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Systematic differences in discovery of 
genetic effects on gene expression and 
complex traits

Hakhamanesh Mostafavi    1 , Jeffrey P. Spence    1, Sahin Naqvi    1,2 & 
Jonathan K. Pritchard    1,3 

Most signals in genome-wide association studies (GWAS) of complex traits 
implicate noncoding genetic variants with putative gene regulatory effects. 
However, currently identified regulatory variants, notably expression 
quantitative trait loci (eQTLs), explain only a small fraction of GWAS signals. 
Here, we show that GWAS and cis-eQTL hits are systematically different: eQTLs 
cluster strongly near transcription start sites, whereas GWAS hits do not. Genes 
near GWAS hits are enriched in key functional annotations, are under strong 
selective constraint and have complex regulatory landscapes across different 
tissue/cell types, whereas genes near eQTLs are depleted of most functional 
annotations, show relaxed constraint, and have simpler regulatory landscapes. 
We describe a model to understand these observations, including how natural 
selection on complex traits hinders discovery of functionally relevant eQTLs. 
Our results imply that GWAS and eQTL studies are systematically biased toward 
different types of variant, and support the use of complementary functional 
approaches alongside the next generation of eQTL studies.

GWAS have identified thousands of genetic variants linked with a variety 
of human complex traits and diseases1. However, uncovering the func-
tional mechanisms of these GWAS hits remains challenging, notably 
because ~90% of trait-associated variants lie in noncoding regions2. 
GWAS signals are predominantly located in open chromatin regions in 
relevant cell types, and are enriched in gene regulatory elements and 
eQTLs. These observations suggest that most GWAS hits are mediated 
by altering gene regulation of nearby genes2–7.

Motivated by these observations, many studies have integrated 
GWAS with eQTL mapping to gain a functional understanding of 
trait-associated variants8–12. However, despite extensive efforts 
to catalog eQTLs across diverse sets of biosamples, particularly 
those conducted by the Genotype-Tissue Expression (GTEx) Con-
sortium13,14, most GWAS hits are not explained by currently known 
eQTLs15–17. For example, one analysis by the GTEx Consortium 
found that only 43% of GWAS hits (median 21% of hits per trait) were 
colocalized with eQTLs14. Similarly, averaged across traits, only 

11% of heritability is estimated to be mediated by gene expression  
in GTEx tissues18.

Multiple potential explanations have been proposed for the lim-
ited overlap between GWAS hits and eQTLs. One is that some GWAS hits 
may only be eQTLs in specific contexts; for example, during develop-
ment16,19–22, in specific cell types23–26 or in response to physiological 
stimuli such as immune responses27–31. These effects are expected 
to be absent, or hard to detect, in conventional eQTL assays using 
postmortem adult whole tissues. Nevertheless, the contribution of 
context-specific eQTLs in explaining trait-associated variants has thus 
far been modest17,31. For example, a study of eQTLs during differentia-
tion of induced pluripotent stem (iPS) cells toward neural fate added 
~10% more colocalizations with neurological trait loci beyond GTEx 
eQTLs22. Also in GTEx, cell type-specific eQTLs colocalized with only 
~8% of GWAS hits25. Although context-specific effects undoubtedly con-
tribute to the limited colocalization, it remains to be seen how much of 
the gap can be resolved by deeper sampling of cell types and contexts.
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between the GWAS and eQTL pipelines, although it introduces some 
mis-assignments of genes, particularly for weaker eQTLs (Extended 
Data Fig. 1a). Nevertheless, we demonstrate that this strategy is con-
servative, and all genic properties we report for the nearest genes 
replicate even more strongly for the eGenes (Supplementary Figs. 5 
and 6). We refer to the genes assigned this way as ‘GWAS genes’ and 
‘eQTL genes’ in the rest of this paper.

We observed several systematic differences between eQTL and 
GWAS lead SNPs (Extended Data Fig. 2). Specifically, eQTL SNPs have 
a higher minor allele frequency (MAF) (median 0.24 compared with 
0.2) and are located in more gene-dense regions (median 11 genes per 
megabase compared with 8) than GWAS lead SNPs. To account for 
these differences and minimize potential confounding effects, in all 
our analyses we included control SNPs for both GWAS hits and eQTLs 
that are matched for MAF, LD score and gene density.

Figure 1 provides an overview of our analysis pipeline and main 
observations. Our key findings are robust to various data and process-
ing choices (Supplementary Note).

Constrained genes are enriched in GWAS genes but depleted in 
eQTL genes
Previous studies have suggested that the genetic architecture of most 
complex human traits is shaped by natural selection, such that muta-
tions with large effect sizes are kept at lower frequencies than would be 
expected in the absence of selection40–44. Despite this, SNP heritability 
for complex traits is enriched near selectively constrained genes45–47, 
as measured by the pLI (probability of being loss-of-function intoler-
ant) score45. Although pLI does not directly quantify selection acting 
on a gene48, high-pLI genes are reasonable candidates for genes under 
strong selection.

Consistent with previous findings, GWAS genes are enriched for 
high-pLI genes (pLI > 0.9) (Fig. 2a): 26% compared with 21% for genes 
linked to control SNPs (P = 2 × 10−4; see Methods for statistical details 
regarding the computation of all reported P values in the text). By 

A different type of explanation is that perhaps many trait-relevant 
eQTLs have not yet been discovered because of incomplete statistical 
power or the challenges of colocalization analysis, even if mapping 
was performed in the correct contexts18,32. However, others have pro-
posed that trait-eQTL discovery is already ‘saturated’ in well-studied 
tissues16.

Alternatively, effects on complex traits could be driven by pro-
cesses other than gene expression, such as splicing33 and polyade-
nylation34. However, so far those other mechanisms explain fewer 
trait-associated variants than do eQTLs14,31. Lastly, with current sample 
sizes, eQTL studies are mainly powered to detect cis-eQTLs (affect-
ing nearby genes), whereas many trait-relevant variants may act as 
trans-eQTLs (affecting genes elsewhere in the genome)35–37. However, 
standard models of gene regulation predict that trans-eQTLs should be 
mediated indirectly through cis-effects on nearby genes, and thus such 
variants should in principle be detectable as cis-eQTLs16,38. Together, 
these observations suggest that most GWAS hits are indeed cis-eQTLs, 
but many have not yet been discovered in eQTL mapping.

To better understand the lack of overlap between GWAS hits 
and eQTLs, we analyzed GWAS data for 44 complex traits in the UK 
Biobank (UKB), and eQTL data for 38 tissues in the GTEx dataset. We 
show that in fact GWAS hits and eQTLs differ systematically: GWAS hits 
lie at greater distances from transcription start sites (TSSs); they are 
enriched near genes associated with key functional annotations such 
as transcription factors; they are under strong selective constraint; 
and they typically have complex regulatory landscapes across dif-
ferent tissues and cell types. By contrast, eQTLs are tightly clustered 
near the TSSs of genes that are typically depleted of most functional 
annotations, show reduced selective constraint and have simpler 
regulatory landscapes.

We close with a model of variant discovery in GWAS and eQTL 
assays to explain these observations. We show that even if genetic 
effects on complex traits were entirely mediated by gene expression, 
many GWAS hits would not be discovered as significant eQTLs (even 
in the correct causal contexts). One important reason is that natural 
selection at constrained genes has very different effects on GWAS 
discovery compared with eQTL discovery.

In summary, GWAS and eQTL mapping tend to maximize power 
for different types of variant, and current eQTL mapping has limited 
discovery power at the most trait-relevant genes. Although further 
context-specific eQTL studies will help somewhat in explaining GWAS 
hits, we argue here that these efforts should be complemented by a 
variety of other functional approaches.

Results
Analysis overview
For GWAS analyses, we used publicly available summary statistics for 44 
traits in the UKB (Supplementary Table 1). For eQTL analyses, we used 
the GTEx V8 data for 38 tissues14 (Supplementary Table 1), focusing on 
cis-eQTLs associated with 18,332 protein-coding genes (Supplemen-
tary Table 2). To make the GWAS hits and eQTLs more comparable, we 
used identical quality control and SNP selection procedures for both 
datasets. We removed lead SNPs in strong linkage disequilibrium (LD) 
with protein-altering variants, to focus on variants that most likely act 
through gene expression. This pipeline resulted in 22,119 GWAS hits 
across traits, and 118,996 eQTLs across all gene–tissue pairs (Supple-
mentary Tables 3 and 4). See Methods for all details.

