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Improving fine-mapping by modeling 
infinitesimal effects
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Benjamin M. Neale    1,2,3,4, Zhou Fan10,11  & Hilary K. Finucane    1,2,3,11 

Fine-mapping aims to identify causal genetic variants for phenotypes. 
Bayesian fine-mapping algorithms (for example, SuSiE, FINEMAP, ABF and 
COJO-ABF) are widely used, but assessing posterior probability calibration 
remains challenging in real data, where model misspecification probably 
exists, and true causal variants are unknown. We introduce replication 
failure rate (RFR), a metric to assess fine-mapping consistency by 
downsampling. SuSiE, FINEMAP and COJO-ABF show high RFR, indicating 
potential overconfidence in their output. Simulations reveal that nonsparse 
genetic architecture can lead to miscalibration, while imputation noise, 
nonuniform distribution of causal variants and quality control filters have 
minimal impact. Here we present SuSiE-inf and FINEMAP-inf, fine-mapping 
methods modeling infinitesimal effects alongside fewer larger causal 
effects. Our methods show improved calibration, RFR and functional 
enrichment, competitive recall and computational efficiency. Notably, using 
our methods’ posterior effect sizes substantially increases polygenic risk 
score accuracy over SuSiE and FINEMAP. Our work improves causal variant 
identification for complex traits, a fundamental goal of human genetics.

Over the past two decades, genome-wide association studies (GWAS) 
have successfully identified thousands of loci that are associated with 
various diseases and traits1. However, refining these associations to 
identify causal variants remains challenging, due to extensive linkage 
disequilibrium (LD) among associated variants2. Many approaches can 
be taken to help nominate causal variants from associations, such as 
overlapping GWAS signals with coding or functional elements of the 
genome3, with expression quantitative trait loci4, and across popula-
tions having different ancestries and patterns of LD5–7. Complemen-
tary to and in conjunction with these approaches, Bayesian sparse 

regression and variable selection methods, which aim to identify causal 
variants and quantify their uncertainty based on a statistical model 
(for example, SuSiE8, FINEMAP9,10, ABF11 and COJO12-ABF), are widely 
applied in practice13–19.

The appeal of Bayesian approaches to fine-mapping is two-fold. 
First, these methods determine a posterior inclusion probability (PIP) 
for each variant, quantifying the probability that the variant is causal 
under the model, which can reflect uncertainty due to LD. For example, 
two variants in strong LD and harboring a strong association with the 
phenotype may each have PIP close to 50%, representing confidence 
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366,000 cohort. This RFR is an estimate of the conditional probability 
Pr(PIP366,000 < 0.1| PIP100,000 > 0.9) for a randomly chosen variant. In 
a truly sparse causal model, assuming that the method is well powered 
at sample size N = 366,000 to detect true causal variants, which are 
identified with high confidence at 100,000, the RFR is an approximate 
lower bound for the false discovery rate Pr(not causal | PIP100,000 > 0.9) 
(Supplementary Note 2).

Across all ten traits, we observed different levels of RFR for differ-
ent phenotypes, and an aggregated RFR of 15% for SuSiE and 12% for FIN-
EMAP (Fig. 1a,b; see Extended Data Fig. 1 for different PIP thresholds). 
These values far exceed the false discovery rate expected in a correctly 
specified sparse Bayesian model (SuSiE 1.8% and FINEMAP 2.0%), which 
we denote by expected proportion of noncausal variants (EPN) and 
estimate from the mean reported PIPs exceeding 0.9. In contrast, ideal 
simulations under correctly specified models show close agreement 
between RFR and EPN (Fig. 1a, Methods and Supplementary Note 3).

To gain insight into whether nonreplicating variants (PIP 0.9 at 
100,000 and PIP <0.1 at 366,000) are causal, we examined the func-
tional annotations, focusing on two distinct categories: coding and 
putative regulatory (Methods). We found a significant depletion of 
functionally important variants in the nonreplicating set compared 
to the replicated set (P = 1.7 × 10−7) (Fig. 1c and Methods). This suggests 
that many nonreplicating variants may be noncausal, and that SuSiE 
and FINEMAP may be miscalibrated when applied in real data (for our 
investigation into other potential causes for high RFR, see Supple-
mentary Note 4). We found higher functional enrichment in the set of 
nonreplicating variants than the background, suggesting some PIPs 
at N = 366,000 may be too conservative. However, here we focus on 
investigating the more concerning under-conservative PIPs that can 
lead to elevated false discovery rate.

Unmodeled nonsparse effects can lead to miscalibration
Bayesian sparse variable selection approaches to fine-mapping, 
including SuSiE and FINEMAP, commonly rely on some of the follow-
ing assumptions. (1) Within each genome-wide significant locus, one 
or a small number of variants have a true causal contribution to the 
phenotype. (2) All true causal variants within the locus are included in, 
or tagged by a sparse subset of, the analyzed genotypes. (3) The distri-
bution of causal variant effect sizes is well approximated by a simple, 
oftentimes Gaussian, prior. (4) There is no uncorrected confounding, 
and the residual error is uncorrelated with the genotype. (5) There is 
no imputation noise or error in the genotypes. Violations of any of 
these assumptions can, in principle, cause miscalibration, although 
the severity of such miscalibration under the degrees of violation that 
are present in fine-mapping applications is unclear a priori.

We designed large-scale simulations to investigate how SuSiE 
and FINEMAP may be affected by these five sources of misspecifica-
tion. Our simulations use UKBB genotypes (N = 149,630 individuals of 
white British ancestry) and BOLT linear mixed model (BOLT–LMM)22 
for GWAS, incorporating (1) varying amounts of unmodeled nonsparse 
causal effects (varying both the coverage of nonsparsity, that is, the 
proportion of variants with nonzero effects, and the amount of herit-
ability the nonsparse component explains), (2) missing causal variants 
that are removed by quality control filtering before fine-mapping, (3) 
effect size distributions for the large and sparse causal variants that 
reflect estimates from fine-mapping of real traits, (4) varying amounts 
of uncorrected population stratification, and (5) imputation noise 
in the input genotypes (see Methods for detailed description of our 
simulations and other misspecifications we considered). In previous 
work20 by our group, we found that quality control filters and imputa-
tion noise did not contribute to miscalibration in simulations; here 
we continued to include them while adding nonsparsity, effect size 
estimates from real data, and uncorrected population stratification as 
additional sources of miscalibration. Note that we simulated a single 
cohort, without the heterogeneity that often comes with meta-analysis, 

that there is a causal signal but uncertainty about which variant(s)  
is/are causal. Second, these methods incorporate assumptions about 
genetic architecture—namely the relative probabilities of different 
numbers of and configurations of causal single nucleotide polymor-
phisms (SNPs), as reflected by a Bayesian prior—to improve statistical 
power for identifying high-confidence variants.

Bayesian fine-mapping methods are correctly calibrated when 
the PIPs accurately reflect the true proportions of causal variants, for 
example, nine out of ten variants having PIP 90% are truly causal for 
the trait. Calibration (that is, whether or not the posterior probability 
of causality reflects the true proportion of causal variants) is ensured 
when the linear model for genetic effects and Bayesian prior for genetic 
architecture across loci are both correctly specified, and accurate 
calibration has also been demonstrated empirically in simulations to 
be robust under mild model misspecifications20. However, the actual 
calibration and false discovery rates of these methods in real data 
applications are not easily determined, as true causal variants and the 
sources of model misspecification may be unknown.

In this Article, we propose the replication failure rate (RFR) to 
assess the stability of fine-mapping methods by evaluating the con-
sistency of PIPs in random subsamples of individuals from a larger 
well-powered cohort. We found the RFR to be higher than expected 
across traits for several Bayesian fine-mapping methods. Moreover, 
variants that failed to replicate at the higher sample size were less likely 
to be coding. Together these analyses suggest that SuSiE, FINEMAP 
and COJO-ABF may be miscalibrated in real data applications. In other 
words, they may return a disproportionately large number of false 
discoveries among high-PIP variants.

