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SUMMARY
Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWASs). Fine-
mapping of meta-analysis studies is typically performed as in a single-cohort study. Here, we first demon-
strate that heterogeneity (e.g., of sample size, phenotyping, imputation) hurts calibration of meta-analysis
fine-mapping. We propose a summary statistics-based quality-control (QC) method, suspicious loci analysis
ofmeta-analysis summary statistics (SLALOM), that identifies suspicious loci formeta-analysis fine-mapping
by detecting outliers in association statistics. We validate SLALOM in simulations and the GWAS Catalog.
Applying SLALOM to 14 meta-analyses from the Global Biobank Meta-analysis Initiative (GBMI), we find
that 67% of loci show suspicious patterns that call into question fine-mapping accuracy. These predicted
suspicious loci are significantly depleted for having nonsynonymous variants as lead variant (2.73; Fisher’s
exact p = 7.3 3 10�4). We find limited evidence of fine-mapping improvement in the GBMI meta-analyses
compared with individual biobanks. We urge extreme caution when interpreting fine-mapping results from
meta-analysis of heterogeneous cohorts.
INTRODUCTION

Meta-analysis is pervasively used to combine multiple genome-

wide association studies (GWASs) from different cohorts.1 Previ-

ous GWAS meta-analyses have identified thousands of loci

associated with complex diseases and traits, such as type 2 dia-

betes,2,3 schizophrenia,4,5 rheumatoid arthritis,6,7 body mass

index,8 and lipid levels.9 These meta-analyses are typically con-

ducted in large-scale consortia (e.g., the Psychiatric Genomics

Consortium [PGC] and the Genetic Investigation of Anthropo-

metric Traits [GIANT] consortium) to increase sample size while

harmonizing analysis plans across participating cohorts in every

possible aspect (e.g., phenotype definition, quality-control [QC]

criteria, statistical model, and analytical software) by sharing

summary statistics as opposed to individual-level data, thereby

avoiding data protection issues and variable legal frameworks

governing individual genome andmedical data around theworld.

The Global BiobankMeta-analysis Initiative (GBMI)10 is one such

large-scale, international effort, which aims to establish a collab-

orative network spanning 23 biobanks from four continents (total

n = 2.2 million) for coordinated GWAS meta-analyses, while ad-

dressing the many benefits and challenges in meta-analysis and

subsequent downstream analyses.
Cell
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One such challenging downstream analysis is statistical fine-

mapping.11–13 Despite the great success of past GWAS meta-

analyses in locus discovery, individual causal variants in associ-

ated loci are largely unresolved. Identifying causal variants from

GWAS associations (i.e., fine-mapping) is challenging due to

extensive linkage disequilibrium (LD, the correlation among ge-

netic variants), the presence of multiple causal variants, and

limited sample sizes, but is rapidly becoming achievable with

high confidence in individual cohorts14–16 owing to the recent

development of large-scale biobanks17–19 and scalable fine-

mapping methods20–22 that enable well-powered, accurate

fine-mapping using in-sample LD from large-scale individual-

level data.

After conductingGWASmeta-analysis, previousstudies2,7,9,23–29

have applied existing summary statistics-based fine-mapping

methods (e.g., approximate Bayes factor [ABF],30,31 CAVIAR,32

PAINTOR,33,34 FINEMAP,20,21 and SuSiE22) just as they are applied

to single-cohort studies, without considering or accounting for the

unavoidable heterogeneity among cohorts (e.g. differences in sam-

ple size, phenotyping, genotyping, or imputation). Such heteroge-

neity could lead to false-positives and miscalibration in meta-anal-

ysis fine-mapping (Figure 1). For example, case-control studies

enriched with more severe cases or ascertained with different
Genomics 2, 100210, December 14, 2022 ª 2022 The Author(s). 1
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Figure 1. Schematic overview of meta-analysis fine-mapping
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phenotyping criteria may disproportionately contribute to genetic

discovery, even when true causal effects for genetic liability are

exactly thesamebetween thesestudiesand lesssevereorunascer-

tained ones. Quantitative traits such as biomarkers could have

phenotypic heterogeneity arising from different measurement pro-

tocols and errors across studies. Theremight be genuine biological

mechanisms too, such as gene-gene (GxG) and gene-environment

(GxE) interactions and (population-specific) dominance variation

(e.g., rs671 and alcohol dependence35), that introduce additional

heterogeneity across studies.36,37 In addition tophenotyping, differ-

ences in genotyping and imputation could dramatically undermine

fine-mapping calibration and recall at single-variant resolution,

because differential patterns of missingness and imputation quality

across constituent cohorts of different sample sizes can dispropor-

tionately diminish association statistics of potentially causal vari-

ants. Finally, although more easily harmonized than phenotyping

andgenotypingdata, subtle differences inQCcriteria andanalytical

softwaremay further exacerbate the effect of heterogeneity on fine-

mapping.

