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Although a large proportion of variability in complex human traits 
is due to genetic variation, the mechanistic steps between genetic 
variation and traits are generally not understood1–7. Many genetic 
variants influence complex traits by modulating gene expression, thus 
altering the abundance of one or multiple proteins8–12. Such relation-
ships between expression and traits could be investigated through 
association scans in individuals for whom both measurements are 
available8,13,14. Unfortunately, studies that measure gene expression 
have been hampered by specimen availability and cost, with the few 
published studies of expression and complex traits being orders of 
magnitude smaller than studies of traits alone. Consequently, many 
expression-trait associations cannot be detected, especially those with 
small effects. To mitigate the reduced power from small sample size, 
alternative approaches have examined the overlap of genetic vari-
ants that influence gene expression (expression quantitative trait loci, 
eQTLs) with trait-associated variants identified in large, independent  

GWAS5,6,8,9,11–13,15. However, this approach is also likely to miss 
expression-trait associations of small effect.

We developed a new approach to identify genes whose expression 
is significantly associated with complex traits in individuals without 
directly measured expression levels (Online Methods). We leveraged 
a relatively small set of reference individuals for whom both gene 
expression and genetic variation (SNPs) were measured to impute 
the cis genetic component of expression into a much larger set of 
phenotyped individuals using their SNP genotype data (Fig. 1). The 
imputed expression data can be viewed as a linear model of genotypes 
with weights based on the correlation between SNPs and gene expres-
sion in the training data while accounting for linkage disequilibrium 
(LD) among SNPs. We then correlated the imputed gene expression 
with traits to perform a TWAS and identify significant expression-
trait associations (Online Methods). Work in parallel to ours has also 
proposed to find expression-trait associations through imputation  
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of gene expression when GWAS data at an individual level are  
available16. However, a critical limitation is that large-scale GWAS 
data are typically only publicly available at the level of summary 
association statistics (for example, SNP effect sizes)2–4. To capitalize 
on the largest GWAS studies performed thus far (typically with data 
available only at the summary level), we extended our approach to 
impute the expression-trait association statistics directly from GWAS 
summary statistics (Online Methods). In contrast to expression impu-
tation from individual-level data16, imputation of expression-trait 
associations from GWAS summary statistics can exploit publically 
available data from hundreds of thousands of samples. Linear predic-
tors naturally extend to indirect imputation of the standardized effect 
of cis genetic components of expression on traits starting from only 
GWAS association statistics2–4 (Online Methods). This allowed us 
to increase the effective sample size for expression-trait association 
testing to hundreds of thousands of individuals. By focusing only on 
the genetic component of expression, we avoid instances of expres-
sion-trait association that are not a consequence of genetic variation 
but are driven by variation in traits (Fig. 2). Our approach can be 
conceptualized as a test for significant cis genetic correlation between 
expression and traits.

We applied our approaches to expression data from blood and  
adipose tissue measured in ~3,000 individuals overall. Through exten-
sive simulations and analyses of real data, we show that our proposed 
approach increases performance over standard GWAS and eQTL-
guided GWAS. Furthermore, we reanalyzed a 2010 lipids GWAS17 
to find 25 new expression-trait associations in those data. Among 
these associations, 19 of 25 contained genome-wide significant SNPs 
in the more recent and expanded lipids study5, thus showcasing the 
power of our approach to find robust associations. We imputed gene 
expression into GWAS data from over 900,000 phenotype measure-
ments5–7 to identify 69 new genes significantly associated with obes-
ity-related traits (body mass index (BMI), lipids and height). Many of 
these genes were associated with relevant phenotypes in the Hybrid 
Mouse Diversity Panel (HMDP). Overall, our results showcase the 
power of integrating genotype, gene expression and phenotype to 
gain insights into the genetic basis of complex traits.

RESULTS
SNP heritability of gene expression
To investigate the potential use of a TWAS based on imputed gene 
expression, we first estimated the cis (1-Mb window around a gene) 
and trans (rest of the genome) SNP heritability (cis- and trans- hg

2)  
for each gene in our data18,19. These metrics quantify the maxi-
mum possible accuracy (in terms of R2) of a linear predictor from 
the corresponding set of SNPs20,21 (Online Methods). We used 
3,234 individuals for whom genome-wide SNP data and expression 
measurements were available from the Metabolic Syndrome in Men 
(METSIM; adipose), Young Finns Study (YFS; blood) and Netherlands 
Twins Registry (NTR; blood) data sets22–24 (Online Methods and 
Supplementary Table 1). All expression measurements were adjusted 
for batch confounders, and array probes were merged into a single 
expression value for each gene, where possible (Online Methods). 

Consistent with previous work24,25, we observed significantly nonzero 
(P < 1 × 10–16) estimates of heritability across all three studies, with 
mean cis-hg

2  values ranging from 0.01 to 0.07 and mean trans-hg
2  

values ranging from 0.04 to 0.06 in genes where estimates converged 
(Supplementary Fig. 1 and Supplementary Table 1). Although we 
observed large differences in the average cis-hg

2  estimates between the 
two blood cohorts, the estimates were strongly correlated across genes 
(Pearson ρ = 0.47 for YFS-NTR, as compared to ρ = 0.15 and ρ = 0.26 
for METSIM-NTR and METSIM-YFS, respectively). This is consist-
ent with a common but not identical genetic architecture. The cis-hg

2  
estimate was significantly nonzero (by likelihood-ratio test) for 6,924 
genes after accounting for multiple hypotheses (1,985 for METSIM, 
3,836 for YFS and 1,103 for NTR) (Supplementary Fig. 1), whereas 
current sample sizes were too small to detect individually significant 
trans-heritable genes. As expected, we also observed a high overlap of 
genes with significant cis-hg2  estimates across cohorts (Supplementary 
Fig. 2 and Supplementary Table 2). We focused subsequent analyses 
on the 6,924 cis-heritable genes, as such genes are typically enriched 
for trait associations7,9,13,24–29.

TWAS performance in simulation and cross-validation
We evaluated whether the expression levels of the 6,924 highly herit-
able genes could be accurately imputed from cis-SNP genotype data 
alone in these three cohorts. In each tissue, we used cross-validation 
to compare predictions from the best cis-eQTL to those from all SNPs 
at the locus either in a best linear unbiased predictor (BLUP) or a 
Bayesian model30,31 (Online Methods). On average, the Bayesian lin-
ear mixed model (BSLMM)31, which uses all cis-SNPs and estimates 
the underlying effect size distribution, attained the best performance, 
with a 32% gain in prediction R2 over a prediction computed using 
only the top cis-eQTL (Fig. 3 and Supplementary Fig. 3). BSLMM 
exhibited a long tail of increased accuracy, more than doubling the 
prediction R2 for 25% of genes (Supplementary Fig. 4). In contrast 
to complex traits, where hundreds of thousands of training sam-
ples are required for accurate prediction32,33, a substantial portion 
of variance in expression can be predicted at current sample sizes 
because of the much smaller number of independent SNPs in the cis 
region21. Furthermore, larger training sizes will continue to increase 
the total number of genes that can be accurately predicted (Fig. 4). 
We further evaluated cross-cohort prediction of these genes in the 
YFS and NTR cohorts, which were roughly equally sized and had 
expression measured in whole blood by microarray but were geno-
typed on different platforms and were from different Scandinavian 
populations. After accounting for cis heritability in the test cohort,  
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Figure 1 Schematic of the TWAS approach. Top, estimate gene expression 
effect sizes in the reference panel either directly (eQTL), modeling all 
SNPs (BLUP), or modeling SNPs and effect sizes (BSLMM). Path A: 
predict expression directly for genotyped samples using the effect sizes 
from the reference panel and measure the association between predicted 
expression and a trait. Path B: indirectly estimate association between 
predicted expression and a trait as the weighted linear combination of 
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our cross-cohort standardized accuracy (R2/cis-hg
2) was broadly con-

sistent with in-cohort cross-validation accuracy (Supplementary 
Table 3). BSLMM was again the most accurate predictor, with an 
average cross-cohort R2/cis-hg

2) value of 72%, outperforming the best 
eQTL by an average of 1.17×.