We performed large-scale simulations to assess the effects of 
several plausible sources of model misspecification on calibration. 
These simulations—which include, among other factors, varying lev-
els of nonsparsity and stratification—suggest that a denser and more 
polygenic architecture of genetic effects may be a major contribu-
tor to PIP miscalibration. We thus propose incorporating a model of 
infinitesimal effects when performing Bayesian sparse fine-mapping, 
recasting the goal of fine-mapping as the identification of a sparse set 
of large-effect causal variants among many variants having smaller 
effects. We develop and implement fine-mapping tools SuSiE-inf and 
FINEMAP-inf that extend the computational ideas of SuSiE and FIN-
EMAP to model additional infinitesimal genetic effects within each 
fine-mapped locus.

Applying SuSiE-inf and FINEMAP-inf to ten quantitative traits 
in the UK Biobank (UKBB) shows improved RFR. SuSiE-inf high-PIP 
variants are more functionally enriched than SuSiE high-PIP variants. 
Cross-ancestry phenotype prediction using SuSiE-inf/FINEMAP-inf 
shows substantial improvement over SuSiE/FINEMAP across seven 
traits and six diverse ancestries. These results suggest that explicit 
modeling of a polygenic genetic architecture, even within individual 
genome-wide significant loci, may substantially improve fine-mapping 
accuracy.

Results
Current methods are probably miscalibrated in real data
Real data benchmarking of fine-mapping methods is challenging due 
to the lack of ground truth. However, downsampling large cohorts 
allows assessment of the methods’ stability. We chose ten well-powered 
quantitative phenotypes (Methods) in the UKBB and computed the 
RFR for SuSiE and FINEMAP as follows (for results related to ABF and 
COJO-ABF, see Supplementary Note 1). Our group previously performed 
fine-mapping20 on a cohort of 366,194 unrelated “white British” ances-
try individuals defined in the Neale Lab UKBB GWAS21. We downsampled 
this cohort to a random subsample of 100,000 and performed 
fine-mapping with the same pipeline (Methods). RFR is defined as the 
proportion of high-confidence (PIP >0.9) variants fine-mapped in the 
100,000 subsample that failed to replicate (PIP <0.1) in the full  
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where quality control (QC) and imputation are important contributors 
to miscalibration23. Moreover, we did not consider error in the prob-
abilities outputted by standard imputation software or different types 
of genotyping error, which could contribute to miscalibration even in 
the absence of heterogeneity.

Our simulations show that missing causal variants due to QC, use 
of a realistic non-Gaussian effect size distribution estimated from real 
data, and imputation error did not induce miscalibration, consistent 
with and extending previous results20.

SuSiE and FINEMAP were both miscalibrated in simulations with 
nonsparse effects. For example, when nonsparse causal effects explain 
75% of the total SNP heritability, only about 80% of variants with PIP 
≥0.9 are causal, far below the rate of approximately 97% that we would 
expect given the variants’ mean PIP. Miscalibration increased and recall 
decreased as we increased the proportion of total SNP heritability (set 
at 0.5; for comparison, see Supplementary Table 1 for common SNP 
heritability in real traits) explained by nonsparse effects from 58% to 
100% (Fig. 2a,b and Table 1) while fixing the coverage to 1%. This trend 
was consistently observed at different levels of coverage. See Meth-
ods and Extended Data Fig. 2 for results at 0.5% and 5% coverage. We 
emphasize that calibration was measured against the set of all causal 
variants, including the nonsparse causal effects.

To further support that unmodeled nonsparse causal effects—
among all the misspecification we incorporated—formed the primary 
driver of the observed miscalibration, we decomposed the simulated 
genetic component Xβ of the phenotype into the sum of four sub-
components representing sparse causal effects, missing causal vari-
ants, uncorrected stratification and unmodeled nonsparse causal 
effects. Regressing each of these four subcomponents on the true and  

false positive variants (respectively defined as causal and noncausal 
variants with PIP ≥0.9), false positive variants were more correlated 
with the nonsparse causal effects than true positive variants (Fig. 2c 
and Methods).

Our simulated population stratification in the standard pipeline 
(Methods), where BOLT–LMM was used for association mapping, failed 
to induce miscalibration. Replacing BOLT–LMM with ordinary least 
squares (OLS) for association mapping allowed us to induce higher 
levels of uncorrected confounding (Supplementary Table 2) that did 
lead to miscalibration (Fig. 3), but are less true to the pipeline used in 
our real data applications. See Methods for interpretation and more 
discussion on these results.

In conclusion, the presence of nonsparse effects is a driver of 
miscalibration for SuSiE and FINEMAP. The stratification we simulated 
only induced miscalibration when using OLS for association mapping 
but not when using BOLT–LMM. None of the other sources of misspeci-
fication incorporated in our simulations caused miscalibration within 
our fine-mapping pipeline.

Modeling infinitesimal effects in addition to sparse effects
To address PIP miscalibration that may arise from nonsparse causal 
effects, we propose to explicitly incorporate a model of broad infini-
tesimal genetic effects when fine-mapping causal variants. Here, we 
describe two specific implementations of this idea that extend FINEMAP 
and SuSiE. We call the resulting methods FINEMAP-inf and SuSiE-inf.

FINEMAP-inf and SuSiE-inf are based on a random-effects linear 
model y = X (β + α) + ϵ for observed phenotypes y across n samples, 
where X  is an n by p genotype matrix for p variants, β is a vector of 
sparse genetic effects of interest, α is an additional vector of dense 
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Fig. 1 | RFRs and functional enrichments. a, RFRs for SuSiE and FINEMAP 
aggregated across ten UKBB quantitative phenotypes, contrasted with RFRs in 
ideal simulations and with EPN. b, Trait-separated RFRs for SuSiE and FINEMAP. 
The ten UKBB traits are height, eBMD, Plt, HbA1c, RBC, ALP, IGF1, LDLC, Lym and 
eGFR. c, Functional annotations in three disjoint categories: coding, putative 
regulatory and nongenic (see Methods for detailed definitions). Variants are 
aggregated between SuSiE and FINEMAP with nonreplicating, the group of 
nonreplicating variants (PIP >0.9 at N = 100,000 and PIP <0.1 at N = 366,000); 
replicated, the group of replicated variants (PIP >0.9 at both N = 100,000 and 

N = 366,000); and background, the group of all variants included in the fine-
mapping analysis, aggregated across ten traits. For method-separated plots and 
more sets of variants, see Supplementary Fig. 1. Error bars represent one standard 
deviation of the corresponding binomial distribution Binom(n,p), where n is the 
total number of variants (for a and b, n is the total number of high-PIP variants at 
sample size N = 100,000; for c, n is the total number of variants in each group) and 
p is the corresponding proportion (RFR in a and b and proportion of annotated 
variants in c). Bar plot data are presented as proportion ± standard deviation. 
Numerical results are available in Supplementary Tables 4 and 5.
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infinitesimal effects and ϵ is the residual error. In the context of such a 
model, we define the primary goal of fine-mapping as inferring the 
nonzero coordinates of the sparse component β. We will refer to these 
coordinates as the ‘causal model’ and the ‘causal variants, although in 
this model, every variant may have an additional small causal effect on 
y through the infinitesimal component α.

We model coordinates of α and of the residual error ϵ as independ-
ent and identically distributed with normal distributions 𝒩𝒩(0, τ2) and 
𝒩𝒩 (0,σ2), respectively, where τ2 is the effect size variance for the infini-
tesimal effect. For FINEMAP-inf, coordinates of the sparse effects β are 
also modeled as independent and identically distributed, with 
point-normal distribution π0𝒩𝒩 (0, s2) + (1 − π0)δ0. We use a shotgun 
stochastic search procedure as in FINEMAP for performing approxi-
mate posterior inference of the sparse component β, marginalizing its 
posterior distribution over both the infinitesimal effects α and  
the residual errors ϵ. The shotgun stochastic search is divided into 
several epochs, and we propose a method-of-moments approach  
to update estimates of the variance components (σ2, τ2)  between  
epochs.

For SuSiE-inf, we follow the approach of SuSiE and instead para-
metrize the sparse causal effects as a sum of single effects β = ∑L

l=1β(l) 
for a pre-specified number of causal variants L. As in SuSiE, we perform 
posterior inference for β using a variational approximation for the joint 
posterior distribution of β(1),… ,β(L), again marginalizing over both α 
and ϵ. The approximation is computed by iterative stepwise optimiza-
tion of an evidence lower bound, where updated estimates of the vari-
ance components (σ2, τ2) are computed within each iteration using a 
method-of-moments approach.