For each GWAS hit and eQTL, we evaluated properties of the lead 
SNP with respect to various SNP and genic features. To study genic 
features, we linked each GWAS hit to the nearest TSS among the same 
18,332 protein-coding genes. Although the true causal genes for GWAS 
hits are often unknown, the nearest gene serves as an extremely useful 
proxy39. For eQTLs, the relevant SNP–gene pairs are known. However, 
in most analyses, we masked the true eGenes and instead linked the 
eQTL SNP to the nearest gene. This strategy maximizes the similarity 

Comparisons and findings  

Variant selection

GWAS data
(44 traits in UK Biobank)

eQTL data
(38 tissues in GTEx V8)

22,119 GWAS hits 118,996 eQTLs
Control variants

(matched for MAF, LD 
score, gene density)

Models

Models for variant discovery in GWAS and eQTL assays

Comparison feature GWAS hits eQTLs

Closest genes Selective constraint High Low

Regulation complexity Long enhancers
More TSSs

Short enhancers
Fewer TSSs

Functional annotations Enriched Depleted

Variants Distance to TSS Distal Proximal

Regulatory annotations Less promoter-like More promoter-like

Fig. 1 | Study workflow and key results. Overview of our pipeline for the 
analysis of GWAS hits and eQTLs. The list of traits and tissues can be found in 
Supplementary Table 1. We compare GWAS hits and eQTLs with respect to a 
number of genic and SNP features. A summary of our main results is presented. We 
describe models for variant discovery in GWAS and eQTL assays to conceptualize 
these results. See Methods for details.
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contrast, eQTL genes are depleted of high-pLI genes: 12% compared 
with 18% for control SNPs (P = 10−21). This depletion is more pronounced 
for eGenes (true target genes), indicating that our nearest gene assign-
ment approach merely makes the underlying trends noisier (Extended 
Data Fig. 1b). These results align with previous reports that genes  
without detectable eQTLs have relatively higher pLI37,45. We observed 
similar results with selection-related measures other than pLI 
(Extended Data Fig. 3).

These trends are not driven by a few outlier traits/tissues (Fig. 2b). 
Notably, the depletion of high-pLI genes near eQTLs is replicated in 
all tissues, although to lesser degrees for tissues with a larger number 
of eQTLs (Fig. 2b). This is likely due to the inclusion of weaker eQTLs 
that reach significance in tissues with larger sample sizes, because the 
depletion of high-pLI genes is increasingly pronounced among top 
ranked eQTLs (Fig. 2c).

Together, these results show that although a substantial fraction 
of GWAS hits are located near selectively constrained genes, most iden-
tified eQTLs are not linked with such genes. This suggests that eQTLs 
with large effects on constrained genes are purged by selection, and is 
consistent with reports that the fraction of trait heritability estimated 
to be mediated via gene expression is dominated by genes with low 
cis-heritability for expression levels18,46.

GWAS genes have more complex regulatory landscapes than 
eQTL genes
Wang and Goldstein previously demonstrated that genes near 
GWAS hits and eGenes differ with respect to features of their linked 
enhancer domains49. To explore this further, we considered the tran-
scriptional regulatory landscapes of genes, defined based on the 
variation in enhancer activity and TSS usage across diverse tissues 
and cell types.

We computed two enhancer features per gene using the 
enhancer–gene links inferred by Liu et al. based on the Roadmap 
Epigenomics Consortium dataset50: (1) the number of biosamples 
in which the gene is linked to at least one enhancer element, and 
(2) the total length of linked enhancers per biosample (Fig. 3a and 
Methods). In a logistic regression framework, compared with genes 
linked with random SNPs, GWAS genes have longer enhancer regions 
per biosample (P = 5 × 10−3), whereas eQTLs have shorter enhancers 
(P = 5 × 10−9) (Fig. 3b), consistent with Wang and Goldstein49. By 
contrast, both types of gene have enhancer activity across more 
biosamples relative to genes linked with random SNPs (P = 5 × 10−3 
for GWAS, and 10−2 for eQTLs) (Fig. 3b). These results are replicated 
when using enhancer–gene links from the activity-by-contact model51 
(Extended Data Fig. 4).
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Fig. 2 | GWAS and eQTL genes are under different selective constraints.  
a, Fraction of genes with high pLI (pLI > 0.9, a measure of selective constraint) 
among genes nearest to 22,119 GWAS hits (blue), 118,996 eQTLs (red) and control 
SNPs matched for MAF, LD score and gene density. b, Enrichment of high-pLI 
genes in GWAS genes for individual traits and eQTL genes for individual tissues. 
Enrichment values (x axis) and z-scores (y axis) were derived from 1,000 control 
SNP sampling iterations. The z-scores were calculated as the difference between 
the mean of control samples and the values for GWAS hits or eQTLs, divided by 
the standard deviation of control samples. The Bonferroni correction threshold 
for absolute z-score values is 3.43 (Methods). c, Fraction of high-pLI genes among 

eQTL genes (closest gene, red), eGenes (green) and nearest genes to control 
SNPs (light red) versus eQTL tissue-level rank. For groupings on the x axis, we 
first bin ranked eQTLs by association P values in groups of 1,000 eQTLs, and 
then pooled eQTLs across tissues by the ranked bins. This procedure resulted in 
33,123, 25,643, 18,256, 13,839, 10,875 and 8,064 eQTLs in the rank bins [1–1,000], 
[1,001–2,000], [2,001–3,000], [3,001–4,000], [4,001–5,000] and [5,001–6,000], 
respectively. In panels a and c, error bars show 95% confidence intervals as 
determined by quantile bootstrapping over 1,000 sampling iterations. For 
matched SNPs, points show mean values in sets of matched SNPs corresponding 
to bootstrapped samples (Methods).
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We then considered another regulatory feature: how many 
different TSSs are used for a given gene across a diverse set of cell 
types in the FANTOM project52 (Methods). On average, GWAS genes 
have more, whereas eQTL genes have fewer TSSs than control SNPs  
(Fig. 3c): 6.4 versus 5.6 for GWAS (P = 4 × 10−5) and 4.4 versus 5 for 
eQTLs (P = 8 × 10−11).

We hypothesized that the regulatory landscape of genes, in 
part, corresponds with their regulatory function in gene regulatory 
networks. Moreover, genes with many downstream regulatory con-
nections in the network are expected to be important contributors 
to heritability35–37. Motivated by these considerations, we analyzed 
coexpression networks inferred by Saha et al. for GTEx tissues53. For 
each gene, we constructed a connectedness measure based on the 
gene’s number of neighbors in tissue-specific networks (Methods). We 
found that genes with more connections are progressively enriched 
near GWAS hits (P = 5 × 10−3 for comparing enrichment in top versus 
bottom connectedness quantiles) (Fig. 3d), consistent with previ-
ous reports that trait heritability is enriched near such genes54,55. By 
contrast, genes with more connections are progressively depleted for 
eQTLs (P = 6 × 10−9) (Fig. 3d).

Taken together, these observations suggest that targets of GWAS 
hits are often genes with complex regulatory architecture, in the sense 
that they harbor regulatory mechanisms to control and diversify gene 
expression across different contexts and possibly in a context-specific 
manner, which could correspond with a functional role in gene regula-
tory networks. These types of gene are depleted of eQTLs.

Key Gene Ontology terms are enriched in GWAS genes but 
depleted in eQTL genes
Differences in the selective constraint and regulatory landscapes of 
genes likely reflect the functional roles of different types of gene. To 
explore functional disparities between GWAS and eQTL genes, we 
analyzed 577 Gene Ontology (GO) biological process terms. For each 
term, we evaluated the enrichment of its associated genes in GWAS 
and eQTL genes relative to control SNPs across all traits and tissues 
(Methods). For data visualization, we focused on 41 terms that are 
broadly unrelated, prioritizing terms that are informative of GWAS/
eQTL SNPs (Supplementary Table 6 and Methods).

Notably, we found that GO terms are pervasively enriched among 
GWAS genes for many traits (Fig. 4a). For some terms, the enriched 
term highlight evidently relevant traits: for example, ‘skeletal system 
development’ for height, ‘lipid localization’ for high cholesterol and 
‘adaptive immune response’ for a number of blood-related traits. That 
said, many terms show enrichment across multiple traits.

By contrast, many GO terms show clear depletion of eQTLs in all 
tissues (Fig. 4a). Consistent with our earlier results, depletion is most 
prominent for gene sets with high average pLI, suggesting that selec-
tion purges eQTLs for genes with evolutionarily important functions. 
By contrast, certain gene sets, such as ‘DNA repair’, are enriched for 
eQTL genes, suggesting that they may be more tolerant of expression 
changes.

We wondered whether transcription factors exhibit a similar pat-
tern, given their essential role in development and cellular functions. 
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Indeed, GO terms related to transcriptional regulation, along with 
several developmental terms to which TFs substantially contribute 
(Extended Data Fig. 5a), are particularly enriched in GWAS genes 
and depleted in eQTL genes (Fig. 4a). Similarly, we found that tran-
scription factors are enriched in GWAS genes (15% compared with 
10% for matched SNPs, P = 2 × 10−3) and depleted in eQTL genes (7% 
compared with 9% for matched SNPs, P = 5 × 10−3) (Fig. 4b), in line with 
previous reports that transcription factors are underrepresented  
among eGenes56.

Lastly, noting that most GO terms show enrichment for com-
plex traits (Fig. 4a), we reasoned that genes associated with multiple 
functional categories, multifunctional genes, would be particularly 

enriched among GWAS genes. Indeed, genes belonging to more GO 
terms are progressively enriched in GWAS genes (P = 2 × 10−3 for com-
paring enrichment among genes linked with ≥10 biological processes 
versus genes with no linked functional annotation), while being mod-
estly depleted for eQTL genes (P = 8 × 10−10) (Fig. 4c). Multifunctional 
genes tend to be highly connected in protein–protein interaction 
networks (Extended Data Fig. 6a). Similarly, highly interacting genes 
are enriched for GWAS hits (Extended Data Fig. 6b).

