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Fine-mapping type 2 diabetes loci to single-variant 
resolution using high-density imputation and 
islet-specific epigenome maps
We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals  
(9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk  
variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discov-
ery of lower-frequency risk alleles (80 index variants with minor allele frequency <​5%, 14 with estimated allelic odds ratio >​2); 
(iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >​80% posterior probability 
of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory 
annotations extend the number of variants with PPA >​80% to 73); (v) highlight validated therapeutic targets (18 genes with 
associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide 
chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold 
in prevalence).

Array-based genome-wide association studies (GWAS) have 
identified ~140 loci influencing the risk of T2D1–3. Follow-up 
of these genetic discoveries has been compromised by the 

incomplete coverage of the most frequently used genotyping arrays, 
the imperfect performance of the reference panels available for 
imputation, extensive local linkage disequilibrium (LD), and inad-
equate sample sizes. These factors together have limited the power 
to detect low-frequency alleles with population-scale effects, to 
deliver clinically relevant risk prediction, and to define molecular 
mechanisms involved in disease predisposition. Here, we address 
the limitations of previous studies by combining GWAS from 
~900,000 Europeans with dense, high-quality imputation, produc-
ing the most comprehensive view to date of the genetic contribution 
to T2D with respect to locus discovery, causal-variant resolution, 
and mechanistic insight.

Results
Study overview. We combined data from 32 GWAS, including 
74,124 T2D cases and 824,006 controls of European ancestry. The 
effective sample size (Neff) of 231,436 represents a 3.2-fold increase 
in Neff relative to the largest previous genome-wide study of T2D 
risk in Europeans1. After harmonized quality control, 31 of the 
32 GWAS were imputed using 64,976 whole-genome-sequenced 
haplotypes from the Haplotype Reference Consortium (HRC)4: 
the exception was the deCODE GWAS, which was imputed with 
a population-specific reference panel of 30,440 Icelandic haplo-
types5 (Methods and Supplementary Table 1). We conducted T2D-
association analyses with and without adjustment for body-mass 
index (BMI).

Discovery of novel loci for T2D susceptibility. We tested for T2D 
association with ~27 million variants passing quality-control filters, 
~21 million of which had a minor allele frequency (MAF) <​5%. 
Our meta-analysis identified variants at 231 loci reaching genome-
wide significance (P <​ 5 ×​ 10−8) in the BMI-unadjusted analysis (Neff 
231,436) and 152 in the smaller (Neff 157,401) BMI-adjusted analy-
sis. Of the 243 loci identified across these two analyses, 135 mapped 

outside regions previously implicated in T2D risk (Methods, Fig. 1 
and Supplementary Table 2).

Among samples not included in previous discovery efforts 
(42,734 cases and 497,261 controls), we replicated associations 
(directionally consistent, P <​ 0.05) at 126 of 140 previously reported 
T2D loci, including all 106 regions first discovered in European-
only or transancestry efforts3,6–8 and 20 initially reported in stud-
ies of non-European individuals9,10. The 14 loci not replicated were 
all first identified in non-European-ancestry samples: at five, the 
reported lead variant had MAF <​1% in Europeans.

Multiple association signals at T2D-susceptibility loci. Across the 
243 associated loci, we identified 160 additional signals at ‘locus-
wide’ significance (P <​ 10−5; Methods), 110 of which were within 
previously reported T2D loci. Overall, we observed one signal at 151 
loci, and two to ten signals at the remaining 92 loci (Supplementary 
Table 2), for a total of 403 distinct T2D-association signals.

We observed the first evidence for multiple signals at the 
TCF7L2 locus. In addition to rs7903146, the largest-effect com-
mon-variant signal for T2D in Europeans, we detected seven sec-
ondary signals, each represented by noncoding index variants 
(0.5% <​ MAF <​ 47.6%, 1.05 <​ odds ratio (OR) <​ 1.36).

In the ~1-Mb telomeric region of chromosome 11 that 
encompasses the (previously annotated) INS–IGF2 and KCNQ1 
loci, we detected 15 distinct signals (0.15% <​ MAF <​ 42.8%, 
1.03 <​ OR <​ 1.68). This multiplicity of signals in a region notable for 
complex imprinting effects, and several strong biological candidates 
(INS, IGF2, KCNQ1, and CDKN1C), illustrates a previously unrec-
ognized degree of complexity in the risk-variant architecture at  
this locus.

The effects of BMI and sex. At most T2D loci, there were only 
minimal differences in the estimated T2D effect sizes between BMI-
adjusted and unadjusted models (Methods and Fig. 2). However, at 
index SNPs for 41 signals (mapping to 21 known and 16 novel loci), 
we observed significant differences in effect sizes between BMI-
adjusted and unadjusted analyses (Pdiff <​ 0.00012, corrected for 403 
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Fig. 1 | Manhattan plots of the sex-combined BMI-unadjusted and BMI-adjusted meta-analysis for T2D. a, Manhattan plot (top) of genome-wide-
association results for T2D without BMI adjustment (BMI adj.) from meta-analysis of up to 71,124 cases and 824,006 controls. The –log10-transformed 
two-tailed P value for each SNP obtained from inverse-variance-weighted fixed-effects meta-analysis (y axis) is plotted against the genomic position 
(NCBI Build 37; x axis). Novel association signals that reached genome-wide significance (P <​ 5 ×​ 10−8) are shown in purple. b, Manhattan plot (bottom) of 
genome-wide-association results for T2D with BMI adjustment from meta-analysis of up to 50,409 cases and 523,897 controls. Novel association signals 
that reached genome-wide significance (P <​ 5 ×​ 10−8) only in the BMI-unadjusted analysis are shown in orange.

variants; Methods, Supplementary Table 3 and Fig. 2). This effect-
size heterogeneity followed two distinct patterns. At 26 signals, 
including index variants for signals at the FTO, MC4R, TMEM18, 
SEC16B, and GNPDA2 loci, BMI adjustment produced marked 
attenuation of associations detected in unadjusted analysis. These 
signals displayed positive correlations between BMI and T2D effect 
sizes and represented T2D-risk effects driven primarily by adipos-
ity. The other 15 signals were more strongly associated in the BMI-
adjusted analysis and reflected a mixture of associations, some with 
a marked effect on insulin secretion (for example, TCF7L2, ARAP1, 
and JAZF1), and others likely to influence T2D risk through a 
decreased capacity for fat storage in peripheral adipose tissue11  
(for example, GRB14, PPARG, HMGA1, and ZNF664).