An illustrative example of such issues can be observed in the

TYK2 locus (19p13.2) in the recent meta-analysis from the

COVID-19 Host Genetics Initiative (COVID-19 HGI; Figure S1).38

This locus is known for protective associations against autoim-

mune diseases,6,23 while a complete TYK2 loss of function

results in a primary immunodeficiency.39 Despite strong LD

(r2 = 0.82) with a lead variant in the locus (rs74956615;

p = 9.7 3 10�12), a known functional missense variant

rs34536443 (p.Pro1104Ala) that reduces TYK2 function40,41 did

not achieve genome-wide significance and was assigned a

very low posterior inclusion probability (PIP) in fine-mapping

(p = 7.5 3 10�7; PIP = 9.5 3 10�4), primarily due to its missing-

ness in two more cohorts than rs74956615. This serves as just

one example of the major difficulties with meta-analysis fine-

mapping at single-variant resolution. Indeed, the COVID-19
2 Cell Genomics 2, 100210, December 14, 2022
HGI cautiously avoided an in silico fine-mapping in the flagship

to prevent spurious results.38

Only a few studies have carefully addressed these concerns in

their downstream analyses. The Schizophrenia Working Group

of PGC, for example, recently updated their largest meta-anal-

ysis of schizophrenia5 (69,369 cases and 236,642 controls),

followed by a downstream fine-mapping analysis using

FINEMAP.20 Unlike many other GWAS consortia, since PGC

has access to individual-level genotypes for a majority of sam-

ples, they were able to apply standardized sample and variant

QC criteria and impute variants using the same reference panel,

all uniformly processed using the RICOPILI pipeline.42 This

harmonized procedure was crucial for properly controlling in-

ter-cohort heterogeneity and thus allowing more robust meta-

analysis fine-mapping at single-variant resolution. Furthermore,

PGC’s direct access to individual-level data enabled them to

compute in-sample LD matrices for multiple-causal-variant

fine-mapping, which prevents the significant miscalibration

that results from using an external LD.14,15 A 2017 fine-mapping

study of inflammatory bowel disease also benefited from access

to individual-level genotypes and careful pre- and post-fine-

mapping QC.43 For a typical meta-analysis consortium, howev-

er, many of these steps are infeasible as full genotype data from

all cohorts are not available. For such studies, a new approach to

meta-analysis fine-mapping in the presence of themany types of

heterogeneity is needed. Until such a method is developed, QC

of meta-analysis fine-mapping results deserves increased

attention.

While existing variant-level QC procedures are effective for

limiting spurious associations in GWAS (Data S1),44 they do

not suffice for ensuring high-quality fine-mapping results. In

some cases, they even hurt fine-mapping quality, because

they can (1) cause or exacerbate differential patterns of missing

variants across cohorts, and (2) remove true causal variants as



Article
ll

OPEN ACCESS
well as suspicious variants. Thus, additional QC procedures that

retain consistent variants across cohorts for consideration but

limit poor-quality fine-mapping results are needed. A recently

proposed method called DENTIST,45 for example, performs

summary statistics QC to improve GWAS downstream analyses,

such as conditional and joint analysis (GCTA-COJO46), by

removing variants based on estimated heterogeneity between

summary statistics and reference LD. Although DENTIST was

also applied prior to fine-mapping (FINEMAP20), simulations

only demonstrated that it could improve power for detecting

the correct number of causal variants in a locus, not true causal

variants. This motivated us to develop a new fine-mapping

QC method for better calibration and recall at single-variant

resolution and to demonstrate its performance in large-scale

meta-analysis.

Here, we first demonstrate the effect of inter-cohort heteroge-

neity in meta-analysis fine-mapping via realistic simulations with

multiple heterogeneous cohorts, each with different combina-

tions of genotyping platforms, imputation reference panels,

and genetic ancestries. We propose a summary statistics-based

QC method, suspicious loci analysis of meta-analysis summary

statistics (SLALOM), that identifies suspicious loci for meta-anal-

ysis fine-mapping by detecting association statistics outliers

based on local LD structure, building on the DENTIST method.