In summary, our GO analysis shows that a diverse range of bio-
logical processes are enriched near GWAS hits; moreover, multifunc-
tional genes are especially enriched for GWAS hits. In contrast, most 
trait-related terms are underrepresented near eQTLs.
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Fig. 4 | Diverse categories of functional genes are enriched among GWAS 
genes but not among eQTL genes. a, Enrichment of genes associated with 41 
GO terms among GWAS and eQTL genes (Methods). Traits and tissues (x axis) 
are sorted by hit count (decreasing from left to right), and GO terms (y axis) are 
sorted by the mean pLI value of associated genes. For each trait– or tissue–GO 
term pair we computed enrichment z-scores based on 1,000 sampling iterations 
of SNPs matched for MAF, LD score and gene density (Methods). The color 
map represents enrichment (green) or depletion (magenta) of a given gene 
set among GWAS or eQTL genes. Absolute z-scores less than 1.86, which is the 
threshold value corresponding to a 5% false discovery rate, are colored white. The 
maximum color intensity is capped at absolute z-score of 4.88 corresponding to 

the Bonferroni correction threshold (Methods). See Supplementary Table 7 for 
enrichment and z-score values. DVT, deep vein thrombosis; EBV, Epstein-Barr 
virus. b, Fraction of GWAS genes (of 22,119) and eQTL genes (of 118,996) that 
are transcription factor (TFs). c, Enrichment of GWAS and eQTL genes relative 
to genes linked to matched SNPs (y axis) in different bins of genes ranked by 
the counts of GO terms they belong to (x axis). See Supplementary Table 5 
for the counts of genes in each bin. Error bars show 95% confidence intervals 
as determined by quantile bootstrapping over 1,000 sampling iterations. 
For matched SNPs in b, points show mean values in sets of matched SNPs 
corresponding to bootstrapped samples.
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GWAS hits are further from TSSs than eQTLs
Our analysis so far has focused on differences between GWAS hits and 
eQTLs with respect to the properties of the target genes. We also found 
important differences between the SNP-level context of GWAS hits 
and eQTLs.

It is well known that eQTLs tend to be tightly clustered near  
TSSs57–59. We observed similar results (Fig. 5a): 43% of eQTLs lie 
within 10 kb of the nearest TSS, compared with 23% for control SNPs 

(enrichment of 1.88, P = 7 × 10−168). However, GWAS hits are only  
modestly enriched near TSSs (Fig. 5a): 22% lie within 10 kb of the near-
est TSS, compared with 17% for control SNPs (enrichment of 1.28, 
P = 2 × 10−9). GWAS hits typically lie at greater distances from the near-
est TSS (median 36 kb) compared with eQTLs (median 13 kb).

Consistent with these trends, although both GWAS hits and eQTLs 
are enriched in annotated promoter and enhancer domains (Fig. 5b), 
the relative enrichment in promoter versus enhancer domains is much 
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Fig. 5 | GWAS hits are less enriched at TSSs than are eQTLs. a, Distance of 
eQTLs (left) and GWAS hits (right) to the nearest TSS. Points show fraction 
of SNPs in 10-kb bins. SNPs more than 100 kb away from their closest TSS are 
not shown for clarity. b, Enrichment of eQTLs and GWAS hits in promoter and 
enhancer elements annotated in the FANTOM project (left), and in promoter-like, 
TSS-proximal enhancer-like and TSS distal enhancer-like elements annotated 
in the ENCODE project (right). For each annotation, the enrichment value is 
computed as the fraction of SNPs in the annotation divided by the fraction of 
all SNPs in the annotation. See Supplementary Table 8 for the counts of SNPs in 
each annotation. c, Enrichment of eQTLs and GWAS hits relative to random SNPs 
(N = 6,971,256) in ENCODE promoter elements (left) and Roadmap enhancer 

elements (right) as a function of the quintile of their target gene LOEUF score (a 
measure of selective constraint67). For promoter elements, linking to genes was 
done taking the closest TSS within 1 kb. For enhancers, enhancer–gene links from 
Liu et al. were used50. See Supplementary Table 8 for the counts of SNPs linked 
with each LOEUF bin. In b and c, the black dashed lines mark the value of 1 on the 
y axis. In all panels, error bars show 95% confidence intervals as determined by 
quantile bootstrapping over 1,000 sampling iterations. For matched SNPs, points 
show mean values in sets of matched SNPs corresponding to bootstrapped 
samples. All statistics were computed for 118,996 eQTLs and 22,119 GWAS hits. 
LoF, loss-of-function.
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stronger for eQTLs than GWAS hits. Also, eQTL enrichment in promoter 
and enhancer elements sharply increases with decreasing target gene 
constraint, surpassing GWAS enrichments for the least constrained 
genes (Fig. 5c). Therefore, differential localization of GWAS hits and 
eQTLs within regulatory regions cannot be solely attributed to the 
promoter versus enhancer distinction (eQTLs being promoter variants 
and GWAS hits being enhancer variants).

A model for variant discovery in GWAS and eQTL assays
In summary, we have shown that GWAS hits are systematically different 
from identified eQTLs in important ways:

•	 At the gene level, GWAS hits are enriched near selectively  
constrained genes, at genes with complex regulatory landscapes 
across different cell types and more coexpression partners, 
and across a wide variety of GO terms and among transcription  
factors; whereas eQTLs are relatively depleted in all these features.

•	 At the variant level, GWAS hits show only slight promoter enrich-
ment and tend to be located far from TSSs; by contrast, eQTLs are 
strongly enriched at promoters and clustered near TSSs.

These stark differences between GWAS hits and eQTLs may seem 
surprising, especially given the expectation that most noncoding GWAS 
hits should be eQTLs in some cell type. We now describe a model that 
predicts these qualitative patterns.

We start by examining the case in which there is only a single rel-
evant cell type for the phenotype of interest, and eQTL mapping has 
been conducted in this cell type. This would be most relevant to studies 
in which specific cell types can be studied by cell-sorting or single-cell 
sequencing. We discuss an extended model for tissue-level eQTLs in 
the Supplementary Note.

For simplicity, we assume that all genetic effects on phenotypes 
are mediated via cis-effects on gene expression:

genotype
β
→gene expression

γ
→phenotype,

where β is the per-allele effect size of genotype on expression, and γ is 
the effect size of a unit change in expression on the phenotype. The net 
phenotypic effect of the variant on phenotype is therefore βγ.

Whether a variant is discovered as an eQTL or a GWAS hit depends 
on how much of the variance it explains in gene expression and in 
phenotype; this is, given by 2p(1 − p)β2 and 2p(1 − p)β2γ2, respectively, 
where p is the allele frequency. In expectation, the discovered variants 
satisfy the conditions:

2p(1 − p)β2 > c∗eQTL (for eQTLs)

2p(1 − p)β2γ2 > c∗GWAS (forGWAS)

where c* is a study-dependent discovery threshold. Specifically, 
c∗ ∝ χ2c/n, where χ2c is the relevant chi-squared critical value for signifi-
cance and n is the sample size (Methods). Equivalently, in expectation, 
a variant is discovered if the fraction-of-variance it explains exceeds 
χ2c/n. The fraction-of-variance explained by trait-associated variants is 

usually much smaller than for cis-eQTLs (~103-fold smaller), but this is 
roughly balanced by the much-larger GWAS sample sizes (~103-fold 
larger). We estimate that at current typical sample sizes, both assays are 
generally low-powered and far from saturation, likely discovering around 
10–20% of all causal variants (Supplementary Note). The key question 
is: should we expect GWAS and eQTL mapping to find the same variants?

We can address the question of GWAS–eQTL overlap in terms of 
what parts of the parameter space have appreciable power for each 
assay (Fig. 6a). For eQTLs, we discover variants provided that 2p(1 − p)β2 
is large enough; so conditional on p the discovery region is given by 
vertical contours, as shown in red. For GWAS, we need the product β2γ2 

to be large enough, and so the discovery region is given by the curved 
blue line. Some hits are discovered by both assays because both β2 and γ2 
are large enough (purple). Most importantly, some hits are discovered 
in GWAS only (blue region) because β2γ2 is large, but are not detected 
as eQTLs because their effects on expression alone (β2) are small. If we 
change the sample size n for either study, this shifts the positions of 
the discovery contours but not their shapes (Supplementary Fig. 22).

So far, we have described a neutral model assuming independence 
of effect sizes and p. But many papers have shown selection against 
variants that affect complex traits40–44. In this scenario, selection keeps 
variants with large phenotypic effects at low frequencies. We derived 
how the discovery regions change under selection by modeling a nega-
tive correlation between β2γ2 and E[2p(1 − p)] (Methods and Fig. 6b).

Intuitively, selection strength is inversely related to the magnitude 
of the phenotypic effect, such that the reduction in E[2p(1 − p)] at top 
variants is compensated by their larger β2γ2. Consequently, selection 
does not systematically alter the expected rankings of variants discov-
ered in GWAS compared with the neutral scenario (Fig. 6b). However, it 
leads to a more uniform distribution of heritability across variants with 
intermediate and large effects, a phenomenon referred to as ‘flattening’ 
(Extended Data Fig. 7a)40,44. In the case of eQTLs, selection affects them 
depending on their phenotypic impact: for eQTLs with a given magni-
tude of regulatory effect (β2), selection is stronger on variants acting on 
genes with larger γ2 values (Extended Data Fig. 7b). This disproportion-
ately reduces the discovery power for the most trait-relevant eQTLs.

These predicted differences between GWAS and eQTL genes in 
terms of γ2 align with the gene-level differences observed in data. 
Specifically, most complex traits are subject to natural selection, either 
directly or indirectly. Therefore, a higher γ2 value, on average, cor-
responds to stronger selection (Fig. 2). In addition, the phenotypic 
impact of a gene (γ2 in our model) likely depends on its involvement 
in specific biological processes and its connectivity within regulatory 
networks (Figs. 3 and 4).