In a comparative analysis of T2D effects in males (41,846 cases 
and 383,767 controls) and females (30,053 T2D cases and 434,336 
controls; Methods)12, only one of the 403 T2D signals showed signifi-
cant (Pdiff <​ 0.00012) differences in effect size (rs2925979 near CMIP, 
female OR =​ 1.09, male OR =​ 1.03, Pdiff =​ 8.3 ×​ 10−6; Supplementary 
Fig. 1 and Supplementary Table 4). We observed nominally signifi-
cant differences at several other loci, including KLF14 (rs1562396, 
female OR =​ 1.09, male OR =​ 1.04, Pdiff =​ 0.00048), at which there is 
additional corroboration for sex-specific effects13,14, thus indicating 
that additional examples of sex-differentiated signals are likely to be 
found in larger samples.

Fine-mapping variants driving T2D-association signals. Previous 
efforts to fine-map causal variants within T2D loci have been ham-
pered by both biological (extensive LD) and technical (diverse 
genotyping scaffolds or incomplete reference panels) factors. We 
sought to establish the extent to which the combination of increased 
sample size, an enlarged reference panel, and harmonized variant 
quality control would enhance fine-mapping resolution. We were 
able to undertake fine-mapping for 380 of the 403 distinct T2D-
association signals, after conditional decomposition of loci with 
multiple signals (Methods). For each, we constructed credible 
sets that collectively accounted for ≥​99% of the PPA (Methods)15. 
These credible sets included a median of 42 variants (range 1–3,997; 
Supplementary Fig. 2) and spanned a median of 116 kb (range 
1 bp–995 kb). At 51 signals, involving 44 loci (18 novel), the most 
strongly associated variant accounted for >​80% PPA (Fig. 3 and 

Supplementary Table 5). At 18 signals, the credible set included a 
single variant (PPA >​99%).

We explored the fine-mapping resolution at 83 distinct signals for 
which detection in both studies allowed us to compare 99%-cred-
ible sets from the HRC-based analysis with those constructed in a 
subset of these T2D GWAS imputed by the 1000 Genomes Project 
(1000G) multiancestral reference panel1 (26,676 T2D cases; 132,532 
controls of European ancestry, Neff 72,143). Although the former 
includes 2.3-fold more variants genome wide than the latter, the 
HRC-imputed analysis resulted in smaller credible sets. The median 
number of variants at these 83 signals decreased from 59 to 10, and 
the interval length decreased from 60.3 kb to 19.2 kb. At 79 of 83 sig-
nals, HRC-based credible sets were either smaller than those gener-
ated from 1000G or unchanged (Fig. 4 and Supplementary Table 6).

This improved resolution probably reflects the combination of 
(i) increased Neff; (ii) improved imputation quality, especially for 
lower-frequency variants4; and (iii) more effective, harmonized, 
quality control across contributing studies (Methods). To estimate 
the contribution to fine-mapping resolution attributable to the 
increase in Neff (the other factors are more difficult to tease apart), 
we constructed 99%-credible sets by downscaling the HRC imputa-
tion to a subset of 19 studies (31,387 cases and 326,742 controls, Neff 
92,960) that contributed to both 1000G and HRC-based analyses. 
Among 41 single signal loci with P <​ 1 ×​ 10−5 in this downscaled 
meta-analysis, estimates of the credible-set size (median 66) and 
interval (median 196 kb) indicated that the improvements in causal-
variant resolution derived mostly from increased sample size.

The HRC panel provides excellent coverage of all but very 
rare single-nucleotide variants. However, one HRC limitation is 
the absence of indels, which constitute 4% of total variants in the 
phase 3 1000G reference panel16. We considered the 245,207 indels 
from the European subset of the 1000G panel that mapped within 
500 kb of the index variants at the 380 fine-mapped signals: these 
accounted for 2.8% of variants across the 380 Mb of sequence. Only 
1% of these were in even moderate LD (r2 >​0.5) with index variants 
for each T2D-association signal, thus indicating that indel omission 
probably had a limited effect on our estimates of credible set size.

The contribution of lower-frequency variants. The limited yield 
of low-frequency and rare-variant signals in previous T2D GWAS 
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placed an upper bound on their individual and collective contri-
butions to disease risk17. The present analysis, with a larger sample  
size and improved imputation, provided greater power in this 
regard, identifying 56 low-frequency and 24 rare T2D-associated 
variants across 60 loci (Fig. 5). Six of these 80 signals mapped 
within known T2D loci, and five reconfirmed earlier observations 
(Supplementary Table 2).

The allelic OR for low-frequency and rare variants ranged from 
1.08 to 8.05 (including 14 with estimated allelic OR >​2; at each, 
the minor allele conferred T2D risk), compared with 1.03–1.37 for 
common variants (Fig. 5). The 80 lower-frequency risk variants 
cumulatively explained 1.1% of phenotypic variance in T2D, com-
pared with 16.3% attributable to the 323 common-variant signals 
(Methods). Extrapolation beyond these discovered signals to esti-
mate the full contribution of lower-frequency variants to T2D risk 
is intrinsically difficult, given the combination of effect-size over-
estimation and limited power to capture lower-frequency variants 
of lesser effect. Nonetheless, these data are consistent with recently 
proposed models for the genetic architecture of T2D based on 
GWAS and sequencing data17. Notwithstanding, the identification 
of lower-frequency variants with modest-to-large effects can pro-
vide valuable biological inference. Below, we briefly describe some 
of these signals.