Applying SLALOM to 14 disease endpoints from the GBMI10 as

well as 467 meta-analysis summary statistics from the GWAS

Catalog,47 we demonstrate that suspicious loci for fine-mapping

are widespread in meta-analysis and urge extreme caution when

interpreting fine-mapping results from meta-analysis.

RESULTS

Large-scale simulations demonstrate miscalibration in
meta-analysis fine-mapping
Existing fine-mapping methods20,22,30 assume that all associa-

tion statistics are derived from a single-cohort study, and thus

do not model the per-variant heterogeneity in effect sizes and

sample sizes that arise when meta-analyzing multiple cohorts

(Figure 1). To evaluate how different characteristics of constitu-

ent cohorts in a meta-analysis affect fine-mapping calibration

and recall, we conducted a series of large-scale GWAS meta-

analysis and fine-mapping simulations (Tables S1–S4; STAR

Methods). Briefly, we simulated multiple GWAS cohorts of

different ancestries (10 European ancestry, one African ancestry,

and one East Asian ancestry cohorts; n = 10,000 each) that were

genotyped and imputed using different genotyping arrays (Illu-

mina Omni2.5, Multi-Ethnic Global Array [MEGA], and Global

Screening Array [GSA]) and imputation reference panels (the

1000 Genomes Project Phase 3 [1000GP3],48 the Haplo-type

Reference Consortium [HRC],49 and the TOPMed50). For each

combination of cohort, genotyping array, and imputation panel,

we conducted 300 GWAS with randomly simulated causal vari-

ants that resemble the genetic architecture of a typical complex

trait, including minor allele frequency (MAF) dependent causal

effect sizes,51 total SNP heritability,52 functional consequences

of causal variants,16 and levels of genetic correlation across co-

horts (i.e., true effect size heterogeneity; rg = 1, 0.9, and 0.5;

STAR Methods). We then meta-analyzed the single-cohort
GWAS results across 10 independent cohorts based on multiple

configurations (different combinations of genotyping arrays and

imputation panels for each cohort) to resemble realistic meta-

analysis of multiple heterogeneous cohorts (Table S4). We

applied ABF fine-mapping to compute a PIP for each variant

and to derive 95% and 99% credible sets (CSs) that contain

the smallest set of variants covering 95% and 99% of probability

of causality. We evaluated the false discovery rate (FDR, defined

as the proportion of variants with PIP > 0.9 that are non-causal)

and compared against the expected proportion of non-causal

variants if the meta-analysis fine-mapping method were cali-

brated, based on PIP. More details of our simulation pipeline

are described in STAR Methods and visually summarized in

Figure S2.

We found that FDR varied widely over the different configura-

tions, reaching as high as 37% for the most heterogeneous con-

figurations (Figure 2). We characterized the contributing factors

to the miscalibration. We first found that lower true effect size

correlation rg (i.e., larger phenotypic heterogeneity) always

caused higher miscalibration and lower recall. Second, when us-

ing the same imputation panel (1000GP3), use of less dense ar-

rays (MEGA or GSA) led to moderately inflated FDR (up to FDR =

11% versus expected 1%), while use of multiple genotyping

array did not cause further FDR inflation (Figure 2C). Third,

when using the same genotyping array (Omni2.5), use of imputa-

tion panels (HRC or TOPMed) that do not match our simulation

reference significantly affects miscalibration (up to FDR = 17%

versus expected 1%), and using multiple imputation panels

further increased miscalibration (up to FDR = 35% versus ex-

pected 2%; Figure 2C); this setup is as bad as the most hetero-

geneous configuration using multiple genotyping arrays and

imputation panels (FDR = 37%). When TOPMed-imputed vari-

ants were lifted over from GRCh38 to GRCh37, we observed

FDR increases of up to 10%, likely due to genomic build conver-

sion failures (Data S1).53 Fourth, recall was not significantly

affected by heterogeneous genotyping arrays or imputation

panels (Figures 2B and 2D). Fifth, including multiple genetic an-

cestries did not affect calibration when using the same genotyp-

ing array and imputation panel (Omni 2.5 and 1000GP3; Fig-

ure 2E) but significantly improved recall if African ancestry was

included (Figure 2F). This is expected, given the shorter LD

length in the African population compared with other popula-

tions, which improves fine-mapping resolution.54 Finally, in the

most heterogeneous configurations where multiple genotyping

arrays and imputation panels existed, we observed an FDR of

up to 37% and 28% for European and multi-ancestry meta-ana-

lyses, respectively (versus expected 2% for both), demon-

strating that inter-cohort heterogeneity can substantially under-

mine meta-analysis fine-mapping (Figures 2G and 2H).