Next, we focused on evaluating the power of the TWAS approach to 
detect significant expression-trait associations using GWAS summary 
data from complex traits (equivalent to TWAS from individual-level 
data; Online Methods and Supplementary Fig. 5). For comparison, 
we also measured power to detect significant SNP-trait associations 
through standard GWAS (testing each SNP individually) and eQTL-
based GWAS (eGWAS; where the best eQTL in each gene is the only 
variant tested for association), with all three tests corrected for their 
genome-wide testing burdens. Using real genotype data, we simulated 
a causal SNP-expression-trait model with realistic effect sizes and 
measured the power of each strategy to identify genome-wide signifi-
cant variants (accounting for 1 million SNPs for GWAS and 15,000 
expressed genes using family-wise error rate control). Over many 
diverse disease architectures, TWAS substantially increased power 
when the expression-causing variants were untyped or poorly tagged 
by an individual SNP (Fig. 5 and Supplementary Figs. 6–11). The 
greatest gains in power were observed in the case of multiple causal 
variants: 92% power for TWAS as compared to 18% and 25% power 
for GWAS and eGWAS, respectively. This scenario would correspond 
to expression caused by allelic heterogeneity9,34,35, or ‘apparent’ heter-
ogeneity, at common variants (due to tagging of an unobserved causal 
variant)36. TWAS was comparable to the other approaches when a 
single causal variant was directly typed, in which case combining 
the effects of neighboring SNPs does not add signal. Under the null 
hypothesis where expression was completely independent of pheno-
type (with either being heritable; scenarios A–D in Fig. 2), the TWAS 
false positive rate was well controlled (Supplementary Table 4).  
As expected, all methods were confounded in the case where the same 
causal variants had independent effects on traits and expression (sce-
narios F and G in Fig. 2 and Supplementary Figs. 8 and 12).

Our approach can be conceptually viewed as a test for the correlation 
between the genetic component of expression and the genetic compo-
nent of a trait (Online Methods). Because several recent methods have 
been proposed that measure genetic correlation between summary sta-
tistics37, we sought to evaluate this relationship empirically. We com-
pared TWAS to the recently proposed cross-trait LD score regression  

(LDSC) that estimates genome-wide genetic correlation between 
traits37. Although LDSC is not intended for local analyses because of 
model assumptions on polygenicity and use of block jackknife across 
loci for estimating standard errors, we performed the evaluation using 
expression and phenotype (height) data from the YFS cohort, using the 
results over individual data as the ‘gold standard’ (Online Methods). 
We found that the LDSC estimate of genetic correlation between 
height and expression from summary data was highly correlated with 
the gold standard (correlation = 0.7; Supplementary Fig. 13), but the 
relationship was much noisier than that of TWAS (correlation = 0.99; 
Supplementary Figs. 5 and 13). This suggests that TWAS attains more 
power than LDSC in relating expression to complex traits.

TWAS is also conceptually similar to a test for colocalization of 
signal between expression and a complex trait38,39, and we compared 
it to a recently proposed method, COLOC38, that evaluates colocaliza-
tion of expression at known GWAS risk loci. After matching the false 
discovery rate of the two methods in simulations (Online Methods), 
TWAS and COLOC had similar power under the scenario with a 
single typed causal variant (with slightly lower COLOC power at 
small GWAS sizes), but TWAS had superior performance when the 
causal variant was untyped or in the presence of allelic heterogene-
ity (Supplementary Fig. 10). This is likely due the fact that TWAS 
explicitly models LD to better capture untyped variants.

Finally, we investigated the effect of the size of the expression  
reference panel on performance of TWAS (Supplementary Fig. 9). In 
general, TWAS always outperformed eGWAS when multiple variants 
were causal. Interestingly, power for either approach did not increase 
substantially beyond 1,000 expression samples, suggesting that the 
expression panels analyzed in this manuscript nearly saturate the  
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available imputation accuracy. This was further reflected in an analysis of  
real data, where merging expression data sets did not substantially 
change the distribution of TWAS statistics for the same gene set 
(Supplementary Fig. 14). Although these results come with caveats 
(for example, standard assumptions of additive effects and normal 
residuals), they suggest that the main benefit of larger expression 
reference panels is in increasing the total number of significant  
cis-heritable genes available for imputation (Fig. 4).

TWAS performance in GWAS summary data
To further validate our approach, we employed TWAS to identify 
expression-trait associations at the 697 known GWAS risk loci for 
height7 using the YFS data for which height was also measured. At 
each locus, we considered three strategies for selecting a single causal 
gene: selection of (i) the gene nearest to the top GWAS SNP; (ii) the 
gene for which the index SNP was the strongest eQTL in the training 
data; and (iii) the most significant TWAS gene. For each strategy, 
we then constructed a risk score using the genetic value of expres-
sion for the selected genes and correlated the risk score with height 
measurements in the YFS individuals (an independent sample from 
the original height GWAS; Supplementary Note). R2 between the 
risk score and height was 0.038 (nearest), 0.031 (eQTL) and 0.054 
(TWAS), with the TWAS estimate significantly higher than the oth-
ers in a joint model (Online Methods and Supplementary Table 5). 
When we recomputed the risk scores using TWAS values for expres-
sion from the NTR data (which introduces additional noise as a result 
of heterogeneity between the data sets), the TWAS estimate remained 
significantly higher than that from the eQTL strategy but was com-
parable to selecting the nearest gene (Supplementary Table 5).  
This indicates that using expression from a different study to select 
genes still significantly explains trait variance but is complementary 
(rather than superior) to selecting the nearest gene. Working from 
the assumption that genes with a higher cis genetic correlation to 
phenotype are more likely to be causal, these results motivate the use 
of TWAS to prioritize putative risk genes at known GWAS loci.