We observed a mix of common-variant and low-frequency-vari-
ant signals around NEUROG3, including T2D risk attributable to the 
minor alleles at rs41277236 (p.Gly167Arg, MAF =​ 4.3%, OR =​ 1.09, 
P =​ 1.5 ×​ 10−6) and rs549498088 (noncoding, MAF =​ 0.60%, 
OR =​ 1.56, P =​ 4.7 ×​ 10−7). NEUROG3 encodes the neurogenin-3 
transcription factor, which has been implicated in pancreatic 
islet and enteroendocrine cell development18. Rare homozygous, 
hypomorphic missense mutations in NEUROG3 (nonoverlap-
ping with those that we detected) are a cause of childhood-onset 
diabetes associated with severe malabsorptive diarrhea19. The age 

of T2D diagnosis among carriers of these low-frequency T2D-risk 
alleles was, in the UK Biobank, similar to that among noncarriers 
(rs41277236: 52.3 versus 52.7 years, P =​ 0.21; rs549498088: 51.1 versus 
52.7 years; P =​ 0.49), indicating a spectrum of phenotypes associ-
ated with NEUROG3 variants that extends to typical T2D. In the 
UK Biobank, T2D-risk alleles at NEUROG3 were associated with 
phenotypes recapitulating the gastrointestinal component of the 
neonatal syndrome (including ‘obstruction of bile duct’ (OR =​ 1.29; 
P =​ 0.023), ‘gastrointestinal complications’ (OR =​ 1.79; P =​ 0.024), 
and ‘functional digestive disorders’ (OR =​ 1.06; P =​ 0.027)).

We detected two previously unreported rare alleles with large ORs. 
The first was intronic to DENND2C (rs184660829, MAF =​ 0.020%, 
OR =​ 8.1, P =​ 2.5 ×​ 10−8). In exploratory analyses within UK 
Biobank, the T2D-risk allele was associated with ‘lower gastroin-
testinal congenital anomalies’ (OR =​ 17.3 P =​ 0.00047). The second 
allele mapped near KIF2B (rs569511541, MAF =​ 0.020%, OR =​ 7.6, 
P =​ 1.5 ×​ 10−8) and was also associated with ‘congenital anomalies 
of endocrine gland’ (OR =​ 30.8; P =​ 0.00015), ‘disease of pancreas’ 
(OR =​ 5.9; P =​ 0.0017), and ‘hypokalemia’ (OR =​ 6.9; P =​ 0.0046). 
Both sites are present in the Genome Aggregation Database20 and 
met quality-control criteria in our data (average imputation quality 
>​0.7; association signal visible in multiple studies), but their precise 
contribution to T2D risk requires further validation.

Causal coding variants. We next considered the 51 signals (of 
380) for which fine-mapping strongly implicated (PPA >​80%) 
a single causal variant. Eight of these were missense coding vari-
ants, six of which were within established T2D-associated regions 
(Supplementary Table 7). With the exception of p.Cys130Arg 
at APOE (MAF =​ 15.4%), all have been implicated as causal 
for T2D: p.Ser539Trp in PAM (MAF =​ 0.83%); p.Thr139Ile in 
HNF4A (MAF =​ 3.5%); p.Asp1171Asn in RREB1 (MAF =​ 11.3%); 
p.Ala146Val in HNF1A (MAF =​ 2.9%); and p.Pro446Leu in GCKR 
(MAF =​ 39.3%)3. Coding-variant associations at PATJ (p.Gly157Val; 
9.5% MAF) and CDKN1B (p.Val109Gly; 23.5% MAF) are novel 
and highlight these genes as playing direct roles in T2D risk. PATJ 
is highly expressed in the brain21 and encodes Pals1-associated 
tight junction component, a protein with multiple PDZ domains, 
which mediate protein–protein interactions. Associations for this 
variant indicated a central mechanism of action: the T2D-risk 
allele was associated with obesity in the UK Biobank (OR =​ 1.11; 
P =​ 3.8 ×​ 10−5), and the T2D-association signal was attenuated 
in BMI-adjusted analysis (Pdiff =​ 9.3 ×​ 10−10). CDKN1B encodes a 
cyclin-dependent-kinase inhibitor, and deletion of this gene in 
mice ameliorates hyperglycemia by increasing islet mass and main-
taining compensatory hyperinsulinemia22. There were four fur-
ther signals (at ANKH, POC5, NEUROG3, and ZNF771) at which 
a single missense variant accounted for most (>​50%) of the PPA 
(Supplementary Table 7).

Integration of regulatory annotations to support fine-map-
ping. Of the 51 variants with PPA >​80%, 43 mapped to regula-
tory sequence: 12 of these were low frequency or rare, including 
variants near ANKH, CCND2, and WDR72. To characterize the 
regulatory effects of these 51 variants, we overlaid them onto chro-
matin-state maps from T2D-relevant tissues (islets, liver, adipose, 
and skeletal muscle23–25) and transcription-factor-binding sites23,24. 
Twenty-eight mapped to islet enhancer or promoter elements;  
for 14, these chromatin states were islet specific (Supplementary 
Table 8 and Supplementary Fig. 3). These data recapitulate pre-
vious findings implicating islet regulatory mechanisms at the 
CDC123–CAMKD1 (rs11257655) and MTNRB1 (rs10830963)25–27 
loci, and indicate that similar molecular mechanisms operate at 
signals for several other known T2D loci, including IGF2BP2, 
ANK1, GLIS3, CDKN2B, KCNQ1, CCND2, and BCL2A. Novel T2D 
signals near ABCB10, FAM49A, LRFN2, CRHR2, and CASC11 
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also overlapped islet-specific enhancers or promoters. High-PPA 
variants (i.e., those with PPA >​80%) at 13, 10, and 7 signals over-
lapped enhancers or promoters in adipose, skeletal muscle, and 
liver tissues, respectively. All but four of these were also enhancers 

or promoters in islets: one signal (near GLI2) mapped to an adi-
pose-specific enhancer, another (near WDR72) mapped to a liver-
specific enhancer, and two (near PTGFRN and TSC22D2) mapped 
to enhancers in both adipose tissue and skeletal muscle.

We next evaluated whether the integration of genome-wide-reg-
ulatory annotation data could refine the mapping resolution at those 
loci where genetic fine-mapping was less precise25. We focused on 
regulatory annotations from human islets because (i) most estab-
lished T2D-risk variants are considered, given observed patterns 
of association with continuous metabolic traits, to act through 
primary effects on beta-cell function3,28,29; (ii) the strongest signal 
for regulatory enrichment at T2D-association signals involves islet-
specific regulatory elements23,26, a view supported by the annotation 
overlaps of the high-PPA variants described above and by enrich-
ment analyses that we performed using epigenomic annotations 
from islets, fat, muscle, and liver24 (Supplementary Fig. 4); and  
(iii) we had access to high-resolution epigenomic and chromatin-
state annotation maps for human islets combining available data 
on histone modifications, transcription-factor binding, chromatin 
accessibility, and whole-genome methylation25.