To further characterize observed miscalibration in meta-anal-

ysis fine-mapping, we investigated the availability of GWAS var-

iants in each combination of ancestry, genotyping array, and

imputation panel (Figures S3–S5). Out of 3,285,617 variants on

chromosome 3 that passed variant QC in at least one combina-

tion (per-combination MAF >0.001 and Rsq >0.6; STAR

Methods), 574,261 variants (17%) showed population-level

gnomAD MAF >0.001 in every ancestry that we simulated (Afri-

can, East Asian, and European). Because we used a variety of
Cell Genomics 2, 100210, December 14, 2022 3
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imputation panels, we retrieved population-level MAF from gno-

mAD. Of these 574,261 variants, 389,219 variants (68%) were

available in every combination (Figure S3A). This fraction

increased from 68% to 73%, 74%, and 76% as we increased

gnomADMAF thresholds to >0.005, 0.01, and 0.05, respectively,

but never reached 100% (Figure S5). Notably, we observed a

substantial number of variants that are unique to a certain geno-

typing array and an imputation panel, even when we restricted to

344,497 common variants (gnomAD MAF >0.05) in every

ancestry (Figure S3B). For example, there are 34,317 variants

(10%) that were imputed in the 1000GP3 and TOPMed reference

but not in the HRC. Likewise, we observed 33,106 variants (10%)

that were specific to the 1000GP3 reference and even 3,066 var-

iants (1%) that were imputed in every combination except for

East Asian ancestry with the GSA array and the TOPMed refer-

ence. When using different combinations of gnomAD MAF

thresholds (>0.001, 0.005, 0.01, or 0.05 in every ancestry) and

Rsq thresholds (>0.2, 0.4, 0.6, or 0.8), we observed the largest

fraction of shared variants (78%) was achieved with gnomAD

MAF >0.01 and Rsq >0.2 while the largest number of the shared

variants (427,494 variants) was achieved with gnomAD MAF

>0.001 and Rsq >0.2, leaving it unclear which thresholds would

be preferable in the context of fine-mapping (Figure S5).

The remaining 2,711,356 QC-passing variants in our simula-

tions (gnomAD MAF %0.001 in at least one ancestry) further
4 Cell Genomics 2, 100210, December 14, 2022
exacerbate variable coverage of the available variants (Fig-

ure S4A). Of these, the largest proportion of variants (39%)

were only available in African ancestry, followed by African and

European (but not in East Asian) available variants (7%), Euro-

pean-specific variants (6%), and East Asian-specific variants

(5%). Furthermore, similar to the aforementioned common vari-

ants, we found a substantial number of variants that are unique

to a certain combination. Altogether, we observed that only

393,471 variants (12%) out of all the QC-passing 3,285,617 var-

iants were available in every combination (Figure S4B). These

observations recapitulate that different combinations of genetic

ancestry, genotyping array, imputation panels, and QC thresh-

olds substantially affect the availability of common, well-imputed

variants for association testing.55

Thus, the different combinations of genotyping and imputa-

tion cause each cohort in a meta-analysis to have a different

set of variants, and consequently variants can have very

different overall sample sizes. In our simulations with the

most heterogeneous configurations, we found that 66% of

the false-positive loci (where a non-causal [false-positive]

variant was assigned PIP > 0.9) had different sample sizes for

true causal and false-positive variants (median maximum/mini-

mum sample size ratio = 1.4; Figure S6). Analytically, we found

that at common meta-analysis sample sizes and genome-wide

significant effect size regimes, when two variants have similar
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(A and B) An illustrative example of the SLALOM application. (A) In an example locus, two independent association signals are depicted: (1) the most significant

signal that contains a lead variant (purple diamond) and five additional variants that are in strong LD (r2 > 0.9) with the lead variant, and (2) an additional inde-

pendent signal (r2 < 0.05). There is one outlier variant (orange diamond) in the first signal that deviates from the expected association based on LD. (B) Step-by-

step procedure of the SLALOMmethod. For outlier variant detection in a locus, a diagnosis plot of r2 values to the lead variant versus marginal c2 is shown to aid

interpretation. Background color represents a theoretical distribution of –log10 PDENTIST-S values when a lead variant has a marginal c2 of 50, assuming no allele

flipping. Points represent the variants depicted in the example locus (A), where the lead variant (purple diamond) and the outlier variant (white diamond) are

highlighted. Diagonal line represents an expected marginal association. Horizontal dotted lines represent the genome-wide significance threshold

(p < 5.0 3 10�8).