The resulting models are similar to LMMs commonly used in con-
texts of association testing and phenotype prediction22,24–26. See Dis-
cussion for an explanation of why we do not apply existing methods 
for fitting LMMs.

Both methods take as input either the GWAS data (y,X) or sufficient 
summary statistics given by the un-standardized per-SNP z scores, 
z = (1/√n)XTy, the in-sample LD correlation matrix LD = (1/n)XTX, and 
the mean-squared phenotype ⟨y2⟩ = (1/n) yTy. Both methods output 
estimates of (σ2, τ2) for each locus fine-mapped, together with a PIP and 
posterior mean effect size estimate for each SNP. Computational cost 
is reduced by expressing all operations in terms of the eigenvalues and 
eigenvectors of LD, which may be pre-computed separately for each 
fine-mapped locus (Fig. 4). Details of the methods and computations 
are provided in Supplementary Note 5. We have released open-source 
software implementing these methods ('Code availability').

SuSiE-inf and FINEMAP-inf show improved performance
In our simulations, we find that SuSiE-Inf and FINEMAP-Inf have 
improved calibration over SuSiE and FINEMAP, respectively, except 
for simulations using OLS that introduced uncorrected population 
stratification, which are less relevant to our findings in real data using 
BOLT–LMM (Figs. 2a and 3a and Methods). Recall of SuSiE-Inf and 
FINEMAP-Inf was very similar to, but slightly lower than, that of SuSiE 
and FINEMAP, respectively (Figs. 2b and 3b). With improved perfor-
mance in simulations having nonsparse genetic effects, and similar per-
formance in simulations with stratification using BOLT–LMM (Fig. 3a),  
we turned to real data benchmarking to assess whether SuSiE-inf and 
FINEMAP-inf improve performance in practice.
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detailed in Table 1 and Methods. minPIP and minPIP-inf are aggregating methods: 
minPIP-inf is equal to min(PIP) between SuSiE-inf and FINEMAP-inf, and minPIP 
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true proportion of causal variants, and the short black lines show the expected 
proportion of causal variants in each PIP bin for each method. b, Recall for the 

same methods, defined as the percentage of simulated large effects among 
the top N variants when ranked by PIP. Error bars on calibration and recall plots 
correspond to 95% Wilson confidence interval. Note that ‘no large effects’ 
simulations are not shown on the recall plot because there are zero simulated 
large effects. c, Regressing subcomponents of ‘high nonsparsity’ phenotype 
on true versus false positives (variants with PIP >0.9 that are either causal or 
noncausal). Numerical results are available in Supplementary Tables 6–8.
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Real data benchmarking shows improvements by several met-
rics. RFR was substantially decreased for SuSiE-inf (Fig. 5a). SuSiE- 
inf-specific high-PIP variants (variants that are assigned a high PIP by 
SuSiE-inf but not by SuSiE) are 58% more enriched in functionally impor-
tant categories than SuSiE-specific high-PIP variants (P = 6 × 10−4); the 
analogous difference in functional enrichment for FINEMAP versus 
FINEMAP-inf was nonsignificant (38% more for FINEMAP-inf specific 
variants, P = 0.07; Fig. 5b,c). In addition to high-PIP variants identified 
with PIP >0.9, we also observed better functional enrichment for top 
N (N = 500, 1,000, 1,500 and 3,000) variants (Extended Data Fig. 3a), 
demonstrating better prioritization of variants by our methods. Similar 
improvements were observed when using OLS for GWAS instead of 
BOLT–LMM (Extended Data Fig. 3b,c), upon correcting for stratifica-
tion using principal component (PC) analysis. Compared to SuSiE 
and FINEMAP, we obtained fewer high-PIP variants (16% reduction 
aggregated between SuSiE and FINEMAP); however, the reduction is 
smaller for high-confidence variants, characterized either by repli-
cated variants (11% reduction) or variants achieving PIP >0.9 for both 
SuSiE-Inf and FINEMAP-Inf/both SuSiE and FINEMAP (11% reduction) 
(Extended Data Fig. 3d). We observed a more substantial reduction of 
42% in the number of credible sets when using SuSiE-inf; however, the 
reduction for smaller credible sets (number of variants <10) was some-
what smaller (36% reduction). Credible sets generated by SuSiE-inf 
are smaller on average than those generated by SuSiE (Extended Data 
Fig. 3e). Together, these results demonstrate both that SuSiE-inf and 
FINEMAP-inf allow for more confident identification of likely causal 
variants than the current state of the art, and that there is room for 
further methodological improvement.

In simulation, estimates of the infinitesimal variance τ2 were 
higher on average for simulation settings with higher true infinitesimal 

Table 1 | Parameter settings for large-scale simulations

Imputation noise Sparse causal 
prior

20 PC effects 
multiplier

PCs corrected in 
GWAS

Nonsparse causal 
effects

Missing causal 
effects

Ideal No Uniform 0 0 None None

Baseline misspecification Yes SuSiE Height 
posterior

1 19 out of 20 None None

Moderate stratification with BOLT Yes SuSiE Height 
posterior

5 0 out of 20 None None

Severe stratification with BOLT Yes SuSiE Height 
posterior

8 0 out of 20 None None

Moderate stratification with OLS Yes SuSiE Height 
posterior

1 0 out of 20 None None

Severe stratification with OLS Yes SuSiE Height 
posterior

2 0 out of 20 None None

Moderate nonsparsity Yes SuSiE Height 
posterior

1 19 out of 20 58% of h2,  
1% coverage

Yes

High nonsparsity Yes SuSiE Height 
posterior

1 19 out of 20 75% of h2,  
1% coverage

Yes

Very high nonsparsity Yes SuSiE Height 
posterior

1 19 out of 20 83% of h2,  
1% coverage

Yes

No large effects Yes SuSiE Height 
posterior

1 19 out of 20 100% of h2,  
1% coverage

Yes

0.5% coverage, ratio 3:1 Yes SuSiE Height 
posterior

1 19 out of 20 75% of h2,  
0.5% coverage

Yes

5% coverage, ratio 3:1 Yes SuSiE Height 
posterior

1 19 out of 20 75% of h2,  
5% coverage

Yes

5% coverage, ratio 15:1 Yes SuSiE Height 
posterior

1 19 out of 20 94% of h2,  
5% coverage

Yes

Different parameter settings for ten sets of simulations are mentioned in the main text. Note that PCs corrected in GWAS used in-sample (N = 150,000) PCs as covariates for phenotypes 
generated with full sample (N = 366,000) PCs. See Methods for details on how each misspecification is incorporated. h2, heritability.
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simulation settings (Table 1). The colored markers show true proportion of 
causal variants, and the short black lines show the expected proportion of causal 
variants in each PIP bin for each method. b, Recall for the same methods and 
simulations, defined as the percentage of simulated large effects among the top 
N (N = 50, 100, 500, 1,000 and 5,000) variants when ranked by PIP. Error bars 
correspond to 95% Wilson confidence interval. Numerical results are available in 
Supplementary Tables 6 and 7.
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variance (Extended Data Fig. 4a,b). Estimates of τ2 were also higher in 
the presence of more residual stratification in the simulations, fix-
ing all other simulation parameters (Extended Data Fig. 4c). In UKBB 
data, estimates of τ2 varied across traits, with height showing the high-
est estimates and LDL showing the lowest estimates (Extended Data  
Fig. 5a,b). We also found that estimates of τ2 increased, on average, 
as the number of credible sets in a locus increased (Extended Data  
Fig. 5c). Estimates of τ2 varied across loci for a given trait, due either to 
differences in genetic architecture, residual stratification or estimation 
noise. We caution against the interpretation of τ2 as a direct reflection of 
trait heritability or genetic architecture, without further investigations 
into these factors that may contribute to the τ2 estimates.