Using the hierarchical modeling approach fGWAS30, we observed 
strong (1.9- to 8.2-fold), significant (95% confidence not overlap-
ping one), genome-wide enrichment of T2D-associated variation 
with respect to multiple islet enhancer and promoter states, as well 
as coding sequence (with concomitant depletion of heterochroma-
tin states; Methods and Supplementary Fig. 5). We used the param-
eter estimates from the joint annotation model (which retained islet 
enhancers, promoters, and coding sequence, among other anno-
tations; Methods and Supplementary Fig. 5) as priors to redefine 
99%-credible sets for the 380 distinct T2D-association signals ame-
nable to fine-mapping. We circumvented the default assumption 
in fGWAS of a single casual variant per locus by conducting these 
analyses on conditionally decomposed data (noting that this pro-
cedure still allowed for the possibility that the association at each 
conditional signal might be distributed across multiple variants on 
a risk haplotype; Methods).
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As expected, this integrated fine-mapping analysis boosted 
PPA for variants overlapping enriched annotations (Fig. 6). The 
median 99%-credible-set size declined from 42 to 32, the credible 
intervals declined from 116 kb to 100 kb, and the maximum vari-
ant PPA per signal increased by a median of 21%. The number 
of signals at which the lead-variant PPA exceeded 80% increased 
from 51 to 73, and there were dramatic improvements at some 
(for example, at GNG4, for which the PPA for rs291367 rose from 
24.0% to 84.2%; Fig. 3).

These annotation-supported analyses highlighted seven additional 
loci (beyond the 12 determined from genetic evidence alone) where 
most (>​50%) of the PPA was based on a coding variant (Supplementary 
Table 7). Four were novel: QSER1 (p.Arg1101Cys; MAF =​ 4.3%), SCD5 
(p.Glu197Gln, MAF =​ 33.8%), IRS2 (p.Gly1057Asp, MAF =​ 34.0%), 
and MRPS30 (p.Glu128Gln =​ MAF 2.8%).

In our recent study of exome-array genotypes, we demonstrated 
that, for one-third of loci with coding-variant associations, a causal 
role could be excluded after information on local LD and annota-
tion enrichment was incorporated3. For all 19 coding-variant sig-
nals (at 18 loci) described in this study, the results of the present 
analyses (based on genome-wide data for both discovery and fine-
mapping) were consistent with a causal role. These analyses there-
fore provide additional examples of human validated targets31. The 
value of these targets as leads for therapeutic development will ulti-
mately depend not only on their effects on T2D phenotypes but also 
on the consequences of perturbation on other traits, including coro-
nary artery disease (CAD). Among the 19 T2D-associated coding 
variants, nine were also nominally associated (P <​ 0.05) with CAD32: 
for three variants (APOE, GCKR, and RREB1), opposing effects on 
T2D and CAD predisposition render them less attractive targets 
(Supplementary Table 7).

Next, we concentrated on noncoding-variant signals. In the anno-
tation-informed analysis, we identified 15 additional signals (beyond 
the 43 noncoding signals described above) for which the lead-vari-
ant PPA exceeded 80% (Supplementary Table 8). These signals over-
lapped active islet regulatory sites including strong enhancers (for 
example, at TCF7L2, HNF4A, ANKH, RNF6, and ZBED3), active 
promoters (EYA2), weak enhancers (ADSCL2, ADCY5, CDKN2B, 
and TBCE), and weak promoters (DGKB). For many signals, the data 
(for example, associations with continuous metabolic traits3,28,29 and 
cis expression quantitative trait locus (eQTL) data33; Supplementary 
Table 8) were consistent with a role in islet function. In contrast, for 
six signals, including three that are likely, on physiological grounds, 
to act at least partly through effects on islets, we observed decreases 

(10% to 76%) in the lead-variant PPA after islet-annotation-
informed fGWAS (Supplementary Table 8). This decrease occurred 
when lead variants from the genetic fine-mapping overlapped with 
annotations depleted in the genome-wide model. Examples included 
variants at primary CDKAL1 and secondary KCNQ1 and INS–IGF2 
signals, where the index-variant PPA decreased by 76% (rs7756992), 
34% (rs2283164), and 22% (rs555759341), respectively. One pos-
sible explanation for these results is that for these T2D-association 
signals, the phenotypic effect on insulin secretion may be mediated 
through long-term consequences of regulatory effects during islet 
development, which are no longer reflected in the regulatory anno-
tations seen in mature islets.

At many of these fine-mapped regulatory loci, the integrated data 
provided novel insights into disease mechanisms, three of which are 
highlighted below. At ST6GAL1, rs3887925 achieved PPA =​ 98.5% 
through genetic fine-mapping alone (99.3% in fGWAS), and over-
lapped with enhancers active in islet, as well as liver, adipose, and 
skeletal muscle tissues (Supplementary Fig. 6). However, the T2D-
risk allele at rs3887925 was associated with an increase in ST6GAL1 
cis expression specific to islets33 (Methods and Supplementary  
Table 8), in agreement with evidence of decreased insulin secretion 
in risk-allele carriers during provocative testing34. The candidate 
effector transcript ST6GAL1 encodes β​-galactoside α​2,6-sialyl-
transferase-1, a key enzyme responsible for the biosynthesis of α​
2,6-linked sialic acid in N-linked glycans. Altered glycosylation has 
the potential to affect multiple processes, and global perturbation 
of ST6GAL1 has broad effects including, in St6gal1-knockout mice, 
increased body weight and visceral fat accumulation35. However,  
no equivalent association between rs3887925 and anthropomet-
ric and lipid phenotypes has been seen in human GWAS14,36,37. 
These results are consistent with the T2D predisposition attribut-
able to rs3887925 being mediated through regulatory mechanisms 
restricted to the modulation of ST6GAL1 expression in islets.