(C). The receiver operating characteristic (ROC) curve of SLALOM prediction for identifying suspicious loci in the simulations. Positive conditions were defined as

whether a true causal variant in a locus is (1) a lead PIP variant, (2) in 95%CS, and (3) in 99%CS. AUROC values are shown in the labels. Black points represent the

performance of our adopted metric; i.e., whether a locus contains at least one outlier variant (PDENTIST-S < 1.0 3 10�4 and r2 > 0.6).

(D) Calibration plot in the simulations under different PIP thresholds. Calibration was measured as the mean PIP minus the fraction of true causal variants among

variants above the threshold. Shadows around the lines represent 95% confidence intervals.

(E) The fraction of variants in predicted suspicious and non-suspicious loci under different PIP thresholds. Gray shadows in the panels (D and E) represent a

PIP % 0.1 region as we excluded loci with maximum PIP % 0.1 in the actual SLALOM analysis based on these panels.
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marginal effects, the one with the larger sample size will usually

achieve a higher ABF PIP (Data S2; Figures S7–S9). This eluci-

dates the mechanism by which sample size imbalance can lead

to miscalibration.

Overview of the SLALOM method
To address the challenges in meta-analysis fine-mapping dis-

cussed above, we developed SLALOM, a method that flags sus-

picious loci for meta-analysis fine-mapping by detecting outliers

in association statistics based on deviations from expectation,
estimated with local LD structure (STAR Methods). SLALOM

consists of three steps: (1) defining loci and lead variants based

on a 1Mb window, (2) detecting outlier variants in each locus us-

ing meta-analysis summary statistics and an external LD refer-

ence panel, and (3) identifying suspicious loci for meta-analysis

fine-mapping (Figures 3A and 3B).

To detect outlier variants, we first assume a single causal

variant per associated locus. Then the marginal Z score zi for a

variant i should be approximately equal to ri,c zc where zc is the

Z score of the causal variant c, and ri,c is a correlation between
Cell Genomics 2, 100210, December 14, 2022 5
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variants i and c. For each variant in meta-analysis summary sta-

tistics, we first test this relationship using a simplified version of

the DENTIST statistics,45 DENTIST-S, based on the assumption

of a single causal variant. The DENTIST-S statistics for a given

variant i is written as

Ti =
ðzi � ri;c,zcÞ2

1 � r2i;c
(Equation 1)

which approximately follows a distribution with 1 degree of

freedom.45 Since the true causal variant and LD structure are un-

known in real data, we approximate the causal variant as the lead

PIP variant in the locus (the variant with the highest PIP) and use

a large-scale external LD reference from gnomAD,56 either an

ancestry-matched LD for a single-ancestry meta-analysis or a

sample-size-weighted LD by ancestries for a multi-ancestry

meta-analysis (STAR Methods). We note that the existence of

multiple independent causal variants in a locus would not affect

SLALOM precision but would decrease recall (see section

‘‘discussion’’).

SLALOM then evaluates whether each locus is ‘‘suspi-

cious’’; that is, has a pattern of meta-analysis statistics and

LD that appear inconsistent and therefore call into question

the fine-mapping accuracy. By training on loci with maximum

PIP >0.9 in the simulations, we determined that the best-per-

forming criterion for classifying loci as true- or false-positives

is whether a locus has a variant with r2 > 0.6 to the lead and

DENTIST-S p-value < 1.0 3 10�4 (STAR Methods). Using

this criterion, we achieved an area under the receiver oper-

ating characteristic curve (AUROC) of 0.74, 0.76, and 0.80

for identifying whether a true causal variant is a lead PIP

variant, in 95% CS, and in 99% CS, respectively (Figure 3C).