To further validate our methods in real data, we performed 
cross-ancestry polygenic risk score (PRS) prediction27,28, using poste-
rior effect sizes estimated on 366,000 samples from the ‘white British’ 
cohort in UKBB to predict phenotypes in six held-out cohorts of dif-
ferent ancestries29: African ancestry (N = 6,637), admixed American 

ancestry (N = 982), Central/South Asian ancestry (N = 8,876), East Asian 
ancestry (N = 2,709), European ancestry test (N = 54,337) and Mid-
dle Eastern ancestry (N = 1,599). Prediction accuracy is measured by 
‘ΔR2’, which is the difference in R2 from a model that includes both the 
covariates and genotype effects relative to a model that includes the 
covariates alone. Using posterior mean effect size estimates for the 
sparse component β in SuSiE-inf/FINEMAP-inf yields, on average, a 
near ten-fold increase in ΔR2 over SuSiE/FINEMAP across all held-out 
cohorts and traits (Methods, Fig. 5c,d and Supplementary Table 3). 
Here we compute PRS using only the sparse component, to provide a 
validation metric for the fine-mapped SNPs. We leave an exploration of 
improving PRS accuracy by integrating estimated infinitesimal effect 
sizes to future work.

Our group has shown previously that combining SuSiE and FIN-
EMAP can yield more reliable PIPs30. Here we recommend using the 
minimum PIP between SuSiE-inf and FINEMAP-inf (minPIP-inf) for each 
fine-mapped variant. Compared to minPIP (minimum PIP between 
SuSiE and FINEMAP), minPIP-inf retains more high confidence vari-
ants, showing better agreement between SuSiE-inf and FINEMAP-inf 
(Extended Data Fig. 6). We observed substantially improved RFR for 
minPIP-inf over minPIP (Extended Data Fig. 7a). Functional enrichment 
for the top N variants, simulation and PRS performance for minPIP-inf 
is comparable to either SuSiE-inf or FINEMAP-inf individually (Fig. 2a,b 
and Extended Data Fig. 7b–d). As examples of the improved effective-
ness of the minPIP-inf method over minPIP, we examined two loci. At the 
PCSK9 locus for low-density lipoprotein cholesterol (LDLC), in addition 
to the well-known causal variant rs11591147, SuSiE-inf and FINEMAP-inf 
consistently identified two intronic variants: rs499883 and rs7552841 
with high confidence, replicating a previous finding using functionally 
informed priors31, whereas SuSiE did not identify variant rs499883. At 
the AK3 locus for platelet count (Plt), a known causal missense vari-
ant, rs7412, is in high LD with variant rs1065853. Only FINEMAP-inf 
captured rs7412, while SuSiE, SuSiE-inf and FINEMAP-inf captured 
another known causal variant, rs429358. MinPIP between SuSiE and FIN-
EMAP missed both, whereas minPIP-inf captured one (Extended Data  
Figs. 8 and 9).

Discussion
We propose fine-mapping methods that control for infinitesimal causal 
effects while fine-mapping sparse causal effects. Using our methods, 
we observed substantial improvements in simulations with nonsparse 
genetic architecture. Our results when simulating uncorrected strati-
fication were ambiguous: when using BOLT–LMM, stratification did 
not lead to miscalibration and our methods performed similarly to 
the previous methods; however, when using OLS, stratification led 
to substantial miscalibration that was similar between FINEMAP and 
FINEMAP-inf and worse for SuSiE-inf than SuSiE. In contrast, real data 
benchmarking demonstrated an unambiguous improvement in per-
formance, for example, decreased RFR, improved functional enrich-
ment of top variants, and large gains in polygenic risk prediction. Put 
together, the accuracy of identifying sparse causal variants is greatly 
improved when incorporating the infinitesimal model, although 
our results show that there is also room for further methodological  
improvement.

The models we propose here are similar to models that have 
been used previously to model genome-wide genetic architecture 
for risk prediction, heritability estimation and association map-
ping22,24,26,32. Fine-mapping differs from these other applications in 
that (1) fine-mapping requires inclusion of a denser set of variants 
with higher LD in each locus, so that the causal variants are likely to 
be included; (2) fine-mapping requires accurate inference of poste-
rior inclusion probabilities; (3) fine-mapping is often performed at 
very large sample sizes; and (4) fine-mapping does not require joint 
modeling of genome-wide data, which would be computationally 
challenging given the density of variants and typical sample sizes.  
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To emphasize the distinction between fine-mapping and risk predic-
tion, if two variants are in perfect LD with large marginal effect sizes, 
a risk prediction method would perform equally well upon attrib-
uting this effect to either variant, whereas the desired outcome in 
fine-mapping is a more precise quantification of uncertainty for which 
variant(s) harbors the true effect. Because of these factors, we do 
not apply existing methods for fitting LMMs in other contexts. We 
instead extend algorithmic ideas in the fine-mapping literature to 
better estimate and quantify uncertainty for a sparse genetic compo-
nent in the presence of strong LD, while estimating an infinitesimal 
variance component separately for each genome-wide significant 
locus. Our model incorporates infinitesimal effects for variants in LD 
with those of the sparse component, which we believe is important 
for obtaining improved calibration and fine-mapping accuracy. With 
careful translation, we anticipate that methodological innovations in 
risk prediction may continue to lead to advances in fine-mapping and  
vice versa.

We view our methods as complementary to a body of recent statis-
tical developments that seek to accurately quantify and control false 
discoveries under weaker modeling assumptions, using construc-
tions of knock-off variables and related conditional re-randomization 
ideas33,34. Such methods have been applied to GWAS and genetic 
fine-mapping applications35–37. Our perspective differs in the follow-
ing ways: we choose not to assume a sparse causal model or test null 

hypotheses of exact conditional independence and instead aim to accu-
rately identify large effects that drive observed GWAS associations in a 
model where every variant may be causal. To yield adequate statistical 
power for detecting causal variants at fine-mapping resolutions, we 
rely on a strong assumption about genetic architecture, as reflected 
by a Bayesian prior probability for each candidate model, rather than 
testing a null hypothesis for each variant that allows for an arbitrary 
genetic architecture excluding that variant. Thus, our methods remain 
largely dependent on relatively strong assumptions of the underlying 
genetic architecture, and we view the potential integration of these 
ideas into a more model-robust framework as an important direction 
for future research.

While our work improves fine-mapping accuracy, further advances 
are needed. First, exploring the effects of stratification and different 
association mapping methods on fine-mapping should be a priority. 
Second, our methods improve on RFR over previous methods, but RFR 
is still elevated compared to ideal simulations, suggesting room for 
improved modeling. In addition to better modeling, independent rep-
lication in another biobank30 and incorporation of functional evidence 
such as annotations and expression quantitative trait loci20 can help 
boost accuracy of discovery. Further methodological advancements, 
which may come from more flexible models of genetic architecture 
or further study of uncorrected confounding, may also contribute to 
further improvements in cross-population polygenic risk prediction.
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Methods
Our research complies with all relevant ethical regulations. Our data 
source is the UKBB. UKBB has approval from the North West Multicen-
tre Research Ethics Committee as a Research Tissue Bank approval. 
This approval means that researchers do not require separate ethical 
clearance and can operate under the Research Tissue Bank approval. 
Data for this work was obtained under application number 31063. 
Additional ethical approval was not required.

Statistics and reproducibility
The UKBB contains 500,000 participants with various ancestries. Our 
research analyzed the ancestry with the largest sample size: 366,194 
unrelated ‘white British’ individuals. Quality control of this cohort 
was previously done by Neale Lab GWAS21. The individuals of British 
ancestry were determined by the PC analysis-based sample selection 
criteria38,39, and were further filtered to self-reported ‘white British’, 
‘Irish’ or ‘white’. Our downsampling analysis consists of randomly 
selected 100,000 individuals from the 366,194 individuals. High RFRs 
across multiple quantitative traits are reproducible with other subsets 
of randomly selected 100,000 individuals from this cohort.

Selection of UKBB phenotypes and downsampling analysis
To select the ten phenotypes for which to perform downsampling analy-
ses, we used results from ref. 30 and computed the combined number 
of high-PIP (PIP >0.9) variants fine-mapped at N = 366,000 samples 
using both SuSiE and FINEMAP. From the top 15 phenotypes (out of 94), 
with the highest number of high-PIP variants (Supplementary Table 13), 
we selected: height, estimated heel bone mineral density (eBMD), Plt, 
hemoglobin A1c (HbA1c), red blood cell count (RBC), alkaline phos-
phatase (ALP), insulin-like growth factor 1 (IGF1), LDLC, lymphocyte 
count (Lym) and estimated glomerular filtration rate based on serum 
creatinine (eGFR) to perform downsampling analyses.