At ANK1, we observed three distinct association signals. The 
strongest causal-variant attribution was for the primary signal at 
rs13262861 (PPA =​ 97.3% on the basis of genetic data alone; 98.8% 
with fGWAS). This variant overlaps an islet promoter located 3′​ 
to ANK1 and 5′​ to the transcription-factor-encoding NKX6-3 
(Supplementary Fig. 7). The T2D-risk allele at rs13262861 showed 
a directionally consistent association with in vivo measures of 
decreased insulin secretion3,29,34 and a cis-eQTL for decreased NKX6-
3 expression in human islets (Supplementary Table 8). Members of 
the NKX6 family (including NKX6.3) have been implicated in islet 
development and function38. A recent study has highlighted the rela-
tionship between variants including rs515071 and rs508419 and the 
expression and splicing of ANK1 in skeletal muscle39. However, in 
our meta-analysis, variants influencing ANK1 splicing had a mini-
mal effect on T2D risk (PPA <​1% in all three conditionally decom-
posed signals (genetic fine-mapping only)). Collectively, these data 
indicate that the mechanism of T2D predisposition at this locus is 
probably mediated through decreased islet expression of NKX6-3 
rather than altered muscle expression of ANK1.

At TCF7L2, patterns of overlap with epigenomic annotations 
across the eight distinct T2D-association signals offered explana-
tions for the diverse metabolic consequences of TCF7L2 perturba-
tion in humans and animal models40 (Supplementary Table 9). The 
primary signal at rs7903146, long established as the largest common-
variant effect for T2D in Europeans, overlapped an islet enhancer 
(boosting PPA from 59.2% to 97.1% in fGWAS), multiple islet-rele-
vant transcription-factor-binding sites, and islet open chromatin41, 
features consistent with the islet phenotype (deficiency in insulin 
secretion) evident in nondiabetic individuals7 (Supplementary 
Fig. 8). However, among the seven secondary signals, the picture 
was more mixed. Of the four secondary signals mapped to fewer 
than ten credible-set variants, only rs144155527 rose to moderate 
PPA (68%) after islet-annotation-enriched fGWAS analysis. Other  
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credible-set variants mapped to adipose and liver enhancers, thus 
suggesting that their T2D-risk effects are mediated via modulation 
of TCF7L2 expression in tissues relevant to insulin action.

Heritability estimates and polygenic-risk-score prediction. 
Using LD-score regression42, and empirical estimates of population-  
and sample-level T2D prevalence, we estimated the chip herita-
bility (on the liability scale) for T2D at 18% (23% in females and  
17% in males; Supplementary Fig. 9), accounting for approximately 
half the median estimates of heritability derived from twin and 
family studies43.

Identification of individuals at increased genetic risk for T2D 
may enhance screening strategies and allow for targeted preven-
tion. Previous attempts to deploy genetic data for disease prediction 
have shown limited utility44,45. We used a revised BMI-unadjusted 
meta-analysis, generated from all samples other than the UK 
Biobank samples, to develop genome-wide polygenic risk scores 
(PRSs)46, which we then applied to predict T2D status in the 18,197 
cases and 423,697 controls from the UK Biobank (Europeans only; 
Methods)46. Maximal discrimination (area-under-the-curve C sta-
tistic of 66%, equivalent to that derived from BMI, age, and sex 
in the same sample) was obtained from a PRS of 136,795 variants 
(r2 >​0.6, P <​ 0.076; Supplementary Fig. 10). Individuals in the top 
2.5% of the PRS distribution were at 3.4-fold-increased risk (preva-
lence =​ 11.2%) compared with the median (prevalence =​ 3.3%), and 
at 9.4-fold-increased risk compared with the bottom 2.5% (preva-
lence =​ 1.2%). Low T2D prevalence in the UK Biobank reflected 
the age distribution of the cohort and preferential ascertainment 
of healthy individuals; however, similar prevalence ratios were 
observed in the subset of individuals >​55 years of age at recruit-
ment (14.2% versus 1.6%). If applied to the general UK population, 
an equivalent performance would equate to lifetime T2D risks of 
~59.7% and ~6.7% for individuals from those extremes, on the basis 
of current UK general-population prevalence rates for individuals 
>​55 years of age47.

Defining relationships with other traits. To characterize genetic 
relationships with other biomedically relevant traits, we used 
LD-score regression42 implemented in LDHub48. We tested 182 
unique phenotypes after excluding those with low heritabil-
ity estimates and repeated measures. Eighty-five traits demon-
strated a significant (Bonferroni-corrected threshold P <​ 0.00027) 
genetic correlation with T2D (Supplementary Table 10 and 
Supplementary Fig. 11).

These results highlighted several interesting genetic correla-
tions, linking increased T2D risk to sleeping behaviors (insomnia 
and excessive daytime sleeping), smoking (cigarettes smoked per 
day, and having ever versus never smoked), metabolites (glycopro-
tein acetyls, isoleucine, and valine), depressive symptoms, urinary 
albumin-to-creatinine ratio, and urate. T2D risk was negatively cor-
related with anorexia nervosa, intelligence, parents’ ages at death, 
lung-function measures, education status/duration, age at men-
arche, and age of mother at first childbirth. Many of these relation-
ships (including those related to intelligence, smoking behavior, age 
at menarche, and education status) were primarily mediated by the 
shared effects of BMI on both T2D and the correlated phenotype 
(Supplementary Fig. 12).