We next considered how features of gene regulation relate to our 
model. Previous eQTL studies have demonstrated that variants close 
to the target gene’s TSS tend to have larger effect sizes than more 
distal variants58,59. Similarly, promoter–enhancer contact frequencies 
decay with genomic distance between the enhancer and promoter  
elements60,61. Thus, in terms of our model, average β2 should decay with 
distance from the TSS.

Therefore, in the neutral scenario, eQTLs will be skewed towards 
TSS-proximal regulatory elements (with large β2), and depleted from 
distal elements (with small β2) regardless of the phenotypic impor-
tance of the target genes (γ2) (Fig. 6a). GWAS hits, however, will be 
skewed towards phenotypically important genes (with large γ2) in a 
distance-dependent manner: distal regulatory elements are more likely 
to include a GWAS hit if acting on genes with larger phenotypic effects 
(Fig. 6a). Under selection, large-effect TSS-proximal eQTLs should be 
most depleted from highly important genes, thereby further reducing 
eQTL–GWAS overlap (Fig. 6b). These predictions are in line with the 
findings depicted in Fig. 5.

In summary, GWAS and eQTL mapping have power in different 
areas of the parameter space. Additionally, selection affects the GWAS 
and eQTL assays differently, primarily hindering the discovery of eQTLs 
at important genes. In the Supplementary Note, we illustrate that these 
conclusions are robust to various modeling assumptions (Supplemen-
tary Figs. 14–20). We further discuss the limitations of our single-cell 
type model, and explore more complex scenarios, uncovering addi-
tional systematic differences between GWAS and eQTL mapping.  
Notably, eQTL mapping in bulk assays is skewed towards less 
trait-relevant cell types (Supplementary Figs. 23 and 24).

Discussion
Most GWAS hits are in the noncoding portion of the genome, and they 
are highly enriched within active chromatin. It is generally believed 
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that the large majority of these act via effects on cis gene regulation. 
However, it has long been recognized that a large fraction of noncod-
ing GWAS hits do not colocalize with known eQTLs15–17. This raises the 
question: where are the missing eQTLs?

Certainly, part of the colocalization gap is due to the fact  
that we do not yet have complete measurement of all cell types,  
and some is due to other regulatory mechanisms such as SNP effects 
on splicing. But here we argue that a fundamental issue is that  
GWAS and eQTL mapping are powered to identify different types of 
variant.

We argue that any explanation for limited colocalization must 
account for the fact that GWAS variants differ from eQTL variants along 
many important axes. Using carefully matched analyses, we have shown 
that GWAS hits are biased toward more constrained genes, toward 
genes with functions in many GO categories, toward transcription fac-
tors and toward genes with complex regulatory landscapes; eQTLs are 
biased away from all these categories. Meanwhile, eQTLs show a strong 
promoter bias that is largely absent from GWAS hits. These systematic 
differences cannot easily be explained by the fact that we have not yet 
studied all cell types (Extended Data Fig. 8).

Instead, to understand these observations we note that, like any 
mapping method, GWAS and eQTL mapping have incomplete power 
(Supplementary Note). In the case of eQTL mapping, a variant must 
explain at least a few percent of the variance to be discovered in a typical 

study. What types of variant, and what types of gene, are likely to cross 
this threshold? They tend to be variants with relatively large effects 
on gene regulation—large β in our model—especially in promoters. 
Moreover, they tend to be at genes where selective constraint is low, 
thereby enabling variants to drift to high frequencies.

By contrast, GWAS hits are, by design, variants that have measur-
able effects on an organismal trait or disease—large βγ—and hence these 
are biased toward functionally important genes. Although selection 
does play an important role in reducing allele frequencies for these 
variants, it has a flattening effect, and does not systematically bias 
against discovery at important genes40,44.

Given these conclusions, what are the most promising routes 
forward for linking GWAS hits to their cognate genes and relevant 
cell types?

Of course, larger sample sizes in eQTL mapping will help. But for 
the reasons we have outlined above, the discovery regions for eQTL and 
GWAS mapping are systematically distinct, and extremely large eQTL 
samples will be needed to colocalize all desired GWAS hits (Extended 
Data Fig. 9). For less-accessible cell types this may simply not be prac-
tical. Moreover, even with extraordinarily large samples, as for blood 
where there is now a cis-eQTL for most expressed genes37, our model 
predicts that the detected eQTLs will still be biased toward enhancers 
that are active in less-constrained cell types, or environmental contexts 
that are less relevant for interpreting GWAS.
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Fig. 6 | A model for variant discovery in GWAS and eQTL assays. a, Case of 
a neutrally evolving phenotype. (Left) Variant discovery in the space defined 
by variant effect on expression, β, and genic effect on phenotype, γ. Shading 
colors represent parameter space for the discovery of GWAS hit only (blue), 
eQTL only (red) and both types (purple), determined conditional on E[2p(1 − p)] 
which is independent of the effect sizes in the neutral case. (Right) Schematic 
of variant discovery mapped to cis-regulatory domains as a function of genic 

contribution to the phenotype. b, Case of a phenotype under selection. Same as 
panel a, but now the discovery regions in the left panel are determined based on 
how E[2p(1 − p)] covaries with effect sizes under a model of selection. Note that 
the discovery lines shown represent qualitative (and not quantitative) trends, 
derived under simplifying assumptions for illustrative purposes (Methods). In 
the Supplementary Note we demonstrate the robustness of discovery trends to 
various modeling assumptions and choices of parameters.
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Indeed, we observe that these limitations are present even for 
blood eQTLs from the eQTLGen Consortium, which has a sample size of 
~32,00037. Of particular note, many critical cell types, such as regulatory 
T cells, are at low frequency in whole blood, and hence these studies 
may be underpowered for constrained genes even at vast sample sizes 
(Supplementary Figs. 12 and 28).

Rather, it seems most likely that the colocalization gap will be 
solved using a multipronged approach, because no single method 
can be expected to resolve all GWAS hits. Certainly, it will be help-
ful to collect more cell types, more developmental stages and larger 
samples. Some eQTLs may be active only in specific contexts that are 
underrepresented in conventional eQTL samples from bulk adult tis-
sues such as GTEx. Likewise, some eQTLs may be represented only in 
rare cell types for which cell-sorting or single-cell approaches may be 
more informative26,30.

Moreover, other types of molecular QTL assay, including chro-
matin QTLs and splicing QTLs, may help link additional variants to 
functional effects; although we note that similar discovery biases 
are liable to act on any such trait (Supplementary Fig. 13). Alterna-
tively, various orthogonal methods, including models that predict 
the regulatory activity of variants from the DNA sequence62,63, and 
emerging functional assays including massively parallel reporter 
assays, or CRISPR-based variant-editing or enhancer-silencing 
should not be biased by selection in the same way, although every 
method has its own limitations64–66. We anticipate that combina-
tions of genome-scale techniques will ultimately help close the 
colocalization gap.

In summary, we have shown here that eQTLs and GWAS hits differ 
dramatically in several important ways. We have argued that this likely 
reflects essential differences in what these assays detect, shaped in 
large part by selection.
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Methods
Inclusion and ethics
The study solely relied on genetic associations extracted from publicly 
available summary statistic data. Individual-level data was not utilized 
for any association analyses. Specifically, genetic data from individuals 
labeled as ‘white British’ within the UKB dataset was exclusively used to 
compute allele frequencies and serve as a reference panel for assess-
ing LD. The inclusion of these data was granted under application no. 
24983 and did not necessitate Institutional Review Board approval. 
Importantly, no phenotype data from participants within the UKB 
were involved in this study. All other data used are publicly available 
(see ‘Data availability’ section).

Statistics and reproducibility
No preliminary statistical analyses were conducted to determine sam-
ple sizes. Publicly available GWAS and eQTL data were downloaded. 
The inclusion of individuals in these association analyses was based 
on criteria established by the original research groups, in alignment 
with study-specific quality control measures. The choice of traits and 
tissues followed an unbiased procedure, as outlined in the section 
‘Datasets’. The list of SNPs underwent selection procedures detailed 
in the section ‘SNP selection’. All statistical analyses on the chosen set 
of SNPs were performed using R (v.3.5.1) unless specified otherwise. 
The codes to replicate the analyses are publicly available (see ‘Code 
availability’ section).