Across all known risk loci in our data, 77% of genome-wide signifi-
cant loci (defined as lead SNP ±500 kb) overlapped at least one gene 
with significant cis-hg

2  and 36% overlapped at least one significant 
TWAS association (Supplementary Table 6). These results suggest 
that cis regulation of expression in blood and adipose tissue is an 

important mechanism through which genetic variation at known risk 
loci alters obesity-related traits. We expect that expression studies from 
other tissues relevant to obesity-related traits will further increase the 
overlap. Focusing specifically on the 282 TWAS-identified genes that 
were within 500 kb of the lead SNP, 187 (66%) were not the nearest 
gene, with many residing more than 100 kb away from the lead GWAS 
SNP (Supplementary Fig. 15). Because GWAS usually report the near-
est gene, these 187 genes can be considered new candidates for follow-
up at known risk loci. We note that gene-trait associations at known 
risk loci will not be found by TWAS if the causal mechanism does 
not involve cis expression of the tested genes or if there is insufficient 
power to identify and detect all cis-heritable genes at the locus.

Next, we employed TWAS to identify new expression-trait associa-
tions using summary association statistics from a 2010 lipid GWAS17 
(~100,000 samples), that is, associations more than 500 kb away from 
any genome-wide significant SNPs in that study. We used all three 
studies (METSIM, YFS and NTR) as separate SNP-expression train-
ing panels. We then looked for genome-wide significant SNPs at these 
loci in the larger 2013 lipid GWAS5 (expanded to ~189,000 samples). 
We identified 25 such expression-trait associations in the 2010 study 
(Supplementary Table 7), of which 19 contained genome-wide sig-
nificant SNPs in the 2013 study (P = 1 × 10−24 by hypergeometric test; 
Online Methods) and 24 contained a more significant SNP (P = 1 × 10−4),  
constituting a highly significant validation of the identified loci. The 
validation remained significant after conservatively accounting for 
sample overlap across the studies (binomial P = 3 × 10−16; Online 
Methods and Supplementary Table 7). As a sanity check, we compared 
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direct and summary-level TWAS in the METSIM data and found the 
two sets of imputed expression-trait z scores to be nearly identical, with 
summary-level TWAS slightly underestimating the effect (Pearson  
ρ = 0.96; Supplementary Fig. 16). Overall, we find the TWAS approach 
to be highly predictive of robust phenotypic associations.

TWAS identifies new expression-trait associations
Having established the usefulness of TWAS, we applied the approach 
to identify new expression-trait associations using summary data from 
three recent GWAS over more than 900,000 phenotype measurements: 
lipid measures (high-density lipoprotein (HDL) cholesterol, low-density  
lipoprotein (LDL) cholesterol, total cholesterol (TC) and triglycerides 
(TG))5, height7 and BMI6. Significantly cis-heritable genes across the 
three expression data sets were tested individually (6,924 tests) and 
together in an omnibus test that accounts for predictor correlation 
(1,075 tests; Online Methods), and we conservatively corrected for the 
8,000 total tests performed for each trait. Overall, we identified 665 
significant gene-trait associations (Supplementary Table 8). Of these, 
69 gene-trait associations did not overlap a genome-wide significant 
SNP in the corresponding GWAS, residing in 60 physically non- 
overlapping cis loci (Table 1 and Supplementary Table 9). Averaging 
over the new genes, the z2 statistics from TWAS were 1.5× higher 
than the strongest eQTL SNP for the same gene (although this may be 
slightly inflated because of winner’s curse). Our previous simulations 
suggest that the substantial gain over testing the cis-eQTL is an indi-
cation of pervasive allelic heterogeneity40 at these loci, and analyses 
of expression showed strong evidence for allelic heterogeneity at the 
TWAS genes (Supplementary Fig. 17).

We further sought to quantify the significance of the expression-
trait associations conditional on the SNP-trait effects at the locus with 
a permutation test (Online Methods). Comparing to this null assesses 
how much signal is added by the expression given the specific GWAS 
architecture of the locus. For the 69 genes, this permutation test was sig-
nificant for 54 (after accounting for 69 tests). After excluding these indi-
vidually significant genes, the P values were still substantially elevated 
with λGC of 19 (ratio of the median χ2 value to the expected null). For 
these 54 genes, we can confidently conclude that integration of expres-
sion data significantly refined the association with the trait. As before, 
more evidence of allelic heterogeneity in expression was observed at the 
loci that passed permutation (Supplementary Fig. 17). Our results are 
consistent with a model of causality where these genes harbor inherited 
causal variants that modulate expression, which in turn has a complex 
effect on the cell and downstream impact on complex traits6.

Next, we evaluated the contribution to heritability of all expres-
sion-trait associations, including those that were not genome-wide 
significant (Online Methods)29,30. We estimated the variance in 
a trait explained by all METSIM and YFS imputed genes (hGE

2 ) to 
be 3.4% averaged over six traits (Supplementary Table 10). We 
assumed independence of the two data sets and did not include 
the NTR genes because of the strong correlation of these data with 
YFS. Height had the most variance attributable to heritable genes 
at hGE

2  = 7.1%. These combined estimates were consistently higher 
than those from a corresponding analysis using predictions from 
permuted expression (Supplementary Table 10). For the four traits 
with individual-level genotype and phenotype data in METSIM 
(BMI, TG, waist-hip ratio (WHR) and fasting insulin levels (INS)), 
we estimated hGE

2  directly using variance components over the 
imputed expression values (Online Methods). On average, all sig-
nificantly heritable genes in adipose and blood explained 4–6% of 
the trait variance (16–19% of the total traithg

2 ) and were largely 
orthogonal between the two predictions (Supplementary Table 11).  

The imputed expression consistently explained more trait variance 
than the best cis-eQTL in each gene and did not strongly depend on 
the size of the cis window (Supplementary Table 12).

Reevaluation using other expression data sets
To replicate the 69 new expression-trait associations, we reevaluated 
the GWAS summary statistics with expression data from two external 
studies: eQTLs from ~900 samples in the MuTHER study25 of fat, lym-
phoblastoid cell line (LCL) and skin cells and separate eQTL data from 
5,311 samples in whole blood11 (Online Methods). These expression 
studies only consist of summary-level associations and are expected 
to be much noisier as reference. In the relatively smaller MuTHER 
sample, 20 of 55 available genes replicated significantly in at least one 
tissue (after accounting for 55 tests; Supplementary Table 9). This is 
substantial given the apparent heterogeneity between expression data 
sets we previously observed (Online Methods). Notably, the correla-
tions between discovery and replication z scores were strongest for 
associations found in the corresponding tissue (ρ = 0.60, P = 1.5 × 10−5 
for blood and LCLs; ρ = 0.66, P = 0.05 for adipose; Supplementary 
Table 13), constituting significant aggregate replication and further 
evidence for the tissue-specific nature of our findings. Using the larger 
but heterogeneous training sample from ref. 11, 24 of 37 available 
genes replicated significantly (Supplementary Table 9). Although 
these replications are not strictly independent (they use the same 
GWAS data), they demonstrate that many of the newly identified loci 
are consistently significant across diverse expression cohorts.