Discussion
This study demonstrates how substantial increases in sample size 
coupled to more accurate and comprehensive imputation can 
expand characterization of the genetic contribution to T2D risk. 
The number of significantly associated genomic regions doubled, 
and the harvesting of lower-frequency risk alleles, some with 
relatively large effects, increased. At many of these signals, fine- 
mapping resolution was substantially improved: we mapped 51 

of 380 signals to single-variant resolution on the basis of genetic 
evidence alone and demonstrated that the integration of genomic 
annotations (here with a focus on the human islet epigenome) pro-
vided further specification of plausible causal variants. We high-
light 18 genes as human-validated targets based on causal coding 
variants and provide novel insights into the biological mechanisms 
operating at several fine-mapped regulatory signals. These find-
ings suggest mechanistic hypotheses that can now be targeted for 
large-scale empirical validation at the level of both variants (for 
example, through massively parallel reporter assays) and can-
didate effector genes (for example, through CRISPR screens in 
appropriate cellular models and manipulation in in vivo models). 
The present study was limited to individuals of European ancestry: 
integration of these data with large-scale GWAS data from other 
major ancestral groups (as is being pursued by the DIAMANTE 
consortium) should provide an additional boost to locus discovery 
and support further increases in causal-variant resolution, most 
obviously at loci where extensive LD within Europeans limits the 
resolution of fine-mapping.
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adjustments, using a matched meta-analysis conducted on the same subset  
of 28 studies:

β β

β β ρ β β
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noBMI BMI

noBMI BMI noBMI BMI
2 2

Where βBMI and βnoBMI are the estimated genetic effects from models with and 
without BMI adjustment, SE(β) is the estimated standard error of the estimates, and 
ρ =​ 0.89, is the estimated correlation between βBMI and βnoBMI across all variants1.

Detection of distinct association signals. We used GCTA56 to perform 
approximate conditional analyses to detect distinct association signals at each of 
the genome-wide-significant risk loci for T2D (newly identified or confirmed, 
except at the major histocompatibility complex (MHC) region). GCTA performs 
conditional analysis using association summary statistics from GWAS meta-
analysis and estimated LD from a sufficiently large reference study used in the 
meta-analysis. We used a reference sample of 6,000 (nearly) unrelated (pairwise 
relatedness <​0.025) individuals of white British origin, randomly selected from 
the UK Biobank, to model patterns of LD between variants. The reference panel of 
genotypes consisted of the same 39 million variants from the HRC reference panel 
assessed in our GWAS, but with an additional quality-control step to exclude SNPs 
with low imputation quality (proper info <​0.4) or deviation from Hardy–Weinberg 
equilibrium (P <​ 1 ×​ 10−6). For each locus, we first searched ±​500 kb surrounding 
the lead SNP (using summary statistics from BMI-unadjusted or adjusted 
analysis, as appropriate) to ensure that potential long-range genetic influences 
were assessed. Within a region, conditionally independent variants that reached 
locus-wide significance (P <​ 10−5) were considered as index SNPs for distinct 
association signals. If the minimum distance between any distinct signals from two 
separate loci was less than 500 kb, we performed additional conditional analysis 
including both regions (encompassing ±​500 kb from both ends) and reassessed the 
independence of each signal.

Fine-mapping of distinct association signals with T2D susceptibility. We 
considered 380 of the 403 identified distinct signals, excluding 23 that were not 
amenable to fine-mapping: (i) 19 signals with MAF <​0.25%; (ii) three signals for 
which the index variant was rare and analyzed in <​50% of the total effective sample 
size, defined as Ne =​ 4 ×​ Ncases ×​ Ncontrols/(Ncases +​ Ncontrols); and (iii) the one signal in the 
major histocompatibility complex because of the extended and complex structure 
of LD across the region, which complicates fine-mapping.

For each of the remaining distinct signals, we first defined a genomic region 
500 kb on either side of the index variant, considering only variants with MAF  
>​0.25% that were reported in at least 50% of the total effective sample size, thus 
removing those that were not well imputed in most samples. We then adopted 
two approaches to compute 99%-credible sets with a 99% posterior probability 
of containing the causal variant: (i) using a (functionally unweighted) Bayesian 
approach, with the strength of evidence for association measured with the Bayes’ 
factor in favor of association for each variant15,57; and (ii) using (functionally 
weighted) fGWAS30 that reweights the association measures using information 
from functional genomics data.

Genetic credible sets. For each distinct association signal, we first calculated an 
approximate Bayes factor57 in favor of association on the basis of allelic effect 
sizes and standard errors from the meta-analysis (using BMI-unadjusted or BMI-
adjusted meta-analysis, as appropriate). For loci with a single association signal, 
effect sizes and standard errors from unconditional meta-analysis were used. For 
loci with multiple distinct association signals, these parameters were derived from 
the approximate conditional analysis, with adjustment for all other index variants 
in the region. Specifically, for the jth variant,
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where βj and Vj denote the estimated allelic effect (log OR) and corresponding 
variance from the meta-analysis. The parameter ω denotes the prior variance in 
allelic effects, taken here to be 0.04 (ref. 57).

We then calculated the posterior probability that the jth variant drives the 
association signal (PPA), given by

π
Λ

Λ
=

∑
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j
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The 99%-credible set15 for each locus was then constructed by (i) ordering 
all variants in descending order of their PPA; and (ii) including ordered variants 
until the cumulative PPA reached 0.99. The number of variants and length of the 
genomic region covered by each 99%-credible set was then calculated.

Functionally weighted credible sets. We first tested each of the 15 chromatin states in 
human islets and coding DNA sequence separately for enrichment using genome-

Methods
Ethics statement. All human research was approved by the relevant institutional 
review boards and conducted according to the Declaration of Helsinki.  
All participants provided written informed consent.

Study-level analyses. We considered a total of 74,124 T2D cases and 824,006 
controls from 32 GWAS undertaken in individuals of European ancestry 
(Supplementary Table 1), genotyped with a variety of genome-wide SNP 
arrays. Sample and variant quality control were performed within each study 
(Supplementary Table 1). To improve the quality of the genotype scaffold in each 
study, we developed a harmonized protocol in which variants were subsequently 
removed if (i) allele frequencies differed from those for European-ancestry 
haplotypes from the HRC reference panel4 by more than 20%; AT/GC variants 
had MAF >​40% because of potential undetected errors in strand alignment; or 
(iii) MAF <​1% because of difficulties in calling rare variants (with exception of 
BioMe, MGI, and UPCH, for which no MAF exclusion was implemented, because 
genotyping was performed with newer GWAS arrays; Supplementary Table 1). 
Each scaffold, with the exception of the deCODE GWAS, was then imputed up 
to the HRC reference panel4. The GWAS from deCODE was imputed up to a 
reference panel based on 30,440 Icelandic whole-genome sequences5, and only 
variants that were present in the HRC panel were considered for downstream 
analyses. Within each study, all variants were tested for association with T2D in 
a regression framework, with and without adjustment for BMI, in sex-combined 
and sex-specific analyses, under an additive model of the effect of the minor allele, 
with additional adjustment for study-specific covariates (Supplementary Table 1). 
To account for population structure and relatedness, association analyses were 
either adjusted for principal components (after exclusion of related individuals) 
or implemented in a mixed model with random effects for kinship from a genetic-
relationship matrix. For studies analyzed with linear mixed models, implemented 
in EMMAX49 or BOLT-LMM50 (Supplementary Table 1), allelic effects and 
standard errors were converted to the log-odds scale to correct for case–control 
imbalance51. For each analysis, in each study, variants were removed from a study if 
(i) minor allele count <​5 (in cases and controls combined); (ii) imputation quality 
ř2 <​0.3 (miniMAC) or proper info <​0.4 (IMPUTE4); or (iii) standard error of the 
allelic log OR >​10. The association summary statistics for each analysis within each 
study were then corrected for residual structure by means of a genomic-control 
inflation factor52, calculated after exclusion of variants mapping to established 
T2D-susceptibility loci (Supplementary Table 1).