Datasets
GWAS data. We used publicly available GWAS summary statistics for 
traits in the UKB provided by Ben Neale’s lab (see ‘Data availability’ sec-
tion). We focused on traits with the lower bound of confidence interval 
on SNP heritability estimates exceeding 0.05, and with at least 50 hits 
(with association P < 5 × 10−8) that passed our SNP selection criteria 
(‘SNP selection’). For binary traits we used heritability estimates on 
the liability scale, and further filtered traits with prevalence >0.05. We 
pruned the traits list such that genetic correlation, ρg, was <0.5 for all 
trait pairs in the final list. To this end, we first sorted traits by hit count, 
and then starting from the trait with most hits, iterated through the list 
removing traits with ρg > 0.5 with the focal trait. This procedure resulted 
in the 44 traits listed in Supplementary Table 1. Genetic correlation and 
SNP heritability estimates used for this procedure were downloaded 
from the Neale lab website.

eQTL data. We used eQTLs from the GTEx V8 data that were based on 
analyzing the subset of individuals with European ancestry in the data-
set (‘*EUR.signif_pairs.txt.gz’ files from ‘GTEx_Analysis_v8_eQTL_EUR.
tar’ data; see ‘Data availability’ section) to match the GWAS data. To 
avoid over-representation of brain tissues, for brain-related eQTLs we 
retained those identified in ‘Brain - Cerebellum’ or ‘Brain - Cortex’, which 
have relatively distinct expression profiles among the brain regions68. In 
total, 38 tissues were included and are listed in Supplementary Table 1. 
To match the GWAS data, all genomic coordinates were mapped to the 
hg19 assembly using LiftOver69. In one analysis (Extended Data Fig. 8) 
we also used eQTLs detected: (1) in fetal brain samples by Aygün et al.70, 
(2) at multiple stages of iPS cells differentiation towards neuronal fate 
by Jerber et al.22, and (3) in single-cell analyses of blood cell types by 
Yazar et al.26. In all analyses we selected eQTLs whose target eGenes 
were among 18,332 protein-coding genes (‘Gene selection’).

UK Biobank. We used the UKB resource, specifically for the compu-
tation of allele frequencies, and as an LD reference panel. For these 
purposes, we used quality control (QC) measures provided by UKB 
to select participants for whom their reported gender, ‘Submitted. 
Gender’, matched their ‘Inferred.Gender’ from genotypes; who 
were not identified as heterozygosity outliers (‘het.missing.out-
liers’== 0); did not have an excessive number of relatives in the data  

(‘excess.relatives’== 0) and were not predicted to carry sex chromo-
some aneuploidies (‘putative.sex.chromosome.aneuploidy’==0). We 
further restricted our analysis to individuals identified by the UKB to be 
of ‘white British’ ancestry (‘in.white.British.ancestry.subset’==1) and to 
be unrelated (‘used.in.pca.calculation’==1). A total of 337,123 individuals 
passed these filters and were used for MAF computation. We randomly 
selected 10,000 of these participants as an LD reference panel.

Gene selection
We selected 18,332 genes (Supplementary Table 2) that (1) were anno-
tated as protein-coding and (2) were linked with a HUGO Gene Nomen-
clature Committee (HGNC)-approved gene nomenclature (linked 
with a HGNC ID) in the GENCODE Basic gene annotations (release 39; 
see ‘Data availability’ section). We used the HGNC IDs to link genic 
features from multiple resources to avoid issues with regard to gene 
names mismatching.

SNP selection
For our SNP selection process we started with the list of 13.7 million vari-
ants that passed quality control measures for the UKB analyses released 
by the Neale lab (labeled as ‘imputed-v3 Variant QC’ in the Neale lab 
pipeline). We further applied the following filters: biallelic autosomal 
SNP; MAF > 0.01 among the unrelated white British individuals in the 
UKB (‘Datasets’); polymorphic in the 1000 Genomes Project phase 3 
data (used by A. Price’s lab for LD score regression; see ‘Data availability’ 
section). This yielded 8,136,100 filtered SNPs.

In both GWAS and eQTL data, we first extracted SNPs that were 
among the list of filtered SNPs above. We then performed LD-based 
clumping separately for each trait in the GWAS data, and for each gene–
tissue pair in the eQTL data. To this end, we used plink’s (v.1.90b6.12) 
--clump flag using the same parameters in both data types: P value thresh-
old of 5 × 10−8, LD threshold of r2 = 0.1 and physical distance threshold 
of 1 Mb. The UKB resource was used as the LD reference panel (‘Data-
sets’). We refer to the resulting clumped SNPs as ‘lead SNPs’. To make 
the comparisons between GWAS hits and eQTLs consistent, for both 
sets of lead SNPs, we removed (1) SNPs in LD (r2 > 0.8) with predicted 
protein-truncating or missense mutations (annotated as ‘ptv’ or ‘mis-
sense’ using the Variant Effect Predictor, in the Neale lab data), to con-
dition on SNPs putatively acting through gene regulation, and (2) SNPs 
>1 Mb away from the TSS of any of 18,332 protein-coding genes (‘Gene 
selection’), which are not tested for eQTLs in GTEx. We further removed 
SNPs in the major histocompatibility complex region (chr6:28477797-
33448354). This resulted in 22,119 GWAS hits across traits, and 118,996 
eQTLs across all gene–tissue pairs (Supplementary Tables 3 and 4).

For both the GWAS hits and the eQTLs selected above, we included 
control SNPs in most of our analyses. To this end, similar to our ascer-
tainment procedure for GWAS hits and eQTLs, we extracted 6,971,256 
SNPs (from the 8,136,100 filtered SNPs) that were not among variants in 
LD with predicted protein-truncating or missense mutations (r2 > 0.8), 
were within 1 Mb of the TSSs of the 18,332 protein-coding genes, and 
were not in the major histocompatibility complex region. From this set, 
we randomly sampled 1,000 SNPs for each GWAS hit or eQTL match-
ing for MAF, LD score and gene density (see ‘SNP annotations’ for the 
definitions and matching scheme).

Gene annotations
We compiled a number of genic features from various resources.

Basic annotations. We computed total gene length using genomic 
locations for transcription start and end sites extracted from GENCODE 
Basic annotations (see ‘Data availability’ section). We also retrieved 
total coding sequence length for the longest transcript of genes from 
Ensembl’s BioMart tool (see ‘Data availability’ section). These annota-
tions were used as covariates in our logistic regression models (‘Sta-
tistical methods’).
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Selective constraint. We used pLI and LOEUF (loss-of-function 
observed/expected upper bound fraction) measures of intolerance 
to loss-of-function mutations extracted from gnomAD.v2.1’s pLoF 
metrics by gene data45,67 (see ‘Data availability’ section). Measures 
such as pLI and LOEUF are proxies for selection acting on a gene, and 
do not provide an interpretable measure of selection48. We therefore 
also considered a direct measure of selection, the hs parameter esti-
mated by Agarwal et al.71, which quantifies the fitness cost of losing 
one copy of a gene.

Enhancer features. We considered enhancer–gene links based on two 
different approaches: (1) links inferred by Liu et al. based on correla-
tion of chromatin marks with gene expression50 (see ‘Data availability’  
section), and (2) links predicted based on the activity-by-contact model 
from Nasser et al.51 (see ‘Data availability’ section). In both data, we 
first compiled the union of all enhancer intervals per gene per biosa-
mple. We then computed two features for a given gene: (1) the number 
of biosamples in which the gene is linked with at least one enhancer 
interval (that is, count of active biosamples); and (2) the total length 
of intervals averaged across active biosamples. Genes not present in 
the data were assigned the value 0 for both features.

TSS count. We analyzed promoter regions identified by the FANTOM 
consortium using Cap Analysis of Gene Expression (CAGE)52. We down-
loaded combined hg19 CAGE peaks from FANTOM5 phase 1 and phase 
2 data (see ‘Data availability’ section). For a given gene, we computed 
the number of peaks linked with the gene. Genes not present in the data 
were assigned the value 0.

Connectedness in coexpression networks. We analyzed the  
coexpression networks from Saha et al.53 for 16 tissues in GTEx v6p data 
(available from the GTEx portal; see ‘Data availability’ section). We first 
analyzed each tissue separately, focusing on total expression connec-
tions (‘TE–TE’ edges in the data) between protein-coding genes in the 
transcriptome-wide networks. We used the igraph package (v.1.3.5)72 
in R73 (v.4.1) to rank genes by the number of neighbors they have in the 
tissue-specific networks. In the case of genes having the same number 
of neighbors, we used the sum of absolute weights for all edges linked 
with individual genes to break ties. Genes not present in a network 
were assigned the rank of the last gene in the network plus one. We then 
computed the rank-product of genes (product of the ranks of a given 
gene) across the 16 tissues, to construct a connectedness measure 
(genes with lower rank-product have higher connectedness).

GO annotations. We focused on 577 GO biological process terms with 
at least 400 genes. To this end, we first obtained specific GO terms 
linked with genes using the biomaRt package (v.2.48.3)74 from the  
Bioconductor project (v.3.13) (attribute ‘go_id’). We then used  
these gene–GO links in the topGO package (v.2.44)75 (as the ‘gene2GO’ 
parameter) to extract all genes associated with GO terms (using the 
‘genesInTerm’ function).

Transcription factors. We downloaded a list of 1,639 putative human 
transcription factors from Lambert et al.76 (see ‘Data availability’ 
section).

Connectedness in protein–protein interaction networks. We used 
the Genoppi package (v.1.0.13)77 in R (v.4.1) to retrieve scored InWeb 
protein–protein interaction data (loading the ‘inweb_table’ data)78. We 
then used igraph (v.1.3.5) to compute the number of interactions per 
protein weighted by the interaction confidence scores.

To aggregate data across all resources, we first converted gene 
identifiers (gene symbols or Ensembl gene IDs) to HGNC IDs, and then 
linked all features to the selected 18,332 protein-coding genes. We used 
NCBI’s Gene resources (see ‘Data availability’ section) to link HGNC 

IDs to gene symbols, including the official/recommended symbol as  
well as other used symbols labeled as ‘synonyms’. We used the  
Bioconductor’s biomaRt to link HGNC IDs to Ensembl gene IDs in the 
most recent Ensembl version (v.105) as well as the archived versions.

SNP annotations
We compiled a number of SNP annotations.

MAF. We used the UKB data (‘Datasets’) to compute MAFs within  
unrelated individuals identified as white British.