Using different thresholds, we observed that the SLALOM

performance is not very sensitive to thresholds near the

threshold we chose (Figure S10). We further validated the per-

formance of SLALOM using all the loci in the simulations and

observed significantly higher miscalibration in predicted sus-

picious loci than in non-suspicious loci (up to 16% difference

in FDR at PIP >0.9; Figure 3D). We found that SLALOM-pre-

dicted suspicious loci tend to be from more heterogeneous

configurations and the SLALOM sensitivity and specificity

depend on the level of heterogeneity (Table S5). Given the

lower miscalibration and specificity at low PIP thresholds

(Figures 3D and 3E), in subsequent real data analysis we

restricted the application of SLALOM to loci with maximum

PIP >0.1 (STAR Methods).

Widespread suspicious loci for fine-mapping in existing
meta-analysis summary statistics
Having assessed the performance of SLALOM in simulations, we

applied SLALOM to 467 meta-analysis summary statistics in the

GWAS Catalog47 that are publicly available with a sufficient dis-

covery sample size (N > 10,000; Table S6; STAR Methods) to

quantify the prevalence of suspicious loci in existing studies.

These summary statistics were mostly European-ancestry-only

meta-analyses (63%), followed by multi-ancestry (31%), East

Asian ancestry-only (3%), and African ancestry-only (2%)
6 Cell Genomics 2, 100210, December 14, 2022
meta-analyses. Across 467 summary statistics from 96 publica-

tions, we identified 28,925 loci with maximum PIP >0.1 (out of

35,864 genome-wide significant loci defined based on 1-Mb

window around lead variants; STARMethods) for SLALOM anal-

ysis, of which 8,137 loci (28%) were predicted suspicious

(Table S7).

To validate SLALOM performance in real data, we restricted

our analysis to 6,065 loci that have maximum PIP >0.1 and

that contain nonsynonymous coding variants (predicted loss of

function [pLoF] and missense) in LD with the lead variant

(r2 > 0.6). Given prior evidence16,43,57 that such nonsynonymous

variants are highly enriched for being causal, we tested the val-

idity of our method by whether they achieve the highest PIP in

the locus (i.e., successful fine-mapping) in suspicious versus

non-suspicious loci (STAR Methods). While 40% (1,557 out of

3,860) of non-suspicious loci successfully fine-mapped nonsy-

nonymous variants, only 17% (384 out of 2,205) of suspicious

loci did, demonstrating a significant depletion (2.33) of success-

fully fine-mapped nonsynonymous variants in suspicious loci

(Fisher’s exact p = 3.6 3 10�79; Figure 4A). We also tested

whether nonsynonymous variants belonged to 95% and 99%

CS and again observed significant depletion (1.43 and 1.33,

respectively; Fisher’s exact p < 4.6 3 10�100). In addition,

when we used a more stringent r2 threshold (>0.8) for selecting

loci that contain nonsynonymous variants, we also confirmed

significant enrichment (Fisher’s exact p < 6.1 3 10�65; Fig-

ure S11). To quantify potential fine-mapping miscalibration in

the GWAS Catalog, we investigated the difference between

mean PIP for lead variants and fraction of lead variants that are

nonsynonymous; assuming that nonsynonymous variants in

these loci are truly causal, this difference equals the difference

between the true and reported fraction of lead PIP variants that

are causal. We observed differences between 26%–51% and

10%–18% under different PIP thresholds in suspicious and

non-suspicious loci, respectively (Figure 4B), marking 45%

and 15% for high-PIP (>0.9) variants.

We further assessed SLALOMperformance in the GWASCata-

logmeta-analyses by leveraging high-PIP (>0.9) complex trait and

cis-eQTL variants that were rigorously fine-mapped16 in large-

scale biobanks (Biobank Japan [BBJ],58 FinnGen,19 and UK Bio-

bank [UKBB]18) and eQTL resources (GTEx59 v8 and eQTL Cata-

log60). Among the 27,713 loci analyzed by SLALOM (maximum

PIP >0.1) that contain a lead variant that was included in biobank

fine-mapping, 17% (3,266 out of 19,692) of the non-suspicious

loci successfully fine-mapped one of the high-PIP GWAS variants

in biobank fine-mapping, whereas 7% (589 out of 8,021) of suspi-

cious loci did, showing a significant depletion (2.33) of the high-

PIP complex trait variants in suspicious loci (Fisher’s exact

p=4.6310�100; Figure4C). Similarly, among26,901 loci analyzed

by SLALOM that contain a lead variant that was included in cis-

eQTL fine-mapping, we found a significant depletion (1.93) of

the high-PIP cis-eQTL variants in suspicious loci, where 7%

(1,247 out of 18,976) of non-suspicious loci versus 4% (281 out

of 7,925) of suspicious loci successfully fine-mapped one of the

high-PIP cis-eQTL variants (Fisher’s exact p = 2.6 3 10�24; Fig-

ure 4D). We observed the same significant depletions of the

high-PIP complex trait and cis-eQTL variants in suspicious loci

that belonged to 95% and 99% CS set (Figures 4C and 4D).
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Figure 4. Evaluation of SLALOMperformance