Functional analysis of the new associations
To better understand their functional consequences, we evaluated 
the 69 new genes in the Hybrid Mouse Diversity Panel (HMDP) for 
correlation with multiple obesity-related traits. This panel includes 
100 inbred mice strains with an extensive collection of obesity-related 
phenotypes from ~12,000 genes. Of the 69 new TWAS genes previ-
ously identified, 40 were present in the panel and could be evaluated 
for effect on phenotype. Of these, 26 were significantly associated with 
at least one obesity-related trait (after accounting for genes tested) 
and 14 remained significant after accounting for 36 phenotypes tested 
(very conservatively assuming that the phenotypes were independent) 
(Supplementary Table 14). Of the genes, 77% with an association were 
associated with multiple phenotypes. For example, expression of Ftsj3 
was significantly correlated with fat mass, glucose-to-insulin ratio and 
body weight in both liver and adipose tissue, with R2 estimates ranging 
from 0.20 to 0.28. Another candidate, Iih4, was significantly correlated 
with LDL cholesterol and TC levels in liver. In humans, the correspond-
ing gene is also linked to hypercholesterolemia in Online Mendelian 
Inheritance in Man (OMIM) and was previously associated with BMI 
in East Asians41. Because of complex correlation of phenotypes, it is 
difficult to assess whether this gene set is significant in aggregate and 
genes in the HMDP are typically expected to have strong effects. We 
could not perform enough random selections of genes to establish 
significance for this set. However, we consider the 26 individually  
significant genes to be fruitful targets for follow-up studies.

The BMI and height GWAS evaluated functional enrichment at 
identified loci, and we performed similar analyses for the new genes 
that we identified. We tested the ten new BMI-associated genes and 
33 new height-associated genes for tissue-specific enrichment using 
DEPICT42, a method based on large-scale gene coexpression analyses, 
following the protocol of the original GWAS6,7. Analysis of BMI iden-
tified significant enrichment for hypothalamus and neurosecretory 
systems (P = 2.6 × 10−4, significant at false discovery rate <5%). This 
enrichment is consistent with the landmark finding in the original 
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table 1 tWAs significant genes with no known GWAs risk variants within 500 kb

GWAS Training expression Gene Chr. Locus start Locus end

P value

TWAS Permuted Best cis-SNP

LOCKE.BMI Omnibus INO80E 16 29,506,615 30,517,114 3 × 10−9 3 × 10−7 3 × 10−6 *

LOCKE.BMI Omnibus FTSJ3 17 61,396,793 62,407,372 1 × 10−7 5 × 10−6 9 × 10−7 *

LOCKE.BMI Omnibus PAM 5 101,589,685 102,866,809 3 × 10−7 4 × 10−9 3 × 10−3 *

LOCKE.BMI YFS GGNBP2 17 34,400,737 35,446,278 1 × 10−6 7 × 10−5 3 × 10−6 *

LOCKE.BMI YFS MYO19 17 34,351,477 35,399,284 3 × 10−6 4 × 10−5 3 × 10−6 *

LOCKE.BMI Omnibus OPRL1 20 62,211,526 63,231,996 3 × 10−6 9 × 10−5 2 × 10−5 *

LOCKE.BMI NTR RABGAP1 9 125,203,287 126,367,145 4 × 10−6 3 × 10−5 1 × 10−5 *

LOCKE.BMI YFS SMARCD2 17 61,409,444 62,420,425 5 × 10−6 9 × 10−5 9 × 10−7 *

LOCKE.BMI METSIM AL049840.1 14 103,677,607 104,679,149 5 × 10−6 5 × 10−5 1 × 10−7 *

LOCKE.BMI Omnibus LPAR2 19 19,234,477 20,239,739 6 × 10−6 3 × 10−5 4 × 10−6 *

WILLER.HDL YFS MRPS18B 6 30,085,486 31,094,172 1 × 10−7 2 × 10−2 4 × 10−6

WILLER.LDL Omnibus PAM 5 101,589,685 102,866,809 4 × 10−15 9 × 10−12 2 × 10−3 *

WILLER.LDL Omnibus ITIH4 3 52,346,991 53,365,495 8 × 10−9 4 × 10−6 3 × 10−5 *

WILLER.LDL Omnibus WARS 14 100,300,125 101,343,142 1 × 10−8 6 × 10−7 3 × 10−5 *

WILLER.LDL Omnibus MAN2C1 15 75,148,133 76,160,971 1 × 10−8 1 × 10−5 6 × 10−5 *

WILLER.LDL YFS DHRS13 17 26,724,799 27,730,089 6 × 10−7 4 × 10−4 2 × 10−6 *

WILLER.LDL YFS ERAL1 17 26,681,956 27,688,085 8 × 10−7 9 × 10−4 2 × 10−6

WILLER.LDL YFS HCG27 6 30,665,537 31,671,745 2 × 10−6 7 × 10−3 7 × 10−8

WILLER.LDL YFS VARS2 6 30,376,019 31,394,236 3 × 10−6 2 × 10−2 1 × 10−5

WILLER.LDL Omnibus PEX6 6 42,431,608 43,446,958 5 × 10−6 3 × 10−5 4 × 10−4 *

WILLER.LDL Omnibus CSK 15 74,574,398 75,595,539 6 × 10−6 1 × 10−4 1 × 10−5 *

WILLER.TC Omnibus PAM 5 101,589,685 102,866,809 9 × 10−15 3 × 10−13 5 × 10−3 *

WILLER.TC Omnibus WARS 14 100,300,125 101,343,142 2 × 10−8 4 × 10−6 2 × 10−5 *

WILLER.TC Omnibus MAN2C1 15 75,148,133 76,160,971 3 × 10−7 7 × 10−5 2 × 10−6 *

WILLER.TC Omnibus ITIH4 3 52,346,991 53,365,495 6 × 10−7 2 × 10−5 5 × 10−5 *

WILLER.TC NTR CDK2AP1 12 123,245,552 124,256,687 6 × 10−7 2 × 10−4 5 × 10−6 *

WILLER.TC YFS TBKBP1 17 45,271,447 46,289,416 9 × 10−7 3 × 10−4 2 × 10−7 *

WILLER.TC METSIM RPP25 15 74,746,757 75,749,805 2 × 10−6 2 × 10−4 9 × 10−7 *

WILLER.TC Omnibus CSK 15 74,574,398 75,595,539 2 × 10−6 9 × 10−5 9 × 10−7 *

WILLER.TC YFS MPI 15 74,682,346 75,691,798 2 × 10−6 2 × 10−4 5 × 10−6 *

WILLER.TC Omnibus DAGLB 7 5,948,757 7,023,821 2 × 10−6 8 × 10−5 7 × 10−6 *

WILLER.TC NTR TOM1 22 35,195,267 36,243,985 2 × 10−6 2 × 10−6 1 × 10−6 *

WILLER.TC METSIM HMGXB4 22 35,153,445 36,191,800 3 × 10−6 4 × 10−5 4 × 10−7 *

WILLER.TC NTR C17orf68 17 7,628,139 8,651,413 3 × 10−6 6 × 10−6 2 × 10−7 *

WILLER.TG YFS PABPC4 1 39,526,488 40,542,462 1 × 10−8 1 × 10−4 8 × 10−8 *

WILLER.TG Omnibus PACS1 11 65,337,834 66,512,218 5 × 10−8 3 × 10−4 1 × 10−5 *

WOOD.HEIGHT Omnibus INO80E 16 29,506,615 30,517,114 2 × 10−10 2 × 10−5 1 × 10−7 *