LD score. We used the ldsc software (v.1.0.1; see ‘Data availability’  
section)79 to compute LD scores using a window size of 1 cM (specified 
with the flag --ld-wind-cm 1). To this end, we used genetic distances (in 
cM) as provided by the Price lab with the ‘baseline (v.1.1)’ LD annotations 
for SNPs in the 1000 Genomes Project phase 3 data (see ‘Data avail-
ability’ section). For the LD reference panel, we used 10,000 randomly 
selected unrelated white British individuals in the UKB (‘Datasets’).

Gene density. For a given SNP, we computed gene density as the num-
ber of protein-coding genes with their TSS falling within the 1-Mb 
window (±500 kb) around the SNP. The TSS coordinates were extracted 
from the GENCODE Basic annotations (‘Gene annotations’).

Closest gene assignment. We linked each SNP to the protein-coding 
gene with the closest TSS to the SNP. Subsequently, all genic features of 
the closest genes were assigned to the SNPs. The TSS coordinates were 
extracted from the GENCODE Basic annotation (‘Gene annotations’).

Overlap with promoter/enhancer elements. We considered two 
sets of putative promoter and enhancer elements: (1) mapped by the 
FANTOM5 consortium using CAGE, and (2) mapped in the phase 3 
of the ENCyclopedia Of DNA Elements (ENCODE) project based on 
epigenetic signatures. We downloaded ‘permissive’ enhancer regions 
and combined promoter regions from FANTOM5 phase 1 and phase 
2 data (see ‘Data availability’ section). In the ENCODE project, epige-
netic signatures and proximity to TSSs were integrated to categorize 
candidate cis-regulatory elements (cCREs) as promoter-like, proximal 
enhancer-like (within 2 kb of nearest TSS), and distal enhancer-like 
(>2 kb away from the nearest TSS) elements. We used ENCODE’s Reg-
istry V2 of cCREs (see ‘Data availability’ section) to download the cor-
responding regions. Regions reported in GRCh38 were mapped to 
hg19 using liftOver. For our analysis in Fig. 5c, we further linked the 
promoter-like regions to nearest TSS conditional on the distance of 
the regions midpoints to TSSs were <1 kb. We constructed indicator 
variables for belonging to all of the above regulatory elements.

Statistical methods
Estimation of mean SNP features. For a given set of SNPs (for exam-
ple, pooled set of all GWAS hits) and for a given feature (for example, 
binary indicator of falling in enhancer elements) we computed mean 
values across all SNPs in the set. For genic features (for example, binary 
indicator of belonging to a given GO annotation) we first linked SNPs to 
genes, and then computed mean feature values corresponding to the 
linked genes over all SNPs. In all analyses we linked SNPs to the genes 
with the closest TSSs, with the exception of Fig. 2c and Extended Data 
Fig. 1 where we also linked eQTLs to their target eGenes.

Bootstrap confidence intervals. We computed bootstrap confidence 
intervals for mean SNP features estimated for pooled set of GWAS hits 
across all traits and pooled set of eQTLs across all tissues. To construct 
bootstrapped samples, we first sampled traits (for GWAS hits) and tis-
sues (for eQTLs) at random with replacement, and concatenated the 
sets of SNPs corresponding with sampled traits and tissues. We then 
sampled with replacement from the set of independent LD blocks 
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(inferred by Berisa et al.80) that contain GWAS hits or eQTLs, and then 
concatenated the sets of SNPs (resulted from the previous bootstrap-
ping step) belonging to the sampled LD blocks. We performed this 
procedure 1,000 times to construct 1,000 bootstrapped samples, and 
computed confidence intervals as the range between 2.5th and 97.5th 
percentiles across all samples.

Control SNPs. For all GWAS hits and eQTLs, we selected control SNPs 
matched for MAF, LD score and gene density. For a given SNP, we 
extracted SNPs (among a total of 6,971,256 SNPs and excluding the focal 
SNP; ‘SNP selection’) (1) with the same gene density as the focal SNP, 
(2) with MAF within 0.02 of the focal SNP’s MAF and (3) with LD score 
within 0.1 s.d. (estimated across all SNPs) of the focal SNP’s LD score. 
We then sampled 1,000 times from this set at random with replacement 
to construct 1,000 instances of control SNPs per SNP of interest. For 
our analyses of individual traits and tissues (for example, shown in  
Fig. 2b), we linked these control SNPs to all SNPs in a set of GWAS hits 
or eQTLs to give 1,000 sets of matched SNPs per trait or tissue. We then 
used the distribution of genic features across these matched sets to 
compute z-scores (‘Analyses of individual traits and tissues’). For our 
analyses of the pooled set of GWAS hits (across all traits) and the pooled 
set of eQTLs (across all tissues), we paired each instance of sampled 
control SNPs to each bootstrapped sample described above, forming 
1,000 sets of bootstrapped matched SNPs. For all gene or SNP features 
studied (for example, Figs. 2a and 5a), we computed and report mean 
values and confidence intervals (as the range between 2.5th and 97.5th 
percentiles) across these bootstrapped samples.

Computing P values. For a number of analyses we report P values 
comparing genic or SNP features of GWAS hits (pooled across traits) 
or eQTLs (pooled across tissues) and their corresponding control 
SNPs. Specifically, for each bootstrapped sample described above, we 
computed the difference in features between GWAS hits or eQTLs and 
matched SNPs. Assuming that the difference values are normally dis-
tributed, we utilized the distributions across 1,000 bootstrapped sam-
ples to compute z-scores as the mean values divided by the standard 
deviations. Subsequently, we calculated the P values using a two-tailed 
test. No adjustments were made for multiple comparisons. For com-
paring the enrichment of GWAS hits or eQTLs in different gene sets, 
specifically the top versus the bottom quantile of connectedness in 
Fig. 3d and genes with high versus low number of linked GO terms in 
Fig. 4c, we computed P values based on the distribution of difference 
values as: (enrichment in gene set with high feature value relative to 
matched SNPs) − (enrichment in gene set with low feature value rela-
tive to matched SNPs).

Gene comparison analysis using logistic regression. In Fig. 3b, we 
jointly considered the effect of multiple genic features in classifying 
GWAS hits or eQTLs from random SNPs. To this end, we constructed an 
indicator variable for GWAS hits or eQTLs (labeled 1s) versus 100,000 
SNPs chosen at random from the full set of 6,971,256 SNPs (labeled 0s). 
We then used a logistic regression framework to predict this indicator 
variable using the genic features of interest. Genic feature values were 
normalized. We included the following covariates in the regression: 
MAF, LD score, gene density, absolute distance to nearest TSS, total 
gene length, total length of gene coding sequence, as well as dummy 
variables for 20 quantiles of MAF, LD score, gene density and absolute 
distance to the nearest TSS. We used the same logistic regression frame-
work in Extended Data Fig. 3 but with different gene-level measures 
relating to selective constraint as predictors (one at a time).

Analyses of individual traits and tissues. In Figs. 2b and 4a we studied 
gene features separately for individual traits and tissues. For a given 
feature (for example, proportion of SNPs that are near high-pLI genes), 
we computed mean values for the sets of GWAS hits for individual traits 

and eQTLs for individual tissues. We also computed mean feature  
values in sets of matched SNPs (1,000 sets of SNPs for each set of GWAS 
hits and eQTLs; ‘Control SNPs’), and used the distributions to compute 
(1) enrichment values as the estimated values for GWAS hits or eQTLs 
divided by the matched samples mean, and (2) z-scores as the matched 
samples mean subtracted from the estimated values for GWAS hits or 
eQTLs divided by the matched samples standard deviation. For these 
analyses we report z-score thresholds corresponding to the Bonferroni 
correction for multiple testing. In Fig. 2b we analyzed 82 traits and tis-
sues corresponding to a multiple testing correction P value threshold 
of 0.05/82 = 6.1 × 10−4, and a z-score threshold of 3.43. The analysis in 
Fig. 4a is based on 577 GO terms (see below) for 82 traits and tissues, and 
thus the conservative P value threshold for multiple testing correction 
is 0.05/(577 × 82) = 1.1 × 10−6, corresponding to a z-score threshold of 
4.88. We also report the z-score threshold corresponding to a 5% false 
discovery rate computed using the qvalue package (v.2.24) in R (v.4.1)81.

Analyses of eQTLs by rank. For the analysis in Fig. 2c we grouped 
eQTLs by their rank based on association strengths (P values) in indi-
vidual tissues. To this end, in all 38 tissues, we first bin ranked eQTLs by 
association P values in groups of 1,000 eQTLs: first top 1,000 eQTLs as 
group 1, second top 1,000 eQTLs as group 2 and so on. We then pooled 
eQTLs across tissues by the ranked bins.