Sex-combined meta-analysis. We aggregated association summary statistics from 
sex-combined analyses for each variant across studies, with and without adjustment 
for BMI, using fixed-effects meta-analysis with inverse-variance weighting of 
log ORs, as implemented in METAL53. The BMI-unadjusted meta-analysis was 
subsequently corrected for residual inflation (to account for structure between 
studies) by means of genomic control (λ =​ 1.013) (ref. 52), calculated after the 
exclusion of variants mapping to established T2D-susceptibility loci. No adjustment 
was required for the BMI-adjusted meta-analysis (λ =​ 0.992). From the meta-
analysis, variants were extracted that passed quality control in at least two studies. 
Heterogeneity in allelic effect sizes between studies contributing to the meta-analysis 
was assessed with Cochran’s Q statistic54. We defined novel loci as those mapping >​
500 kb and conditionally independent from a previously reported lead GWAS SNP.

In the present study, we maintained the conventional genome-wide-
significance threshold of 5 ×​ 10−8, for compatibility with previous reports. We 
recognize that more comprehensive capture of lower-frequency variants in 
particular increases the effective number of tests and consequently increases the 
false-positive rate for signals just below this threshold. 162 of the 243 primary 
signals were significant at a more stringent threshold (5 ×​ 10−9) recently advocated 
for whole-genome-sequence data55, and the major conclusions of the manuscript 
remained unchanged when we selected this more stringent (and, given that  
our data lacked the full coverage of WGS data, overconservative) threshold.  
All summary-level data results are available so that readers can interpret the  
results themselves.

With our sample size (Neff 231,436), assuming accurate imputation (imputation 
quality score >​0.8), we had >​80% power to detect T2D association (at α =​ 5 ×​ 10−8) 
with variants of MAF ≥​5% and OR ≥​1.10, or MAF ≥​0.1% and OR ≥​1.60.

Sex-differentiated meta-analysis. The meta-analyses described above were 
repeated for males and females separately, and correction was performed for 
population structure by genomic control as necessary: (i) male-specific BMI-
unadjusted λ =​ 1.029; (ii) male-specific BMI-adjusted λ =​ 1.001; (iii) female-specific 
BMI-unadjusted λ =​ 0.955; and (iv) female-specific BMI-adjusted λ =​ 0.932. The 
male-specific meta-analysis consisted of up to 41,846 cases and 383,767 controls, 
whereas the female-specific meta-analysis consisted of up to 30,053 cases and 
434,336 controls. The sex-specific meta-analyses were then combined to conduct 
a sex-differentiated test of association and a test of heterogeneity in allelic effects 
between males and females12.

Assessment of effects of BMI adjustment. We compared the genetic effect 
sizes (beta coefficients) estimated from models with and without BMI 
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Final colocalization results were filtered to include only variant–gene pairs with 
significant eQTL effects, which were defined as associations with FDR <​0.05 for 
islets or published significant associations based on permuted P values for GTEx. 
For a credible-set variant, an eGene with colocalization posterior probability >​0.20 
was considered a target gene.

Estimation of genetic variance explained. We used LD-score regression42 to 
estimate the proportion of variance explained by common genetic variants for T2D 
on the liability scale. As advised by the developers, we based these estimates on 
summary statistics (without any genomic control correction) of variants restricted 
to the subset of HapMap65 variants after exclusion of the MHC region. Estimations 
were performed for both sex-combined and sex-specific (BMI-unadjusted) 
analyses, by assuming a population prevalence of 10%.

Polygenic-risk-score analyses. PRSs were created for UK Biobank samples using 
raw genotype data in the software PRsice46, on the basis of GWAS summary 
statistics of 4.6 million common variants from the sex-combined BMI-unadjusted 
T2D meta-analysis excluding UK Biobank samples. PRSs were created using 
P-value thresholds ranging from 5 ×​ 10−8 to 0.5 with LD pruning parameters of 
r2 =​ 0.2–0.8 over 250-kb windows. We then tested each PRS for classification 
performance in UK Biobank.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Summary-level data are available at the DIAGRAM consortium website http://
diagram-consortium.org/ and Accelerating Medicines Partnership T2D portal 
http://www.type2diabetesgenetics.org/.
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wide data with the program fGWAS30. Details on generation of the 15 chromatin 
states have been described elsewhere25. The annotation with the most significant 
enrichment was retained and tested jointly with each remaining annotation. If 
the most significant two-annotation model improved the model likelihood then 
the two annotations in the model were retained, and the process continued until 
the model likelihood did not exceed the previous iteration. The resulting ‘full’ 
model was iteratively pruned by dropping each annotation and assessing the cross-
validated likelihood of the reduced model (i.e., an annotation was removed from 
the full model if dropping it increased the cross-validated likelihood). This process 
resulted in the ‘best joint model’.