WOOD.HEIGHT NTR INPP5B 1 37,825,435 38,912,729 2 × 10−9 1 × 10−6 1 × 10−6 *

WOOD.HEIGHT Omnibus MEGF9 9 122,863,091 123,976,748 3 × 10−9 2 × 10−4 1 × 10−7 *

WOOD.HEIGHT Omnibus ATF1 12 50,657,493 51,714,905 6 × 10−9 4 × 10−5 1 × 10−6 *

WOOD.HEIGHT Omnibus PAM 5 101,589,685 102,866,809 2 × 10−8 8 × 10−6 1 × 10−5 *

WOOD.HEIGHT Omnibus CNIH4 1 224,044,552 225,067,161 3 × 10−8 2 × 10−5 6 × 10−8 *

WOOD.HEIGHT Omnibus PLEKHA1 10 123,634,212 124,691,867 1 × 10−7 3 × 10−5 6 × 10−7 *

WOOD.HEIGHT NTR PDXDC1 16 14,568,832 15,632,186 1 × 10−7 3 × 10−3 7 × 10−6

WOOD.HEIGHT YFS MSRB2 10 22,884,435 23,910,942 2 × 10−7 2 × 10−4 3 × 10−6 *

WOOD.HEIGHT YFS ZNF213 16 2,679,778 3,692,806 2 × 10−7 1 × 10−3 6 × 10−7

WOOD.HEIGHT NTR YWHAB 20 43,014,185 44,037,354 5 × 10−7 3 × 10−4 4 × 10−6 *

WOOD.HEIGHT NTR ITM2B 13 48,307,273 49,336,451 5 × 10−7 4 × 10−5 1 × 10−6 *

WOOD.HEIGHT Omnibus WDSUB1 2 159,592,304 160,643,310 7 × 10−7 3 × 10−4 5 × 10−6 *

WOOD.HEIGHT NTR STAT6 12 56,989,190 58,005,129 8 × 10−7 3 × 10−3 8 × 10−6

WOOD.HEIGHT Omnibus PLCL1 2 198,169,426 199,937,305 9 × 10−7 4 × 10−3 6 × 10−7

WOOD.HEIGHT YFS H2AFJ 12 14,427,270 15,430,936 1 × 10−6 4 × 10−4 6 × 10−7 *

WOOD.HEIGHT YFS FAM8A1 6 17,100,586 18,111,950 1 × 10−6 2 × 10−3 1 × 10−7

WOOD.HEIGHT METSIM AC016995.3 2 38,133,861 39,242,882 1 × 10−6 3 × 10−4 4 × 10−5 *

WOOD.HEIGHT Omnibus CDA 1 20,415,441 21,445,401 1 × 10−6 3 × 10−4 6 × 10−7 *

WOOD.HEIGHT YFS ECHDC2 1 52,861,656 53,892,884 1 × 10−6 3 × 10−3 1 × 10−5

WOOD.HEIGHT YFS NFATC3 16 67,618,654 68,763,162 2 × 10−6 4 × 10−3 4 × 10−7

WOOD.HEIGHT YFS SH3YL1 2 –282,270 766,398 2 × 10−6 1 × 10−4 6 × 10−7 *

WOOD.HEIGHT Omnibus PABPC4 1 39,526,488 40,542,462 3 × 10−6 4 × 10−4 6 × 10−6 *

(continued)
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study6 showing enrichment in these and other central nervous system 
tissues. Notably, we recapitulated this result using only new genes that 
did not overlap any genome-wide significant SNPs. In the analysis of 
height, DEPICT did not identify any tissue-specific enrichment.

DISCUSSION
In this work, we present methods that integrate genetic and tran-
scriptional variation to identify genes with expression associated with 
complex traits. Using imputed gene expression to guide GWAS has 
three potential advantages. First, the gene is a more interpretable bio-
logical unit than an associated locus, which often contains multiple 
significant SNPs in LD that may not lie in genes and/or tag variants in  
multiple genes. Second, the lower total number of genes (or cis-heritable  
genes) means that the multiple-testing burden is substantially reduced 
relative to all SNPs. Lastly, combining cis-SNPs into a single predictor 
may capture heterogeneous signal better than individual SNPs or cis-
eQTLs. Focusing prediction on the genetic component of expression 
also avoids confounding from environmental differences caused by 
the trait that may influence expression. Our approach builds upon 
the wealth of GWAS data in massive cohorts to directly implicate the 
gene-based mechanisms underlying complex traits.

Our proposed method has conceptual similarities with two- 
sample Mendelian randomization approaches that aim to identify 
causal relations between traits using genetic variation predictions as 
a randomizer43–45. However, whereas Mendelian randomization is 
intended to quantify the total causal effect, our method has the less 
strict goal of identifying significant associations and can operate on 
summary GWAS data. Notably, our approach maintains the attractive 
feature of not being confounded by effects on expression and a trait 
that are independent of the SNPs. Other recent work has proposed to 
leverage summary statistics to estimate the underlying genetic corre-
lation between traits at the genome-wide level37 but cannot be applied 
locally as it requires multiple loci to estimate standard errors (Online 
Methods). Recent work in parallel to ours also proposes gene expres-
sion imputation from individual-level data to find expression-trait 
associations and observes benefits from a reduced multiple-testing 
burden and increased interpretability16. In contrast, our approach 
does not require individual-level GWAS data and is applicable directly 
to GWAS summary data of very large sample sizes, thus increasing 
discovery power.

Unlike current methods, which focus on individually significant 
eQTL and SNP associations5,6,8,9,11,13,26,29, our approach captures the 
full cis-SNP signal and does not require any individual marker to 
be significant. This is underscored by the fact that TWAS substan-
tially outperformed its cis-eQTL analog both in imputing expression 
and in association with a trait. Our results show that the imputation  

approach is especially effective when multiple variants influence 
expression (which in turn influences a trait). The large number of 
new associations we identified in real data supports this phenomenon 
and suggests that it may be a strong contributor to common pheno-
types46. Therefore, our approach can be seen as complementary to 
GWAS by identifying expression-trait associations that are not well 
explained by individual tagging SNPs. Future work could leverage the 
difference in performance of TWAS and GWAS to explicitly detect  
allelic heterogeneity. We note that it is still possible for some loci to 
have an independent SNP-phenotype and SNP-expression association 
driven by the same underlying variant, although we consider this to 
be an infrequent biological model.