Selection of broadly unrelated GO terms. In Fig. 4a we show enrich-
ment z-scores for GWAS hits and eQTLs across gene sets associated 
with 41 GO terms. GO terms are hierarchical and thus interdependent. 
We selected these 41 terms by pruning 577 GO biological process terms 
(‘Gene annotations’) to give a set of broadly unrelated terms while 
retaining those relevant to the traits and tissues studied here. To this 
end, we first determined enrichment z-scores for all 577 terms (Sup-
plementary Table 7). Then, we selected the top term (the most enriched 
or depleted) for each tissue and trait, conditioning on GO terms with 
<3,000 associated genes. This gives 52 unique terms. We then pruned 
this set as follows: we sorted terms by the count of associated genes in 
an ascending order, and iterated over terms starting with the term with 
the least number of genes. At each iteration, we retained the focal term 
if gene associations with that term could not be well-predicted from the 
previously included terms, defined as the area under the receiver operat-
ing characteristic curve (AUC) value of <0.75 estimated using penalized 
logistic regression (as implemented in the glmnet package (v.4.1-3) in 
R (v.4.0.2) using the ‘cv.glmnet’ function for cross-validation82) over all  
protein-coding genes. This gives 27 broadly unrelated terms. Using 
the same procedure, we built upon this set by iterating over the rest of 
the terms that were not among the top terms with respect to GWAS hit 
or eQTL enrichments, resulting in 41 terms (Supplementary Table 6).

Analysis of non-GTEx eGenes. In Extended Data Fig. 8, we analyzed 
eGenes identified (1) in fetal brain samples by Aygün et al.70, (2) at mul-
tiple stages of iPS cell differentiation towards neuronal fate by Jerber 
et al.22 and (3) in single-cell analyses of blood cell types by Yazar et al.26. 
For each sample, we computed the proportion of high-pLI genes among 
the eGenes. We then sampled the same count of genes as eGenes, 
10,000 times at random from the set of all protein-coding genes. We 
computed the proportion of high-pLI genes in each set of random genes 
and used the distributions to compute (1) enrichment values as the 
estimated values for eGenes divided by the random samples mean and 
(2) z-scores as the random samples mean subtracted from the estimated 
values for eGenes divided by the random samples standard deviation. 
For comparison, we performed the same procedure for GTEx eGenes 
in brain and whole blood tissues.

Modeling variant discovery
Here we provide additional modeling details and describe how we 
derived the discovery regions for GWAS and eQTL assays (Fig. 6).

http://www.nature.com/naturegenetics
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Effect of selection. A quantitative treatment of the role of selection 
is beyond the scope of this paper: it requires knowledge of the joint 
distributions of variant effects on gene expression (β), genic effects on 
phenotypes (γ) and allele frequency (p) as a function of the selection 
strength on the phenotype. We make simplistic assumptions to illus-
trate the qualitative effect of selection on variant discovery in GWAS 
and eQTL assays. In the Supplementary Note (Supplementary Figs. 
14–21) we show that our key qualitative results are robust to modeling 
assumptions and choices of parameters, and discuss the challenges of 
quantitative analyses in more detail.

Under a neutral model, the effect sizes and allele frequencies 
are independent. Thus for a given pair of (β, γ) values, the expected  
contribution of variants to phenotypic variance E[2p(1 − p)β2γ2∣β, γ,  
neutrality] = E[Vp∣neutrality]β2γ2 ∝ β2γ2 (Extended Data Fig. 7a), where 
we defined Vp = 2p(1 − p) as the variance in allele frequency. Under 
selection, E[Vp∣β, γ, selection] is negatively correlated with β2γ2, such 
that E[Vp∣β, γ, selection] < E[Vp∣β, γ, neutrality]. Therefore, the expected 
contribution of variants to phenotypic variance increases more slowly 
with phenotypic effect size under selection compared with the neutral 
case (Extended Data Fig. 7a); that is, selection has a ‘flattening’ effect. 
This is supported by empirical evidence43,83, as well as modeling work 
on the effect of selection on genetic architecture of complex traits44.

Our key insights on the effect of selection on variant discovery in 
GWAS and eQTL assays are based on the qualitative considerations 
discussed above, and hold regardless of how the negative correlation 
between allele frequency and effect size is formulated. Nevertheless, 
to illustrate the qualitative effect of selection, we used an  
asymptotic exponential form to describe the relationship 
E[Vpβ

2γ2|β, γ] ∝ κ(1 − e−β
2γ2/κ)  (Extended Data Fig. 7a). In the main text  

we set κ = 2.986; under this model, and drawing β and γ effects from 
independent standard Normal distributions, such a κ reduces E[Vp] 
compared with the neutral case by ~10%. We show in Supplementary 
Figs. 14–20, that as long as E[Vp∣β, γ, selection] decreases with increas-
ing phenotypic effect size, that is, β2γ2, our qualitative conclusions are 
robust to (1) the mathematical form describing the relationship 
between expected phenotypic variance and effect size, (2) the magni-
tude of the relative reduction in phenotypic variance due to selection 
compared with neutrality, and (3) the underlying joint distribution of 
effects, β and γ.

Estimation of discovery regions using simulations. Given a GWAS 
or eQTL assay discovery threshold, c* as defined in the main text, the 
power to discover a given variant depends on its β, γ and E[Vp∣β, γ].  
The previous section describes E[Vp∣β, γ] for a given (β, γ) pair (under 
selection or neutrality). Therefore, in principle, discovery regions can 
be solved for sets of β and γ values that satisfy E[Vp|β, γ]β2 > c∗eQTL  for 
eQTLs, and E[Vp|β, γ]β2γ2 > c∗GWAS for GWAS hits.

For discovery regions in Fig. 6, to focus on differences between 
GWAS and eQTL assays that are due to basic features of these 
approaches rather than power, we set the c∗eQTL and c∗GWAS thresholds 
such that under our modeling choices the same fraction of causal SNPs 
is discovered in either assay. For illustrative purposes, we set the power 
thresholds at 15% on par with rough estimates of discovery power at 
current samples sizes (Supplementary Note). (In Extended Data Fig. 9 
and Supplementary Fig. 22 we vary the discovery threshold to mimic 
the effect of increasing sample size.) To this end, modeling β and γ 
effects to be independent and normally distributed, we first sampled 
10 million pairs of (β, γ) ~ N(0, I2). For each pair we computed (1) the 
expected contribution to variance in phenotype, E[Vp∣β, γ]β2γ2, and  
(2) the expected contribution to variance in expression, E[Vp∣β, γ]β2, 
taking E[Vp∣β, γ] values based on the exponential equation described 
in the previous section for the selection scenario, and equal to 1 for the 
neutral scenario (the ranking of variants is invariant to the scaling of 
E[Vp]). For each of the four distributions (that is, variance in phenotype 
and expression, in the presence or absence of selection) we computed 

the discovery threshold, c*, as the 85th percentile of the distribution. 
To plot the regions delineated by these c* values, we specified a grid of 
β and γ values from 0 to 3.84 (corresponding to the 95th percentile of 
γ2 and β2 ~ χ2(1)), with 0.0025 increments. For each pair of (β, γ) we 
computed expected contributions to variance in phenotype and 
expression as described above for the 10 million random pairs. We then 
identified the regions on the grid with values greater than c*. The bor-
ders of the regions were smoothed using the loess function in R (v.4.1), 
applied to points on the grid between the 84.9th and 85.1th percentiles 
of the distributions of variance in phenotype or expression used to 
determine each c*. We show in Supplementary Figs. 14–20 that the 
discovery lines are qualitatively similar under different distributions 
of effects, β and γ, and selection models.

Dependence of discovery thresholds on sample size. In this section, 
we derive the dependence of discovery thresholds on assay sample size, 
n, and other basic parameters. We consider a simple linear regression 
model, estimating the effect of a single SNP, β, on a quantitative phe-
notype Y (a gene’s expression level or a complex trait):

Y = Gβ + ϵ,

where G is the genotype, and ϵ ∼ N(0,σ2ϵ ) is the noise term capturing  
the effect of environment as well as other causal SNPs (genetic back-
ground). In ordinary least squares regression, the effect estimate β̂, is 
normally distributed with expectation E[β̂] = β. The variance of β̂ is:

Var[ β̂] = Var[ϵ]
nVar[G] ≈

Var[Y ]
nVar[G] ,

where we made the assumption that the contribution of individual 
SNPs to phenotypic variance is small such that Var[ε] ≈ Var[Y]. Now 
the effect is deemed significant if the squared z-score is large enough:

χ2 = nβ̂2Var[G]
Var[Y ] > χ2c ,

where χ2c is the significance threshold. (The conventional GWAS thresh-
old of P = 5 × 10−8 corresponds to χ2c = 29.7.) By definition, c* is the criti-
cal value such that for discovered variants Var[G]β2 = 2p(1 − p)β2 > c*. 
Now, this condition is in expectation satisfied if c∗ ∶= χ2cVar(Y )/n.

Also, defining h2
SNP ∶=

β2Var[G]
Var[Y]

 as the fraction of trait variance 

explained by the SNP effect, discovered variants in expectation 
satisfy:

h2
SNP > χ2c/n.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data generated by or processed for this study can be found in 
Supplementary Tables, on Zenodo with https://doi.org/10.5281/
zenodo.6618073 (ref. 84), and on GitHub (https://github.com/
hakha-most/gwas_eqtl) with https://doi.org/10.5281/zenodo.8330029 
(ref. 85). Public data used in this study are accessible via URLs cited at 
appropriate locations in the Methods, as listed: Neale lab UKB data: 
http://www.nealelab.is/uk-biobank GTEx data: https://gtexportal.
org/home/datasets; NCBI’s gene_info file: https://ftp.ncbi.nih.gov/
gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz;  
GENCODE Basic annotations: https://www.gencodegenes.org/human/
release_39lift37.html; Ensembl’s BioMart: http://uswest.ensembl.org/
biomart/martview; gnomAD: https://gnomad.broadinstitute.org/
downloads; ABC enhancer–gene links: https://www.engreitzlab.org/
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resources; Liu et al.’s enhancer–gene links: https://ernstlab.biolchem.
ucla.edu/roadmaplinking; FANTOM5 promoters: https://fantom.gsc.
riken.jp/5/datafiles/latest/extra/CAGE_peaks; FANTOM5 enhancers: 
https://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers; Tran-
scription factors: http://humantfs.ccbr.utoronto.ca; ldsc software: 
https://github.com/bulik/ldsc; LD annotations: https://alkesgroup.
broadinstitute.org/LDSCORE; ENCODE cCREs: https://screen-v2.
wenglab.org.

