportions of annotation coefficient estimates. For each evaluated value of the proportion of shuffled annotation coefficient 
estimates, we report the number of experiments having each obtained FDR level >0 (left panel) and the number of experiments having each obtained 
power level >0 (right panel), out of 1000 experiments. FDR and power are reported with respect to identifying PIP ≥ 0.95 SNPs. Experiments with FDR = 0 
(resp. power=0) are not reported in the left panel (resp. right panel) to improve clarity. Numerical reports are provided in Supplementary Table 6.
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Extended Data Fig. 2 | Assessing the individual impact of step 2 of PolyFun (estimating per-SNP heritabilities on odd/even chromosomes) via 
perturbation analysis, by using both odd and even chromosomes to estimate functional enrichment. The figure is similar to Extended Data Figure 
1 but applies a different perturbation (using both odd and even chromosomes to estimate functional enrichment). Numerical reports are provided in 
Supplementary Table 6.
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Extended Data Fig. 3 | Assessing the individual impact of step 3 of PolyFun (partitioning all SNPs into 20 bins of similar per-SNP heritability) via 
perturbation analysis, by varying the number of per-SNP heritability bins. The figure is similar to Extended Data Figure 1 but applies a different 
perturbation (changing the number of per-SNP heritability bins). Numerical reports are provided in Supplementary Table 6.
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Extended Data Fig. 4 | Assessing the individual impact of step 4 of PolyFun (re-estimating per-SNP heritabilities within each bin excluding the target 
chromosome) via perturbation analysis, by not excluding the target chromosome from the re-estimation procedure. The figure is similar to Extended 
Data Figure 1 but applies a different perturbation (disables the exclusion of the target chromosome, either when using the default sample size N = 320 K or 
when using a smaller sample size of N = 10 K). Numerical reports are provided in Supplementary Table 6.
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Extended Data Fig. 5 | Assessing the individual impact of step 5 of PolyFun (specifying prior causal probabilities in proportion of the re-estimated 
per-SNP heritabilities) via perturbation analysis, by randomly permuting estimated prior causal probabilities. The figure is similar to Extended Data 
Figure 1 but applies a different perturbation (randomly permuting estimated prior causal probabilities). Numerical reports are provided in Supplementary 
Table 6.
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Extended Data Fig. 6 | Visualization of fine-mapping results for UK Biobank traits. We display an ideogram of all 2,225 PIP > 0.95 fine-mapped SNPs 
identified by PolyFun + SuSiE across 49 UK Biobank traits. Traits are color-coded into groups (see legend and Supplementary Table 8). White circles 
indicate SNPs that are pleiotropic for ≥2 genetically uncorrelated traits, with circles to the right of a white circle denoting the genetically uncorrelated 
traits (max of 5 colored circles due to space limitations). Numerical results are reported in Supplementary Table 10.
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Extended Data Fig. 7 | Functional enrichment of PolyFun + SuSiE fine-mapped common SNPs for UK Biobank traits. The figure is analogous to Fig. 4 but 
uses PIPs computed by PolyFun + SuSiE instead of SuSiE. Numerical results are reported in Supplementary Table 26.
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Extended Data Fig. 8 | Functional enrichment of SuSiE fine-mapped MAF > 0.001 SNPs for UK Biobank traits. The figure is analogous to Fig. 4 but uses 
MAF > 0.001 SNPs instead of common (MAF > 0.05) SNPs. Numerical results are reported in Supplementary Table 27.
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Extended Data Fig. 9 | Functional enrichment of SuSiE fine-mapped low-frequency and rare SNPs for UK Biobank traits. The figure is analogous to 
Fig. 4 but uses only low-frequency and rare SNPs (0.05>MAF > 0.001) instead of common (MAF > 0.05) SNPs. Numerical results are reported in 
Supplementary Table 28.
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Data collection We did not collect data for this study. We analyzed raw genotype-phenotype data from UKBB (application 16549). Fine-mapping results 
generated in this study are available at https://data.broadinstitute.org/alkesgroup/polyfun_results

Data analysis Our PolyFun and PolyLoc software packages is available at https://github.com/omerwe/polyfun 
Our baseline-LF model version 2.2 is available at https://data.broadinstitute.org/alkesgroup/LDSCORE/baselineLF_v2.2.UKB.polyfun.tar.gz 
Summary LD information analyzed in our study is available at https://data.broadinstitute.org/alkesgroup/UKBB_LD 
Access to the UK Biobank resource is available via application (http://www.ukbiobank.ac.uk/) 
SuSiE v0.7.1.0487 is available at https://github.com/stephenslab/susieR 
FINEMAP v1.3.1 is available at http://www.christianbenner.com 
PAINTOR v3.1 is available at https://github.com/gkichaev/PAINTOR_V3.0 
CAVIARBF v0.2.1 is available at https://bitbucket.org/Wenan/caviarbf 
BOLT-LMM v2.3.4 is available at https://data.broadinstitute.org/alkesgroup/BOLT-LMM/
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- A description of any restrictions on data availability

PolyFun fine-mapping  results generated in this study are available for public download at http://data.broadinstitute.org/alkesgroup/polyfun_results. Summary LD 
information generated in this study is available for public download at https://data.broadinstitute.org/alkesgroup/UKBB_LD. Baseline-LF v2.2.UKB annotations and 



2

nature research  |  reporting sum
m

ary
O

ctober 2018
LD-scores for UK Biobank SNPs are available at https://data.broadinstitute.org/alkesgroup/LDSCORE/baselineLF_v2.2.UKB.tar.gz. Access to the UK Biobank resource 
is available via application (http://www.ukbiobank.ac.uk).
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Sample size We used N=337K unrelated British-ancestry individuals in the UK Biobank (the largest suitable sample available to us) for fine-mapping. We 
used N=122K European-ancestry individuals that were not used for fine-mapping for polygenic localization.

Data exclusions We excluded the MHC region from all analyses and analyzed only autosomes.

Replication No replication dataset was analyzed as fine-mapping requires access to individual-level genotypic data from hundreds of thousands of 
individuals, which is generally not publicly available other than the UK Biobank.

Randomization We performed no randomization and analyzed all European-ancestry individuals from UK Biobank.

Blinding We did not collect data for this study, but analyzed data from UK Biobank.
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