We conclude with several limitations of our approach. First, vari-
ants influencing disease that are independent of cis expression—in 
general or in the training data—will not be identified. Second, as with 
any prediction, the number of genes that can be accurately imputed 
is still limited by the training cohort size and the quality of the train-
ing data. In particular, we found that prediction accuracy did not 
correspond with theoretical expectations and is likely driven by data 
quality. The impact of these weaknesses could be better quantified 
as expression data from larger sample sizes and a more diverse set 
of tissues become available. Although in this work we used both 
microarray and RNA sequencing as a measure of gene expression, 
thus showcasing the applicability of our approach to diverse data sets, 
the accuracy of our method intrinsically depends on the quality of  
the expression measurements. For the associated genes, it remains 
possible that the effect is actually mediated by phenotype (SNP → 
phenotype → cis expression; scenario F in Fig. 2). We attempted to 
quantify this in the YFS data by conditioning the heritability analyses 
on all the evaluated phenotypes (height, BMI and lipid concentra-
tions) but observed no significant change at individual genes or in the 
mean cis-hg

2 . These results suggest that confounding from phenotype 
does not substantially affect the tested cis expression, although at the 
current sample size we cannot completely rule out such confounders 
for individual genes. An alternative confounder arises from inde-
pendent effects on phenotype and expression at the same SNP or tag  
(Fig. 2g and Online Methods). Such instances could be indistinguish-
able from the desired causal model (Online Methods) without ana-
lyzing individual-level data, although we believe that they are still 
biologically interesting cases of colocalization. Both types of confound-
ing could potentially be quantified by training the SNP-expression  
relationships in control individuals where phenotype is fixed or by 
interrogating the gene experimentally. Lastly, the summary-based 
TWAS cannot account for rare variants that are poorly captured by 
the LD reference panel or optimally capture nonlinear relationships 
between SNPs and expression. Additional sources of information could  

table 1 (continued)

GWAS Training expression Gene Chr. Locus start Locus end

P value

TWAS Permuted Best cis-SNP

WOOD.HEIGHT METSIM RP11-473M20.14 16 2,666,043 3,684,883 3 × 10−6 4 × 10−4 1 × 10−7 *

WOOD.HEIGHT Omnibus HEBP1 12 12,627,798 13,653,207 3 × 10−6 7 × 10−4 1 × 10−6 *

WOOD.HEIGHT YFS KBTBD2 7 32,407,784 33,433,743 3 × 10−6 4 × 10−3 1 × 10−7

WOOD.HEIGHT METSIM LRRC69 8 91,614,060 92,731,464 3 × 10−6 6 × 10−4 6 × 10−7 *

WOOD.HEIGHT YFS RAB23 6 56,553,607 57,587,078 4 × 10−6 4 × 10−3 6 × 10−7

WOOD.HEIGHT YFS PPP4C 16 29,587,299 30,596,698 5 × 10−6 1 × 10−3 1 × 10−7

WOOD.HEIGHT NTR B3GALNT2 1 235,110,442 236,167,884 5 × 10−6 5 × 10−4 1 × 10−6 *

WOOD.HEIGHT YFS PSRC1 1 109,322,178 110,325,808 5 × 10−6 3 × 10−4 1 × 10−7 *

WOOD.HEIGHT YFS ACSS1 20 24,486,868 25,539,616 5 × 10−6 6 × 10−4 1 × 10−6 *

WOOD.HEIGHT Omnibus GGPS1 1 234,990,665 236,007,847 5 × 10−6 4 × 10−4 3 × 10−7 *

*Significant after permutation. WILLER, LOCKE and WOOD correspond to GWAS data from refs. 5–7, respectively.
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potentially be incorporated to improve prediction, including signifi-
cant trans associations11,28, allele-specific expression47,48, splice-QTLs  
affecting individual exons10, haplotype effects and SNP-specific  
functional priors20,49–51.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The predictor weights computed from the three 
expression studies as well as software to perform individual- and sum-
mary-level prediction are available at http://bogdan.bioinformatics.
ucla.edu/software/twas/.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Data sets. In this study, we included 11,484 participants from two Finnish 
population cohorts, the Metabolic Syndrome in Men (METSIM; n = 10,197)52,53 
and the Young Finns Study (YFS; n = 1,414)22,23. 1,400 randomly selected 
individuals from the 10,197 METSIM participants underwent a subcutaneous 
abdominal adipose biopsy, of which 600 RNA samples were analyzed using 
RNA-seq (Supplementary Note). BMI, TG, WHR and INS were inverse rank 
transformed and adjusted for age and age2. INS was additionally adjusted for 
T1D and T2D. 1,414 individuals (638 men with a median age of 43 years and  
776 women with a median age of 43) with gene expression, phenotype and 
genotype data available were included in the blood expression analysis. Height, 
BMI, TG, TC, HDL and LDL were inverse rank transformed and adjusted for 
age, age2 and sex. TC was also adjusted for statin intake. The biochemical lipid, 
glucose and other clinical and metabolic measurements of METSIM and YFS 
were performed as described previously22,52,54. Blood expression array data 
from the Netherlands Twins Registry (NTR; n = 1,247)24,55 was processed 
as described in the original paper, followed by removal of any individuals 
with GRM values >0.05. Complete details on the pipeline and quality control  
procedures can be found in the Supplementary Note.

Heritability estimation with individual data. Cis and trans variance compo-
nents were estimated using the REML algorithm implemented in GCTA19. As 
in previous studies, estimates were allowed to converge outside the expected 
0–1 bound on variance to achieve unbiased mean estimates across all genes24. 
Standard error across gene sets was estimated by dividing the observed stand-
ard deviation by the square root of the number of genes that converged (this 
will lead to underestimation because of correlated genes but is presented for 
completeness). Genome-wide hg

2  values for the four traits in the GWAS cohort 
were estimated with GCTA from a single relatedness matrix constructed over 
all post–quality control SNPs in the strictly unrelated individuals. For estimat-
ing expression-wide hGE

2 , each predicted expression value was standardized 
to mean = 0 and variance = 1, and sample covariance across these values was 
used to define the relatedness matrix. The hGE

2  value was then estimated from 
this component with GCTA, with P values for difference from zero computed 
using a the likelihood-ratio test. Twenty principal components were always 
included as fixed effects to account for ancestry. Genetic correlation between 
traits in the GWAS cohort was estimated from all post–quality control SNPs in 
the full set of 10,000 individuals with GEMMA31 (Supplementary Table 15).  
For YFS, we quantified the mediating effects of a trait on cis expression by 
separately re-estimating cis-hg

2  with all analyzed traits (height, BMI, TC, TG, 
HDL cholesterol and LDL cholesterol) included as fixed effects in addition 
to principal components. We did not observe significant differences in any 
individual gene (after accounting for 3,836 genes tested) nor in the mean 
estimate of cis-hg

2 .

Heritability estimation with summary data. As shown previously51,56, 
for an association study of n independent samples, the expected χ2 statistic  
is E GE[ ] /c2 21= + nl mh , where l is the LD score accounting for correlation, 
m is the number of markers and hGE

2  is the variance in the trait explained 
by imputed expression. We estimated l directly from the genetic values of 
expression to be close to independence (1.4 and 1.5 for METSIM and YFS, 
respectively), allowing us to solve for hGE

2  from the observed distribution of 
χ2 (or, asymptotically equivalent z2) statistics. We did not compute this value 
for the BMI GWAS because the conservative multiple-GC correction applied 
in that study would yield a severe downward bias6.

Imputing expression into genotyped samples. We evaluated three prediction 
schemes: (i) cis-eQTL, where the single most significantly associated SNP 
in the training set was used as the predictor; (ii) BLUP30, which estimates 
the causal effect sizes of all SNPs in the locus jointly using a single variance 
component; and (iii) BSLMM31, which estimates the underlying effect size 
distribution and then fits all SNPs in the locus jointly. For BLUP and BSLMM, 
prediction was done over all post–quality control SNPs using GEMMA31. We 
note that BLUP and BSLMM both perform shrinkage of the SNP weights but 
not variable selection, so all SNPs are included in the predictor. Recent work 
in parallel to ours also evaluated expression imputation using polygenic risk 
scores, LASSO and elastic net16.