We downsampled from N = 366,000 to a random subset of 
N = 100,000 twice (to increase the number of discoveries and there-
fore statistical power for RFR analyses) and performed GWAS and 
fine-mapping on both sets of the N = 100,000 individuals using the 
same pipeline used at N = 366,000 (for pipeline description, see below). 
The sample size N = 100,000 was chosen to resemble the UKBB interim 
release dataset of total N = 150,000 with N = 107,000 white British 
individuals.

Fine-mapping pipeline
GWAS and fine-mapping in this paper were performed following the 
pipeline described in our group’s previous work30. Briefly, GWAS sum-
mary statistics were computed using BOLT–LMM (v2.3.2) with covari-
ates including sex, age, age2, age and sex interaction term, age2 and sex 
interaction term, and the top 20 genotype PCs. Fine-mapping regions 
were defined using a 3 Mb window around each lead GWAS variant, with 
merging of overlapping regions. Fine-mapping was performed with 
in-sample LD computed using LDstore v2.0 (ref. 40).

Excessively large regions (consequence of merging) that could 
not be fine-mapped due to computational limitations were tiled with 
overlapping 3 Mb loci, with 1 Mb spacing between the start points of 
consecutive loci. For these tiled regions, we computed a PIP for each 
SNP based on the 3 Mb locus whose center was closest to the SNP. This 
tiling approach was previously described and applied31.

Although BOLT–LMM is the GWAS method of choice in our group’s 
previous work30, we also used OLS regression for some of our simula-
tions and real data applications.

We then performed fine-mapping using the following tools, 
namely multiple causal variant methods SuSiE8 v894ba2f and  
FINEMAP9,10 v1.3.1, single causal variant method ABF11, and conditional 
association (COJO12 v1.93.0beta) plus ABF fine-mapping method, which 
we denote COJO-ABF. Fine-mapping pipeline scripts are available  
in ref. 41.

Ideal simulations
To establish reference RFR and calibration for all tested methods, we 
performed ideal simulations without model misspecification using 
UKBB genotypes. For simulating RFR, we performed two sets of simula-
tions each at sample size N = 366,000 and subsample size N = 100,000. 
We used UKBB imputed dosages as true genotypes, and only selected 
‘white British’ individuals defined previously in the Neale lab GWAS21. 
We drew 1,000 causal variants per simulation uniformly randomly 
from a total of 6.6 million common (minor allele frequency (MAF) 
≥1%) imputed variants genome wide. We standardized genotypes to 
mean 0 and variance 1 and drew per-standardized genotype causal 
effect sizes from the same normal distribution N (0, 0.5/1,000) for all 
selected causal variants. We then added errors randomly drawn from a 
normal distribution N (0, 0.5) to simulate phenotypes. For comparison 
of calibration with our simulations under model misspecifications, 
three additional sets of ideal simulations at a matching sample size 
N = 150,000 were performed. Phenotypes were generated similarly, 
with 700 uniformly sampled true causal variants having effect sizes 
drawn from N (0, 0.5/700).

Functional enrichment
We analyzed functional annotations to gain insights into the poten-
tial causal status of nonreplicating variants (defined in the main text 
and in the next paragraph). We define three main disjoint functional 
categories: coding, putative regulatory and nongenic. These catego-
ries are derived from the seven main functional categories defined in  
ref. 30. The ‘coding’ category is the union of predicted loss of function 
and missense categories; the ‘putative regulatory’ category is the 
union of synonymous, 5′ untranslated region, 3′ untranslated region, 
promoter and cis-regulatory element categories. We compare the 
proportion of nongenic variants in the following groups of variants:

 1. Nonreplicating, the group of variants with PIP ≥0.9 at 
N = 100,000 and PIP ≥0.1 at N = 366,000.

 2. Replicated, the group of variants with PIP ≥0.9 at N = 100,000 
and PIP ≥0.9 at N = 366,000.

 3. Matched on PIP at 100,000, a group of replicated variants chosen 
to match the nonreplicating variants on PIP at N = 100,000. For 
each nonreplicating variant with PIP <1, we find a replicated vari-
ant whose PIP is the closest as its match, and the matched variant 
is removed for future matches. If the nonreplicating variant has 
PIP of 1, we match a random (if there are multiple) replicated 
variant with the PIP of 1. If there are more nonreplicating vari-
ants with a PIP of 1 than there are replicated variants with PIP  
of 1, we do not remove the matched replicated variant from 
future matches, resulting in repeated matches.

 4. Matched on PIP at 366,000, a group of low-PIP variants (PIP ≤0.1 
at N = 366,000) chosen to match the nonreplicating variants 
on PIP at N = 366,000. Matching is performed the same way as 
described above, except that there are no repeated matches.

 5. Background, defined as the union of all variants included in 
fine-mapping from all ten phenotypes.

P values are reported when assessing the significance of the differ-
ence between proportions of nongenic variants in different groups of 
variants. Fisher’s exact test was performed using the R (version 4.2.1) 
function fisher.test, and one-sided P values were reported from the 
output of this function.

Large-scale simulations with misspecification
We selected 149,630 UKBB individuals from a set of 366,194 unrelated 
‘white British’ individuals defined previously in the Neale Lab GWAS21 
for our large-scale simulations. We performed simulations under mod-
els that are misspecified in the following ways: (1) genotype imputation 
noise, (2) nonuniform probabilities for the identities of causal variants, 
(3) nonsparsity of true causal effects, (4) uncorrected population 
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stratification, and (5) missing causal variants. We performed nine 
sets of simulations. All simulations included the same amount of  
(1) imputation noise, (2) nonuniform prior causal probabilities, and  
(5) missing causal variants. The first simulation, ‘baseline misspecifi-
cation’ in Table 1, included a small amount of (4) uncorrected strati-
fication. Another four simulations varied, in addition, (3) the level 
of nonsparsity of causal effects. Finally, four additional simulations 
varied in (4) the amount of simulated stratification and the methods 
for correcting this stratification (Population stratification below).

Simulated genotypes
To simulate genotypes for 149,630 individuals, we randomly drew  
true genotypes for all autosomes based on the imputed genotype 
probabilities in the ‘bgen’ files provided by UKBB. Briefly, probabilistic 
true genotypes (pGTs) for a given variant , denoted pGTi, were com-
puted via pGTi = ⌈ui − GP(Xi = 0)⌉ + ⌈ui − GP(Xi = 0) − GP(Xi = 1)⌉, where 
GP (Xi = k) , k ∈ {0, 1, 2} represents the genotype probability of having k  
copies of alternative alleles and ui ∼ Uniform(0, 1) represents a uniform 
random variable. Phenotypes were generated using the pGTs. In down-
stream GWAS and fine-mapping, we use imputed genotype dosages 
provided by UKBB, thus simulating imputation noise. We only included 
variants with minor allele count >10, INFO score >0.2 and Hardy– 
Weinberg equilibrium P value >1 × 10−10 in our simulations.

Causal variants simulation
To incorporate a more realistic nonuniform distribution over causal 
variants, we simulated sparse causal effects from the SuSiE posterior 
distribution for UKBB height, as computed in the larger 366,000 sam-
ple30. Specifically, in each locus, for each credible set CSi, i ∈ I, where I  
indexes all credible sets outputted by fine-mapping height with SuSiE, 
we chose a causal variant according to normalized posterior inclusion 
probabilities within the corresponding SuSiE single effect (denoted 
αik for k ∈ CSi). We then drew the chosen variant’s raw effect size (to be 
scaled later) from a normal distribution with mean and standard devia-
tion given by the SuSiE posterior mean and standard deviation condi-
tional on inclusion in the model. In total, 1,434 sparse causal variants 
were chosen.

For the simulations that investigated nonsparsity of causal effects, 
we drew additional causal variants uniformly at random such that x% 
(x ∈ {0.5, 1, 5}) of all simulated variants have a nonzero effect. For each 
selected variant, we sampled its raw effect size (to be scaled later) from 
𝒩𝒩(0, v) where v = [2p (1 − p)]α, p represents the MAF, and α = −0.38. The 
value α is estimated in ref. 42. For all simulation settings, simulated 
nonsparse effects had an overall effect size standard deviation approxi-
mately on the order of 1 × 10−4 units per normalized genotype.