By default, fGWAS partitions the genome into ‘blocks’ of 5,000 SNPs and 
assumes no more than one causal variant per block. However, for direct comparison 
with the ‘genetic’ credible sets and to account for multiple distinct association 
signals within a locus, we used a modified approach. For T2D-associated 
regions with no evidence of more than one distinct signal, we delineated 1-Mb 
windows comprising all SNPs within 500 kb of the index variant and partitioned 
the intervening regions into ~1-Mb windows. These windows were manually 
input into fGWAS with the --bed command, and a separate fGWAS analysis was 
performed with only the set of annotations remaining in the best joint model. The 
genome-wide enrichments were used as priors in a Bayesian fine-mapping analysis 
implemented in fGWAS to calculate posterior probabilities for each SNP in the 
designated windows. For the remaining regions with evidence of two or more 
distinct association signals, we used the results from the approximate conditional 
analyses described above and similarly performed a manually partitioned fGWAS 
analysis. We then constructed 99% credible sets as described above.

Association analyses with UK Biobank phenotypes. We performed targeted 
association analyses using genotype and phenotype data from electronic health 
records (EHRs) from the UK Biobank. Hierarchical phenotype codes from EHRs 
were curated by grouping International Classification of Disease, Ninth Revision 
(ICD-9) clinical/billing codes as previously described58. Only phenotype codes 
with 20 or more cases and with a minor-allele count ≥​5 in cases and controls were 
considered eligible for analysis. Logistic-regression analyses were performed in 
individuals of European ancestry for relevant phenotype–genotype combinations 
by adjusting for six genetic-ancestry principal components, array, and sex.

For NEUROG3, we tested 12 specific phenotypes that capture gastrointestinal 
components of the syndrome from more severe mutations in the gene, and we 
report nominal association without any correction for multiple testing (but we note 
that the various diagnoses have a complex nested, correlation structure). For the 
two novel rare variants, we interrogated 52 endocrine/digestive phenotypes and 
again found a nominal association without any correction for multiple testing.

Estimating phenotypic variance explained by SNPs. We used UK Biobank 
samples (19,119 T2D cases and 423,698 controls) to calculate the variance 
explained by genome-wide-significant variants. We ran a model regressing T2D 
status on all independently associated rare and low-frequency variants, assuming 
an additive model (and adjusting for sex, age, array, and six principal components). 
A separate model was run to determine the variance captured by the independently 
associated common variants.

Colocalization analysis. We used publicly available eQTL results from GTEx 
version 7 for adipose, liver, and skeletal tissues. Islet eQTLs were called using 
published imputed genotypes and aligned RNA-seq data (.vcf and .bam files) 
from human pancreatic islets of 118 individuals, downloaded from the European 
Genome-phenome Archive (accession number EGAS00001001265). RNA 
extraction, sequencing, and mapping, as well as DNA extraction, genotyping, 
imputation, and variant filtering were performed as previously described33. Gene-
level reads were quantified with featureCounts version 1.5.0-p2 (ref. 59), on the 
basis of a patched version of GENCODE 19 published by the GTEx Consortium. 
Quantified gene-level read counts for pancreatic islets were filtered in line with 
protocols used for GTEx version 7: only genes with at least six raw counts in 20% 
of the samples and TPM >​0.1 in at least 20% of the samples were used for analysis. 
Gene-level counts for remaining genes were converted to counts per million, 
library sizes were normalized in edgeR version 3.16.5 (ref. 60), and the resulting 
expression values were rank inverse normalized per gene. Fifteen PEER factors61 
were calculated, and cis-eQTLs were called with FastQTL version 2.0 (ref. 62) using 
a cis distance of 1 Mb and PEER factors as covariates.

We performed colocalization analysis in eCAVIAR version 2.0 (ref. 63). 
Colocalization was performed for each locus–tissue pair using genetic-credible-set 
variants from the locus that had (i) PPA >​0.01, (ii) correlation data from 1000G, 
and (iii) available eQTL results from that tissue. Pairwise variant correlations 
between credible-set SNPs were calculated with PLINK version 1.9 (ref. 64) 
using the 1000 Genomes Project genotypes (phase 3, October 2014 release)16. 
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis The software used have been described in details in Online Methods section and Supplementary Table 1. Softwares included: 
GenCall,Beadstudio, BRLMM, Affymetrix Power Tools, Minimac3, IMPUTE4,  EPACTS, SNPTEST, METAL, PLINK, SHAPEITv2, eCAVIAR 
version 2.0, GCTA v1.26.0, fGWAS v0.3.6, LDSC v1.0.0, PRsice.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Summary level data is available at the DIAGRAM consortium website http://diagram-consortium.org/ and Accelerating Medicines Partnership T2D portal http://
www.type2diabetesgenetics.org/.
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Sample size We aimed to bring together the largest possible sample size (N>74,000 T2D cases and >824,00 controls of European ancestry) with GWAS 
imputed up to Haplotype Refernce Panel to study the role of genetic variants in T2D. Our sample size is adequate to recover known T2D 
associated regions, and identify 135 novel T2D associated regions. Also, analytical power calculation showed that our dataset has >80% power 
to identify variant with >5% allele frequency and 1.10 OR or variant with 0.1% allele frequency and OR 1.60. 

Data exclusions Established protocols were used to conduct rigorous data quality control for each GWAS at the study level: variants were first excluded for the 
following reasons: (i) monomorphic; (ii) call rate <95%;  or (iii) exact p<10-4 for deviation from Hardy-Weinberg equilibrium (autosomes only) 
(details in Supplementary Tables 1 and Online methods). In addition, to improve the quality of the genotype scaffold in each study, we 
developed a harmonised protocol in which variants were subsequently removed if: (i) allele frequencies differed from those for European 
ancestry haplotypes from the HRC reference panel by more than 20%; AT/GC variants had MAF>40% because of potential undetected errors 
in strand alignment; or (iii) MAF<1% because of difficulties in calling rare variants (with exception of BioMe, MGI, and UPCH, where no MAF 
exclusion was implemented as they were genotyped using newer GWAS arrays; Supplementary Table 1).  

Replication We used the 42,734 T2D cases and 497,261 controls that were not included in previous discovery efforts to test the 140 lead SNPs from 
previously-reported T2D loci and replicated associations at 126 of these.

Randomization Not relevant because the study is not experimental.

Blinding Not relevant because the study is not experimental.
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Population characteristics Analyses were conducted on GWAS summary statistics of 74,124 T2D cases and 824,006 controls of European ancestry. Full 
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Population characteristics description of sample characteristics of each study are provided in Supplementary Table 1.    

Recruitment Described for each study in Supplementary Table 1.  
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