Evaluating prediction accuracy. Within-study prediction accuracy was meas-
ured by fivefold cross-validation in a random sampling of 1,000 of the highly 
heritable genes (genes with significant nonzero cis heritability) for each study. 
Cross-study prediction accuracy was measured by merging the YFS and NTR 
genotyped individuals and predicting from all individuals in one cohort into 
all individuals in the other cohort. In all instances, the R2 between predicted 
and true expression across all predicted folds was used to evaluate accuracy 
(Supplementary Fig. 18 and Supplementary Note).

Imputing expression into GWAS summary statistics. Summary-based impu-
tation was performed using the ImpG-Summary algorithm4 extended to train 
on the cis genetic component of expression. Let Z be a vector of standardized 
effect sizes (z scores) of SNP for a trait at a given cis locus (Wald statistics 
β/se(β)). We impute the z score of the expression and trait as a linear combina-
tion of elements of Z with weights W (these weights are precompiled from the 
reference panel as Σ Σe,s s,s

1−  for ImpG-Summary or directly from BSLMM). Σe,s 
is the covariance matrix between all SNPs at the locus and gene expression, 
and Σs,s is the covariance among all SNPs (LD). Under null data (no associa-
tion) and a multivariate normal assumption, Z ~N(0,Σs,s). It follows that the 
imputed z score of expression and trait (WZ) has variance WΣs,sW  t; therefore, 
we use WZ/(WΣs,sW  t)1/2 as the imputation Z score of the cis genetic effect on 
the trait. In practice, for each gene, all SNPs within 1 Mb of the gene present 
in the GWAS were selected, and Σs,s and Σe,s and were computed in the refer-
ence panel (expression and SNP data). To account for finite sample size and 
instances where Σs,s was not invertible, we adjusted the diagonal of the matrix 
using a technique similar to ridge regression with λ = 0.1 (as evaluated in 
Pasaniuc et al.4). This regularization, as well as noise in the estimation of W, 
can translate to lower power for association but yield conservative imputed 
Z statistics.

We used the YFS samples that were assayed for SNPs, phenotype and expres-
sion to assess the consistency of individual-level and summary-based TWAS. 
We first computed GWAS association statistics between phenotype (height) 
and SNPs and used them in conjunction with the expression data to impute 
summary-based TWAS statistics. The TWAS statistics were compared to 
those from the simple regression of (height ~expression) in the YFS data. We 
observed a correlation of 0.415 (Supplementary Fig. 5), consistent with an 
average cis-hg2 of 0.17 (≈0.4152) observed for these genes. When restricting to a 
regression of (height ~cis component of expression), we observed a correlation 
of 0.998 to the summary-based TWAS, demonstrating the equivalence of the 
two approaches when using in-sample LD.

Power analysis of the summary-based method. Simulations to evaluate 
the summary-based method were performed in 6,000 unrelated METSIM 
GWAS individuals. One hundred genes and the SNPs in the surrounding  
1 Mb were randomly selected for testing. For each gene, normally distributed 
gene expression was simulated as E = Xβ + ε, where X is a matrix of the desired 
number of causal genotypes, sampled randomly from the locus; β is a vector 
of normally distributed effect sizes for each causal variant; and ε is a vector of 
normally distributed noise to achieve a cis-hg

2  value of 0.17 (corresponding to 
the mean observed in our significant gene sets). One thousand individuals with 
SNPs and simulated expression were then withheld for training the predic-
tors (Supplementary Fig. 19). For the remaining 5,000 individuals, normally 
distributed noise was applied to expression to generate a heritable phenotype 
where expression explained 0.10/180 or 0.20/180 of the phenotypic variance 
(with the former corresponding to the average effect sizes for associated genes 
observed in a large GWAS of height57 and the latter corresponding to high-
effect loci). Association between SNPs and a phenotype was estimated in the 
5,000 individuals (standard Z score), and phenotype generation was repeated 
with different environmental noise (up to 60 iterations) to generate results 
from multiple GWAS substudies. Association statistics from each run were 
then subjected to meta-analysis to reach precision corresponding to a larger 
GWAS of the desired size (up to 300,000) (Supplementary Note).

Detecting a locus was defined as follows. The single most significant trait 
associated SNP was taken as the GWAS association, considered detected if 
GWAS significance was < 5 × 10−8. The single most significant eQTL in the 
training set was taken as the eQTL-guided association (eGWAS), and consid-
ered detected if GWAS significance was <0.05/15,000. The TWAS association 
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was measured by training the imputation algorithm on the 1,000 held-out 
samples with expression and imputing into the GWAS summary statistics, and 
considered detected if significance was <0.05/15,000. The entire procedure 
was repeated 500 times (5 per gene) and power was estimated by counting 
the fraction of instances where each method detected the locus. As in the 
cross-validation analysis, training on the genetic component of expression 
instead of the overall expression consistently increased TWAS power by ~10% 
(Supplementary Fig. 7). Two null expression models were tested by generating 
gene expression for the 1,000 held-out samples that was standard normal as 
well as heritable expression (cis-hg

2  = 0.17) with GWAS Z scores drawn from 
the standard normal (Supplementary Table 4). See the Supplementary Note 
for detailed simulation setup.

Power comparison to COLOC. COLOC uses summary data from eQTL and 
GWAS studies and a Bayesian framework to identify the subset of GWAS 
signals that co-localize with eQTLs. We sought to compare TWAS to the 
COLOC-estimated posterior probability of association (PPA) being shared for 
both phenotypes (PP4 in the COLOC implementation). COLOC additionally 
evaluates the hypothesis of multiple independent associations (PP3), but this 
is more general than the proposed TWAS model and was not tested. Because 
COLOC relies on priors of association to produce posterior probabilities of 
co-localization, we sought to identify a significance threshold that would make 
a fair comparison to the TWAS P value–based threshold. Specifically, we ran 
both methods on a realistic null expression simulation (with the generative 
model described previously): the expression was sampled from a null stand-
ard normal for 1,000 individuals and eQTLs computed; the trait associations 
were derived from a simulated 300,000 GWAS with a single typed causal 
variant that explained 0.001 variance of the trait (high effect). We believe 
this scenario is both realistic and consistent with the GWAS assumptions of 
COLOC. We then empirically identified the statistical threshold for COLOC 
and TWAS that would yield a 5% false discovery rate: co-localization statistic 
PP4 > 0.17 for COLOC, and P < 0.05 for TWAS. We note that this empirical 
COLOC threshold is much less stringent than PP4 > 0.8 used in the COLOC 
paper (PP4 > 0.8 would yield lower power for COLOC in our simulations). 
These thresholds were subsequently used to evaluate the power to detect an 
expression-trait association in simulations with a true effect (Supplementary  
Figs. 10 and 12). The reported power is for a single locus, and we did not 
attempt to quantify genome/transcriptome-wide significance.