We simulated three settings of nonsparsity coverage: 0.5%, 1% and 
5%, where coverage is the percentage of all simulated variants with 
nonzero effects on the phenotype. For the simulations with 1% coverage, 
we varied the heritability explained by the nonsparse causal variants 
and it was set to be 58%, 75%, 83% and 100%, corresponding to heritabil-
ity ratios between sparse and nonsparse causal effects of 1 to 1.4, 1 to 3, 
1 to 5 and 0 to 1. To achieve these heritability proportions, we scaled all 
the simulated sparse and nonsparse causal effect sizes by correspond-
ing constants. We observed that, for all simulation settings, simulated 
large effects had an overall effect size standard deviation approximately 
on the order of 1 × 10−2 units per normalized genotype. For the simula-
tions with 0.5% coverage and one set of simulations with 5% coverage, 
we fixed the heritability ratio to 1 to 3. We performed an additional set 
of simulations with nonsparsity coverage of 5% and heritability ratio 
between sparse and nonsparse causal effects of 1 to 15. The purpose of 
this setting is to match the simulated per-SNP heritability with the 1% 
coverage 1-to-3 ratio simulations. For a summary of the different set-
tings, see Table 1. We set the total SNP heritability to be 0.5. Note that 
the 0.5 heritability accounts for all simulated causal SNPs and not just 
the common SNPs. We have computed stratified LD score regression  

(s-LDSC) estimates of common SNP heritability for all the simulations 
and all ten UKBB phenotypes, and the results are available in Supple-
mentary Tables 1 and 2.

Interestingly, changing the coverage of nonsparsity from 0.5% 
to 1% then to 5% while fixing the proportion of heritability explained 
by nonsparse effects showed a nonmonotonic behavior in the level of 
miscalibration. This is probably due to multiple factors influencing 
calibration: per-SNP heritability of nonsparse effects and LD between 
nonsparse and sparse causal variants. We observed increased miscali-
bration when per-SNP heritability is fixed and coverage changes from 
1% to 5%. Similarly, when coverage is fixed at 1% and per-SNP heritability 
increases by 50% calibration also worsens (Fig. 2 and Extended Data 
Fig. 2).

Simulated population stratification
To simulate population stratification, we first regressed UKBB height 
on the top 20 PCs of the genotyped variants for N = 360,415 individuals. 
We then added the sum of the PC scores multiplied by their respec-
tive regression coefficients to the simulated phenotype, scaling this 
sum by a factor to vary the amount of simulated stratification. We 
assessed the amount of stratification by running s-LDSC43 on the 
resulting GWAS summary statistics (without using any in-sample PCs 
as covariates) and examining the fitted intercept (Supplementary 
Table 2). As expected, we see higher s-LDSC intercept as we increase  
the PC scaling factor.

For the stratification simulations referenced in the main text and 
Table 1, we scaled PC effects by a factor of 5 (respectively 8) for moder-
ate (respectively severe) stratification with BOLT, yielding a phenotype 
with 16.4% (respectively 42.9%) of its variance explained by stratifica-
tion. For stratification with OLS, we scaled PC effects by 1 and 2 for mod-
erate and severe stratification, yielding phenotypes with 0.6% and 2.6% 
of their variance due to stratification, respectively. s-LDSC intercepts 
of the stratification simulations are available in Supplementary Table 2.

Simulated phenotype
Phenotypes were generated as y = Xβ + Cζ + ϵ , where X  is the above 
true genotype (pGT) matrix, β is a vector of the (sparse and nonsparse) 
causal effects, C  is a matrix with top 20 PCs with corresponding effects 
ζ, and ϵ ∼ 𝒩𝒩(0,σ2In)  where σ2 was chosen to yield total phenotypic  
variance equal to 1.

Incorporating missing causal variants
After generating phenotypes and before performing GWAS and 
fine-mapping, we applied variant-level quality control criteria as pre-
viously defined in the Neale Lab GWAS21, which retained 13,364,303 
variants after filtering for INFO >0.8, MAF >0.001 and Hardy–Weinberg 
equilibrium P value >1 × 10−10, with exception for the VEP-annotated 
coding variants where we allowed MAF >1 × 10−6. Notably, this qual-
ity control step resulted in the exclusion of approximately 71% of the 
simulated ‘nonsparse’ causal variants.

GWAS and fine-mapping for simulations
We performed GWAS on N = 149,630 individuals using BOLT–LMM22 
v2.3.2, with corresponding imputed variant dosages from UKBB. We 
used the top 19 PCs computed in-sample as covariates in the GWAS, 
except in the population stratification simulations, which included 
no covariates. For some of the population stratification simulations, 
we performed GWAS with OLS regression, rather than BOLT–LMM. 
We performed OLS using the linear regression rows method in Hail44 
v0.2.93. For fine-mapping we used the pipeline previously described 
in the subsection ‘Fine-mapping pipeline’.

Interpreting population stratification simulation results
When scaling PC effects by a factor of 5 and computing GWAS summary 
statistics using BOLT–LMM, we observed an s-LDSC intercept of 1.07, 
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which is comparable to s-LDSC intercepts estimated in real complex 
traits (Supplementary Table 1), and we did not observe notable miscali-
bration in the downstream fine-mapping results. When we simulated a 
higher level of uncorrected stratification, scaling PC effects by a factor 
of 8 (s-LDSC intercept of 1.16, see ‘Severe stratification with BOLT’ in 
Table 1), PIPs obtained in downstream fine-mapping remained well 
calibrated (Fig. 3).

We hypothesize that the use of BOLT–LMM in our standard fine- 
mapping pipeline helped to correct for the simulated stratification 
effects, even though the in-sample PCs were not explicitly provided 
as covariates. This also probably explains the prima facie surprising 
recall results in Fig. 3, where the severe stratification simulations with 
BOLT have higher recall than the moderate stratification simulations 
with BOLT. In the severe simulations, stratification accounts for 42.9% 
of the phenotypic variance, whereas in the moderate simulations 
stratification accounts for only 16.4% of phenotypic variance. Because 
BOLT–LMM probably corrects for much of this simulated stratification, 
it effectively reduces the residual noise in the associations by much 
more for the severe simulations than for the moderate ones, allowing 
fine-mapping to nominate more causal variants.

To investigate stratification effects without using an LMM proce-
dure, we performed two additional sets of simulations where GWAS 
summary statistics were computed using OLS instead. In these simula-
tions, scaling PC effects by factors of 1 and 2 yielded average s-LDSC 
intercepts of 1.055 and 1.295, respectively (Supplementary Table 2), and 
induced notable miscalibration across all methods. This miscalibra-
tion was more severe for SuSiE-inf and FINEMAP-inf than for SuSiE and  
FINEMAP (Fig. 3).

It is unclear to us which of these simulation settings may be closer 
to reflecting the possible effects of uncorrected stratification in real 
fine-mapping applications, given that common methods of comput-
ing GWAS summary statistics do use LMM procedures and, in addi-
tion, explicitly control for in-sample PCs as covariates. Our real data 
results, including functional enrichment and PRS analyses, in UKBB 
show evidence that SuSiE-inf and FINEMAP-inf outperform existing 
methods in real data. We leave to future work a fuller investigation 
of the possible effects of uncorrected stratification on downstream 
fine-mapping, and a potential extension of these methods to address 
uncorrected stratification.

Regression of phenotype components on high-PIP variants
To identify which of several simulated model misspecifications were 
responsible for observed miscalibration, we decomposed the simu-
lated genetic component Xβ of the phenotype into the sum of four 
subcomponents representing sparse causal effects, nonsparse causal 
effects, nonsparse causal effects due to quality control and the effects 
of stratification. That is,

Xβ = Xβsparse + Xβnonsparse + Xβmissing.nonsparse + XWζ

where W  is an n × 20 matrix of UKBB PC loadings computed at a sample 
size of 360,415 and ζ is a 20 × 1 vector of regression coefficients for the 
top 20 PCs in UKBB height at 360,415. For each simulation, we regressed 
each of the four genetic effect subcomponents on each of the PIP >0.9 
variants independently, with 19 in-sample (n = 149,630) PCs as covari-
ates in the regression (that is, the same covariates we used in GWAS in 
our simulations). For example, for the sparse genetic effect component, 
we compute the regression coefficient b and its associated F statistic 
for the following equation:

Xβsparse = Xib + CA

where i is the index of a high-PIP (PIP >0.9) variant and C  is a matrix that 
consists of 19 in-sample PCs, included here as covariates. A is a 19-by-1 
vector of regression coefficients. We then compare the F statistics of 
truly causal and noncausal variants.