Code availability
Codes used to process and analyze GWAS and eQTL data are available 
on GitHub (https://github.com/hakha-most/gwas_eqtl) with https://
doi.org/10.5281/zenodo.8330029 (ref. 85).
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Extended Data Fig. 1 | Genes closest to eQTLs versus eGenes. (A) Fraction of 
eQTLs for which the target eGene is also the gene with the closest TSS, as a 
function of eQTL association p-value. Error bars show ± 2 standard errors 
computed as √2f(1− f )/M , where f is the estimated fraction, and M is the 
number of eQTLs per p-value group. In the p-value groups shown, from left to 
right, there are 50,859, 45,650, 11,246, 4,781, 2,575, and 3,885 eQTLs, respectively. 
The dashed line shows the mean value of 0.52 across all eQTLs. (B) Same as Fig. 2a, 
but with different gene assignments to eQTLs (N=118,996). Fraction of eGenes 

linked to eQTLs (green), or closest genes to eQTLs (red), or closest genes to 
control SNPs matched for MAF, LD score and gene density (light red) with high 
pLI (pLI > 0.9, a measure of selective constraint). Error bars corresponding to 
eQTL properties (red and green points) show 95% confidence intervals as 
determined by quantile bootstrapping. For matched SNPs (light red), points and 
error bars show mean values and 95% confidence intervals in 1000 sampling 
iterations.
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Extended Data Fig. 2 | Basic variant-level differences between GWAS hits and eQTLs. Distribution of minor allele frequency (MAF), linkage disequilibrium (LD) 
score and gene density for 118,996 eQTLs (red), 22,119 GWAS hits (blue), and 100,000 randomly chosen variants. LD score values are cut at 1000 for clarity.
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Extended Data Fig. 3 | GWAS and eQTL genes are under different selective 
constraints: robustness to gene-level measures of selective constraints. 
Logistic regression coefficients corresponding with different gene-level 
measures of selection for predicting GWAS hits (N=22,119) or eQTLs (N=118,996) 
versus random SNPs (N=100,000) after adjusting for confounders (see 
Methods). Results are plotted as regression coefficients on the original data with 

error bars showing the 2.5th and 97.5th percentile over 1000 bootstrap samples. 
The measures of selection are pLI and LOEUF from the gnomAD study45,67, and 
hs estimates from Agarwal et al.71. Lower LOEUF values correspond to higher 
selective constraints, therefore we used -LOEUF values to match other measures, 
such that higher values mean higher constraint levels.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | GWAS and eQTL genes have different enhancer 
architectures. Same as Fig. 3b, but using enhancer-gene links predicted by the 
activity-by-contact (ABC) model from Nasser et al.51 (Methods). For a given gene, 
we computed (i) the number of biosamples in which a gene has an enhancer, and 
(ii) the average total enhancer length (in base pairs) across active biosamples. 

Shown are logistic regression coefficients corresponding with the two enhancer 
features for predicting 22,119 GWAS hits (blue) and 118,996 eQTLs (red) versus 
100,000 random variants after adjusting for confounders (Methods). Results are 
plotted as regression coefficients on the original data with error bars showing the 
2.5th and 97.5th percentile over 1000 bootstrap samples.
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Extended Data Fig. 5 | Contribution of transcription factors (TFs) in Gene 
Ontology (GO) annotations and their enrichment in GWAS and eQTL genes. 
(A) Proportion of TFs in 41 GO biological processes shown in Fig. 4a. (B) Same 
as Fig. 4a, but now excluding TFs from all 41 gene categories before computing 
enrichment values among GWAS and eQTL genes. Traits and tissues (x-axis) 
are sorted by hit count (decreasing from left to right), and GO terms (y-axis) 

are sorted by the mean pLI value of associated genes (before removing TFs, 
replicating the ordering in Fig. 4a). For each trait- or tissue-GO term pair we 
computed enrichment z-scores based on 1000 sampling iterations of variants 
matched for MAF, LD score, and gene density (see Methods). The color map 
represents enrichment (green) or depletion (magenta) of a given gene set among 
GWAS or eQTL genes. See Fig. 4a for additional details.
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Extended Data Fig. 6 | Multi-functionality of highly interacting genes in 
protein-protein interaction (PPI) networks and their enrichment in GWAS 
genes. (A) Proportion of genes in bins ranked by the number of interactions in 
the InWeb PPI network77 that are among the top multi-functional genes (defined 
as top 20% of genes ranked by the count of Gene Ontology (GO) terms they 
belong to, see Methods). Error bars show 2 standard errors. 16,510 genes with an 
assigned PPI degree are evenly split into the 5 gene bins shown. (B) Fraction of 

GWAS and eQTL genes in gene bins ranked by the number of interactions in the 
InWeb PPI network. For GWAS hits and eQTLs, error bars show 95% confidence 
intervals as determined by quantile bootstrapping over 1000 sampling 
iterations. For matched variants (for MAF, LD score and gene density, shown 
in light blue and red colors), points and error bars show mean values and 95% 
confidence intervals in 1000 sampling iterations. See Supplementary Table 5 for 
the counts of genes in each bin shown.
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Extended Data Fig. 7 | Effect of selection on variants contribution to variance 
in phenotype and gene expression. (A,B) As described in the main text, we 
consider a model of phenotypic effects mediated by effects on gene expression 
intermediates: a genetic variant affects the expression of the target gene with 
effect β, and the gene expression intermediate affects the downstream 
phenotype with effect size γ. (A) Contribution to phenotypic variance. Under a 
neutral model, contribution to phenotypic variance, E[2p(1 − p)]β2γ2, is 
proportional to phenotypic effect, β2γ2, as effect size and allele frequency are 
uncoupled. Selection keeps higher effect variants at lower frequencies (that is, 

lowering E[2p(1 − p)]) and thus “flattens" the expected contribution to variance. 
The red line shows a flattened curve taking E[2p(1− p)β2γ2|β, γ]∼ κ(1− e−β2γ2 /κ), 
with κ = 2.986 (Methods). (B) Contribution to variance in gene expression. Similar 
to the argument in (A), under neutrality, contribution to variance in gene 
expression, E[2p(1 − p)]β2, is proportional to the effect on expression, β2. Under 
selection, flattening (that is, lowering of E[2p(1 − p)]) is more pronounced for 
variants regulating high-effect (that is, high γ2) genes. Red lines show trends for 
four quantiles of γ2, where γ ~ N(0, 1); darker colors show higher γ2 values. See 
Methods for modeling details.
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Extended Data Fig. 8 | Depletion of selectively constrained genes among 
non-GTEx eGenes. The factors we described against the discovery of trait-eQTLs 
likely bias eQTL assays in any context. As proof of concept, we show that similar 
to GTEx eGenes, eGenes identified in non-conventional eQTL assays are also 
depleted of strongly selected genes. (A) Enrichment of high pLI genes in eGenes 
identified (i) in fetal brain samples by Aygün et al.70, (ii) at multiple stages of 
iPS cells differentiation towards neuronal fate by Jerber et al.22 and (iii) in GTEx 
brain tissues. Sample labels for Jerber et al. refer to different ascertained cell 
types, at different days of differentiation, and in the presence or absence of 
stimulation by rotenone (ROT). Cell labels for Jerber et al.: Astro, astrocyte-like; 
DA, dopaminergic neuron; epen1, ependymal-like 1; FPP, floor plate progenitors; 
prolif. FPP, proliferating floor plate progenitors; sert, serotonergic-like neuron; 

D11, day 11 of differentiation; D30, day 30; D52, day 52. (B) Enrichment of high pLI 
genes in eGenes identified in (i) single-cell analyses of blood cell types by  
Yazar et al.26 and (ii) GTEx whole blood. Sample labels for Yazar et al. refer to 
different blood cell types: : B_IN, immature and naive B cell; B_Mem, memory 
B cell; CD4_ET, CD4+ effector memory and central memory T cell; CD4_NC, 
CD4+ naive and central memory T cell; CD4_SOX4, CD4+ SOX4 T cell; CD8_ET, 
CD8+ effector memory T cell; CD8_NC, CD8+ naive and central memory T cell; 
CD8_S100B, CD8+ S100B T cell; DC, dendritic cell; Mono_C, classical monocyte; 
Mono_NC, non-classical monocyte; NK, natural killer cell; NK_R, natural killer cell 
recruiting; Plasma, plasma cell. Enrichment values (on the x-axis) and z-scores 
(on the y-axis) were computed based on values observed in 10,000 sampling 
iterations of random genes (Methods).
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Extended Data Fig. 9 | Effect of eQTL assay sample size on discovery. Same as Fig. 6B, but with three eQTL discovery thresholds corresponding to different sample 
sizes. The discovery thresholds are derived by setting the power rate to 15% for GWAS under the assumptions detailed in the Methods section, and to 10%, 15% and  
20% for eQTLs.
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