Individual-level analysis of METSIM GWAS. We imputed the significantly 
heritable genes into the METSIM GWAS cohort of 5,500 unrelated individu-
als with individual-level genotypes (and unmeasured expression). We then 
tested the imputed expression for obesity-related traits: body mass index 
(BMI), triglycerides (TG), waist-hip-ratio (WHR) and fasting insulin levels 
(INS). Overall, the evaluated traits exhibited high phenotypic and genetic cor-
relation as well as highly significant genome-wide hg

2  ranging from 23–36% 
(Supplementary Table 15), consistent with common variants having a major 
contribution to disease risk1. Association was assessed using standard regres-
sion as well as a mixed-model that accounted for relatedness and phenotypic 
correlation31, with similar results. The effective number of tests for each trait 
was estimated by permuting the phenotypes 10,000 times and, for each per-
mutation, re-running the association analysis on all predicted genes. For each 
trait, Pperm, the P-value in the lowest 0.05 of the distribution, was computed 
and the effective number of tests was 0.05/Pperm (reported in Supplementary 
Tables 16 and 17). All phenotypes were shuffled together, so any phenotypic 
correlation was preserved. The effective number of tests corresponded to 
88–95% of the total number of genes, indicating a small amount of statistical 
redundancy (Supplementary Note). To evaluate the TWAS approach, we com-
puted phenotype association statistics for the 5,500 unrelated individuals and 
re-ran the analysis using only these summary statistics and the same expres-
sion reference panels. The resulting TWAS associations were nearly identical 
to the direct TWAS associations across the four traits (Pearson ρ = 0.96).  
Reassuringly, the TWAS was generally more conservative than the direct  
estimates (Supplementary Fig. 16).

Refining trait-associated genes at known loci. We focused on GWAS data 
from height7 that identified 697 genome-wide significant variants in 423 loci, 

and conducted the summary-based TWAS over all genes in these loci using 
YFS and NTR as expression training data. Because the YFS individuals had 
been phenotyped for height and not tested in the GWAS, we could directly 
evaluate whether selected genes were associated with phenotype. At each locus, 
we considered three strategies for selecting a single causal gene: (i) the gene 
nearest to the most significantly associated SNP; (ii) the gene for which the 
index SNP is the strongest eQTL in the training data; (iii) the most significant 
TWAS gene. For each strategy, we then constructed a risk-score using the 
genetic value of expression for the selected gene weighted by the correspond-
ing TWAS Z-score. The same procedure was then re-evaluated using TWAS 
values trained in the NTR cohort (which introduces additional noise due to 
heterogeneity between the cohorts, Supplementary Table 5). We separately 
used GCTA to estimate the heritability of height explained by all of the genes 
selected by each algorithm by constructing a GRM from the selected genes. 
In contrast to the risk score, this does not assume predefined weights on each 
gene but allows them to be fit by the REML model. Results were comparable, 
with only the TWAS-selected genes explaining significantly nonzero herit-
ability (Supplementary Table 5).

Validation analysis in lipid GWAS data. We evaluated the performance of 
TWAS by identifying significantly associated genes in the 2010 lipid study 
that did not overlap a genome-wide significant SNP, and looking for newly 
genome-wide significant SNPs in the expanded 2013 study. The P-value for the 
number of genes with increased significance and genome-wide significance 
in the 2013 study was computed by a hypergeometric test, with background 
probabilities estimated from the set of significantly heritable genes. Of the 
genes not overlapping a significant locus in the 2010 study, 70% had a more 
significant SNP in the 2013 study, and 3.5% overlapped a genome-wide sig-
nificant SNP (P < 5 × 10−8).

Meta-analysis of imputed expression from multiple tissues. We proposed 
a novel omnibus test for significant association across predictions from all 
three cohorts. Because the imputation is made into the same GWAS cohort, 
correlation between predictors must be accounted for. For each gene i, we 
estimated a correlation matrix Ci by predicting from the three tissues into the 
~5,500 unrelated METSIM GWAS individuals (though any large panel from 
the study population could be used). This correlation includes both the genetic 
correlation of expression as well as any correlated error in the predictors, thus 
capturing all redundancy. On average, a correlation of 0.01, 0.01 and 0.43 was 
observed between YFS:METSIM, NTR:METSIM, and YFS:NTR, highlight-
ing the same tissue of origin the last pair. We then used the three-entry vec-
tor of TWAS predictions, Zi, to compute the statistic omnibusi = Zi′ Ci

−1 Zi  
which is approximately χ2 (3-dof) distributed and provides an omnibus  
test for effect in any tissue while accounting for correlation58,59. Though the 
correlation observed in our data was almost entirely driven by the YFS:NTR 
blood data sets, we expect this to be an especially useful strategy for future 
studies with many correlated tissues. An alternative approach would be to 
perform traditional meta-analysis across the three cohorts and then predict 
the TWAS effect. However, this would lose power when true eQTL effect 
sizes (or LD) differ across the cohorts, which we have empirically observed to  
be the case by looking at predictor correlations. The proposed omnibus 
test aggregates different effects across the studies, at the cost of additional  
degrees of freedom.

Gene permutation test. The standard TWAS Z score is a test against the null 
of no SNP-trait association; that is, ZTWAS = WZ/(WΣs,sWt)1/2 is well calibrated 
(has a mean of 0 and unit variance) only under the null model of Z ~N(0,Σs,s). 
In the alternate model where Z is drawn from a nonzero mean distribution60,61, 
ZTWAS has a distribution that depends both on Z and the weights W. To quan-
tify the impact of the weights on ZTWAS regardless of whether Z is null or 
non-null, we conduct permutations conditional on the observed Z vector. For 
each gene, the expression labels were randomly shuffled, and the summary-
based TWAS analysis was trained on the resulting expression to compute a 
permuted new null for ZTWAS. Testing against this permuted null distribution 
is equivalent to testing for an expression-trait association (or genetic cor-
relation between expression and a trait) conditional on the observed GWAS 
statistics at the locus (which may not be drawn from the null of no association). 

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



Nature GeNeticsdoi:10.1038/ng.3506

The permutation test empirically computes this distribution of ZTWAS values 
conditional on the observed Z and asks how extreme the observed ZTWAS is 
among all possible W values coming from permuted expression data. Note that 
failing the permutation test may be an indication of lack of power to show that 
the expression significantly refines the direct SNP-trait signal. In practice, the 
permutation test was run 1,000 times for each TWAS gene, and a P value was 
computed by Z test against this null.

Relationship to genetic covariance/correlation. Our tests relate to previously 
defined estimators of genetic correlation and covariance between traits. We 
consider two definitions of genetic covariance at a locus: (i) the covariance 
between the genetic component of expression and the genetic component of 
a trait and (ii) the covariance between the causal effect sizes for expression 
and the causal effect sizes for a trait. Under assumptions of independent effect 
sizes, these definitions yield asymptotically identical quantities37. Assuming 
a substantially large training set where the genetic component of expression 
can be perfectly predicted, the direct TWAS tests for a significant association 
between the genetic component of expression and the trait—equivalent to 
testing definition (i) for a polygenic trait. Likewise, the summary-based TWAS 
tests for a significant sum of products of the causal expression effect sizes and 
the causal trait effect sizes—equivalent to definition (ii) up to a scaling factor. 
The TWAS approach therefore fits naturally with the broader study of shared 
genetic etiology of multiple phenotypes. At the sample sizes evaluated in this 

study, the TWAS approach is substantially better powered than an LD-based 
estimate of local genetic correlation (Supplementary Note).
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