PRS cohort assignment
We used six ancestry groups derived by the Pan UKBB project:29 Euro-
pean ancestry (N = 420,531, training 366,194 and testing 54,337),  
Central/South Asian ancestry (N = 8,876), African ancestry (N = 6,636), 
East Asian ancestry (N = 2,709), Middle Eastern ancestry (N = 1,599) and 
admixed American ancestry (N = 980). The 1,000 Genomes Project 
and Human Genome Diversity Panel were used as reference panels to 
assign continental ancestry.

PRS weights
We chose seven phenotypes: HbA1c, height, LDLC, Lym, Plt, RBC and 
eBMD for PRS predictions. We fine-mapped these seven phenotypes 
on the training cohort: European ancestry (N = 366,194 unrelated ‘white 
British’ individuals). SuSiE, FINEMAP, SuSiE-inf and FINEMAP-inf poste-
rior effect sizes were obtained. Due to differences in computational effi-
ciency, not all variants that are eligible for fine-mapping were able to be 
fine-mapped by all methods. To ensure fair comparison between SuSiE 
and SuSiE-inf (resp. FINEMAP and FINEMAP-inf), we include only variants 
that were fine-mapped by both SuSiE and SuSiE-inf (resp. FINEMAP and 
FINEMAP-inf) in the PRS analyses (Supplementary Table 3). PLINK2.0 
(ref. 45) was then used to compute PRS for the six held-out cohorts using 
these posterior effect sizes. For SuSiE-inf and FINEMAP-inf, the assigned 
weight to each variant is the estimated posterior (mean) effect size from 
the sparse component β and does not include the estimated posterior 
effect size from the infinitesimal component α.

In case of minPIP or minPIP-inf, the assigned weight to each vari-
ant is the estimated posterior effect size of the variant outputted by 
methods whose PIP was taken as the minPIP. For example, if SNP1’s 
PIP is 0.1 for SuSiE and 0.5 for FINEMAP, and the estimated posterior 
(mean) effect size for SNP1 is 0.01 for SuSiE and 0.005 for FINEMAP, 
then the minPIP for SNP1 is 0.1 and the weight we will use for SNP1 in 
PRS analysis for minPIP is 0.01.

PRS accuracy metric
We use ΔR2 as our accuracy metric for PRS predictions46. To obtain ΔR2, 
we fit two models:

•	 Model 0: a linear model using only covariates as predictor.
•	 Model 1: a linear model using true phenotype as target and both 

the PRS generated from multiplying the fine-mapped posterior 
effect size estimates with the genotypes and the covariates (sex, 
age, age2, age and sex interaction term, age2, and sex interaction 
term) as predictors.

We applied the function lm in R to obtain the adjusted R2. The dif-
ference of adjusted R2 of model 1 compared to adjusted R2 of model 0 
is defined as ΔR2.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The main fine-mapping results at N = 100,000 sample size produced  
by this study are publicly available at https://doi.org/10.5281/zenodo. 
7055906. The fine-mapping results at N = 366,000 previously produced 
by our group are available at https://www.finucanelab.org/data. The 
UKBB individual-level data are accessible on request through the UKBB 
Access Management System (https://www.ukbiobank.ac.uk/). The UKBB 
analysis in this study was conducted via application number 31063.

Code availability
Software implementing SuSiE-inf and FINEMAP-inf are publicly 
available at https://github.com/FinucaneLab/fine-mapping-inf  
(https://doi.org/10.5281/zenodo.8427832). All scripts for figure 
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generation as well as simulation scripts are available at https://github.
com/cuiran/improve-fine-mapping (https://doi.org /10.5281/
zenodo.10037442).
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Extended Data Fig. 1 | Replication failure rates at different PIP thresholds. 
Replication failure rates at four different PIP thresholds: 0.9 (default), 0.93, 0.95, 
0.99, for SuSiE, FINEMAP, SuSiE-inf, and FINEMAP-inf aggregated across 10 UKBB 
quantitative phenotypes, contrasted with RFRs in ideal simulations and with EPN. 

Error bars represent one SD of the corresponding binomial distribution Binom(n, 
p), where n is the total number of high-PIP variants at sample size N = 100 K, 
and p is the RFR. Bar plot data is presented as RFR + /- SD. Numerical results are 
available in Supplementary Table 14.
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Extended Data Fig. 2 | Calibration in different non-sparsity coverage settings. 
Calibration for SuSiE, SuSiE-inf, FINEMAP and FINEMAP-inf in simulations 
with different non-sparsity coverage settings: 0.5%, 1%, and 5% (see Table 1 for 
more parameter settings in these simulations). Heritability ratio between small 
and large effects is fixed at 3:1 for three simulation scenarios, while the fourth 

scenario we set the coverage at 5% and heritability ratio at 15:1 to match the per-
SNP heritability in simulations where 1% SNPs are causal and heritability ratio is 
3:1. Error bars correspond to 95% Wilson confidence interval. Numerical results 
available in Supplementary Table 15.
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Extended Data Fig. 3 | Additional evidence of performance improvements 
in real data. a-b. Functional enrichment of top N (N = 500, 1000, 1500, and 
3000) highest PIP variants from SuSiE, SuSiE-inf, FINEMAP, and FINEMAP-inf. 
GWAS summary statistics computed using BOLT-LMM and OLS. c. Functional 
enrichment of the set differences between SuSiE and SuSiE-inf high-PIP (PIP > 0.9) 
variants and FINEMAP and FINEMAP-inf high-PIP variants. Error bars represent 
one SD of the corresponding binomial distribution Binom(n,p), where n is the 
total number of variants in each set and p is the corresponding proportion of 
annotated variants). Bar plot data is presented as proportion +/- SD. d. The 
proportion of reduction for the number of variants in three categories when 

using the SuSiE-inf and FINEMAP-inf compared to using SuSiE and FINEMAP. The 
three categories are: High-PIP (PIP > 0.9 for either method, reduced from 1876 to 
1578), Replicated (PIP > 0.9 at both sample sizes N = 100 K and N = 366 K, reduced 
from 665 to 595), and Shared high-PIP (PIP > 0.9 for both method, reduced from 
723 to 646). e. Credible set sizes in all regions fine-mapped by SuSiE and SuSiE-inf. 
Box plot lower and upper hinges correspond to 1st and 3rd quantiles, whiskers 
extend no further than 1.5*IQR from the hinges, outliers are plotted as individual 
points, solid line in the boxes show medians. Numerical results available in 
Supplementary Table 16-20.
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Extended Data Fig. 4 | Estimated infinitesimal variance (tau squared) in 
simulations. a. The mean estimated tau squared aggregated across all regions 
fine-mapped in each non-sparse simulation settings +/- SD, where SD is the 
in-sample standard deviation of estimated tau squared in the corresponding 
simulation setting. See Table 1 for simulation parameters. b. Estimated tau 
squared when OLS/BOLT-LMM is used to perform GWAS, and true tau squared in 
three sets of simulation settings are plotted. “Large-scale, inf model” represents 
the set of large-scale simulations (described in Methods) with 100% causal 
coverage setting and no missing causal variants are introduced. “One region, 
h2g = 0.05” represents the set of simulations using imputed genotypes in 

one region on Chromosome 1, with 100% causal coverage, no missing causal 
variants, and no exclusion of variants in the fine-mapping pipeline. The total 
SNP heritability is set to be 0.05. “One region, h2g = 0.1” is similar except with 
total SNP heritability set to be 0.1. c. Estimated tau squared in four stratification 
simulation settings with no non-sparse effects, see Table 1 for simulation 
parameters. Box plot lower and upper hinges correspond to 1st and 3rd quantiles, 
whiskers extend no further than 1.5*IQR from the hinges, outliers are plotted 
as individual points, solid line in the boxes show medians. Numerical results 
available in Supplementary Table 21-23.
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Extended Data Fig. 5 | Estimated infinitesimal variance (tau squared) in 
UK Biobank. a. Estimated tau squared in all fine-mapped regions for 10 UK 
Biobank phenotypes at sample size N = 366 K. Box plot lower and upper hinges 
correspond to 1st and 3rd quantiles, whiskers extend no further than 1.5*IQR 
from the hinges, outliers are plotted as individual points, solid line in the 
boxes show medians and the red dot denotes the mean. b. Comparing mean 
tau-squared estimates between traits. Heatmap shows the results of pair-wise 
Welch two-sample T-test with alternative hypothesis: mean of estimated tau 
squared in all regions for trait 1 (x-axis) is greater than that of trait 2 (y-axis). The 
test is one-sided. Multiple-testing adjusted p-value significance cutoff is set to 

be 0.05/90 = 5.5e-4, correcting for the total number of trait pairs tested. Stars 
indicate p-value has passed the significant threshold. c. Correlation between 
number of credible sets and the estimated infinitesimal variance (tau squared). 
Regions with the same number of credible sets are aggregated, and the median 
estimated tau squared are obtained from these regions. Scatter plot shows 
these medians. The best fitted line is plotted using ggscatter. R is the Pearson 
correlation, and p is the two-sided correlation p-value. The 95% confidence 
interval is shown on the plot as the gray shaded area. Numerical results available 
in Supplementary Table 24-26.
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Extended Data Fig. 6 | Agreement between SuSiE and FINEMAP PIPs; SuSiE-
inf and FINEMAP-inf PIPs. a-b. Density plots of PIPs from fine-mapping 10 UK 
Biobank traits at sample size N = 366 K. X-axis shows PIPs from running SuSiE 
(or SuSiE-inf), y-axis shows PIPs from running FINEMAP (or FINEMAP-inf). Only 
variants with PIP > = 0.1 for either method are shown on the plots. c. Number of 

high-PIP variants identified by SuSiE, SuSiE-inf, FINEMAP, FINEMAP-inf, minPIP, 
minPIP-inf, meanPIP and meanPIP-inf, where meanPIP(-inf) is defined as taking 
the average PIP between SuSiE and FINEMAP (resp. SuSiE-inf and FINEMAP-inf). 
Data aggregated across 10 UKBB traits fine-mapped at N = 366 K. Numerical 
results available in Supplementary Table 27.
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Extended Data Fig. 7 | minPIP-inf performance. a. Replication failure rates 
of minPIP and minPIP-inf in real data and in ideal simulations. Numerical 
results available in Supplementary Table 4. Error bars represent one SD of the 
corresponding binomial distribution Binom(n, p), where n is the total number 
of high-PIP variants at sample size N = 100 K, and p is the RFR. Bar plot data is 
presented as RFR + /- SD. b. Functional enrichment of top N (N = 500, 1000, 1500, 
and 3000) highest PIP variants from SuSiE-inf, FINEMAP-inf and minPIP-inf. Error 
bars represent one SD of the corresponding binomial distribution Binom(n,p), 

where n is the total number of variants in each set and p is the corresponding 
proportion of annotated variants). Numerical results available in Supplementary 
Table 16. c-d. PRS accuracy, in terms of delta R2, when applying SuSiE-inf sparse 
component of the posterior effect sizes vs. minPIP-inf sparse component of the 
posterior effects sizes as weights; similarly, for FINEMAP-inf and minPIP-inf. PRS 
were computed for 2 out-of-sample cohorts and 7 traits. For descriptions of PRS 
weights, see Methods. Numerical results available in Supplementary Table 11-12.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | AK3 locus for Plt. 4kbp window near the AK3 gene is shown on the plot. GWAS -log10 p-values from BOLT-LMM for the trait platelet count (Plt) 
are plotted on the top panel, PIPs from 4 fine-mapping methods and 2 aggregated methods are plotted on the subsequent panels. Variant rs12005199 and rs409950 are 
highlighted with dashed lines.
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Extended Data Fig. 9 | PCSK9 locus for LDLC. 23kbp window at the PCSK9 gene 
location is shown on the plot. GWAS -log10 p-values from BOLT-LMM for trait low 
density lipoprotein cholesterol (LDLC) are plotted on the top panel, PIPs from 4 

fine-mapping methods and 2 aggregated methods are plotted on the subsequent 
panels. The well-known putative causal variant rs11591147 is highlighted with 
dash line, as well as two intronic variants: rs499883 and rs7552841.

http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs499883
https://www.ncbi.nlm.nih.gov/snp/?term=rs7552841
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Extended Data Fig. 10 | PRS comparison with standard errors. a-b. Points 
represents the same values as in Fig. 5, standard errors represent 0.95 level 
confidence intervals of delta R2. First, standard errors for the R2 of Model 0 and 

Model 1 (defined in Methods) are computed separately using R function CI.rsq, 
then combined into the SE (standard error) of delta R2 by taking the square root of 
the sum of squared. Data is presented as delta R2 + /- SE for both axes.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis SuSiE-inf and FINEMAP-inf software packages are available at https://github.com/FinucaneLab/fine-mapping-inf 
Access to the UK Biobank resource is available via application (http://www.ukbiobank.ac.uk/) 
SuSiE v0.9.1.0.894ba2f is available at https://github.com/stephenslab/susieR 
FINEMAP v1.3.1 is available at http://www.christianbenner.com 
LDStore v2.0 is available at http://www.christianbenner.com 
BOLT-LMM v2.3.2 is available at https://data.broadinstitute.org/alkesgroup/BOLT-LMM/ 
PLINK2 is available at https://www.cog-genomics.org/plink/2.0/ 
GCTA COJO v1.93.0beta is available at https://cnsgenomics.com/software/gcta/ 
fine-mapping pipeline scripts are available at https://doi.org/10.5281/zenodo.6908588

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data used for this study is approved under UK Biobank application number 31063. The main fine-mapping results at N=100K sample size produced by this study 
are publicly available at https://doi.org/10.5281/zenodo.7055906. The fine-mapping results at N=366K previously produced by our group is available at https://
www.finucanelab.org/data. The UKBB individual-level data is accessible on request through the UK Biobank Access Management System (https://
www.ukbiobank.ac.uk/). 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Sex and gender-based analyses were not performed.

Population characteristics The UK Biobank (UKBB) is a population-based cohort that recruited approximately 500,000 individuals in the United Kingdom 
between 2006 and 2010.

Recruitment The UK Biobank recruited middle-aged (40–69 years old) volunteers across the United Kingdom.

Ethics oversight UK Biobank

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The UK Biobank contains 500,000 participants with various ancestries. Our research analyzed 366,194 unrelated “white British” individuals. 
We chose this sample size to maximize the statistical power for single-cohort fine-mapping. We randomly downsampled this cohort to 
N=100K for Replication Failure Rate (RFR) part of the analyses. This sample size is chosen to resemble the sample size of the UK Biobank 
interim release dataset. We used as many samples as available in the UK Biobank after QC for the out-of-cohort PRS analyses: N=8876 
Central/South Asian ancestry, N=6636 African ancestry, N=2709 East Asian ancestry, N=1599 Middle Eastern ancestry and N=980 Admixed 
American ancestry.

Data exclusions We excluded "non-white-British" samples due to statistical complications when fine-mapping multiple ancestries. A combination of PCA based 
and self-reporting based quality controls are applied to exclude samples.

Replication No replication dataset was analyzed as fine-mapping requires access to individual-level genotypic data from hundreds of thousands of 
individuals, which is generally not publicly available other than the UK Biobank.

Randomization We randomly selected a subsample of N=100K out of the N=366K unrelated white-British samples in UK Biobank for the Replication Failure 
Rate (RFR) part of the analyses. No other randomization has been performed for this study. We included GWAS covariates age, age^2, 
inferred_sex, age * inferred_sex, age^2 * inferred_sex, and PCs 1-20 for association analyses at sample sizes N=366K and N=100K.

Blinding We did not apply any blinding because no intervention was required in this study.
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