in the GWAS Catalog summary statistics

(A) Depletion of likely causal variants in predicted

suspicious loci. We evaluated whether non-

synonymous coding variants (pLoF and missense)

were lead PIP variants, in 95% CS, or in 99% CS in

suspicious versus non-suspicious loci. Depletion

was calculated by relative risk (i.e., a ratio of pro-

portions; STARMethods). Error bars, invisible due to

their small size, correspond to 95% confidence in-

tervals using bootstrapping. Significance represents

a Fisher exact test p value (*p < 0.05, **p < 0.01,

***p < 0.001, ****p < 10�4).

(B) Plot of the estimated difference between true and

reported proportion of causal variants in the loci

tagging nonsynonymous variants (r2 > 0.6 with the

lead variants) in the GWAS Catalog under different

PIP thresholds. Analogous to Figure 3D, assuming

nonsynonymous variants in these loci are truly

causal, the mean PIP for lead variants minus

the fraction of lead variants that are nonsynonymous

above the threshold is equal to the difference

between true and reported proportion of causal

variants. Shadows around the lines represent 95%

confidence intervals.

(C and D) Similar to (A), we evaluated whether

(C) high-PIP (>0.9) complex trait variants in biobank

fine-mapping and (D) high-PIP (>0.9) cis-eQTL var-

iants in GTEx v8 and eQTL Catalog were lead PIP

variants, in 95% CS, or in 99% CS in suspicious

versus non-suspicious loci.
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Suspicious loci for fine-mapping in the GBMI summary
statistics
Next, we applied SLALOM to meta-analysis summary statistics

of 14 disease endpoints from the GBMI.10 These summary sta-

tistics were generated from a meta-analysis of up to 1.8 million

individuals in total across 18 biobanks for discovery, represent-

ing six different genetic ancestry groups of approximately 33,000

African, 18,000 admixed American, 31,000 Central and South

Asian, 341,000 East Asian, 1.4 million European, and 1,600 Mid-

dle Eastern individuals (Table S8). Among 489 genome-wide sig-

nificant loci across the 14 traits (excluding the major histocom-

patibility complex [MHC] region; STAR Methods), we found

that 82 loci (17%) showed maximum PIP <0.1, thus not being

further considered by SLALOM. Of the remaining 407 loci with

maximum PIP >0.1, SLALOM identified that 272 loci (67%)

were suspicious loci for fine-mapping (Figure 5A; Table S9).

The fraction of suspicious loci and their maximum PIP varied

by trait, reflecting different levels of statistical power (e.g., sam-

ple sizes, heritability, and local LD structure) as well as inter-

cohort heterogeneity (Figures 5B–5O).

While the fraction of suspicious loci (67%) in the GBMI meta-

analyses is higher than in the GWAS Catalog (28%), there might

be multiple reasons for this discrepancy, including association

significance, sample size, ancestral diversity, and study-specific

QC criteria. For example, the GBMI summary statistics were
Cell
generated from multi-ancestry, large-scale

meta-analyses of median sample size of

1.4 million individuals across six ances-

tries, while 63% of the 467 summary statis-
tics from the GWAS Catalog were only in European-ancestry

studies and 83% had less than 0.5 million discovery samples.

Nonetheless, predicted suspicious loci for fine-mapping were

prevalent in both the GWAS Catalog and the GBMI.

Using nonsynonymous (pLoF and missense) and high-PIP

(>0.9) complex trait and cis-eQTL variants, we recapitulated a

significant depletion of these likely causal variants in predicted

suspicious loci (2.73, 5.23, and 5.13 for nonsynonymous,

high-PIP complex trait, and high-PIP cis-eQTL variants being a

lead PIP variant, respectively; Fisher’s exact p < 7.3 3 10�4),

confirming our observation in the GWAS Catalog analysis

(Figures 6A–6C).

In 15 out of 23 non-suspicious loci harboring a nonsynonymous

variant, the nonsynonymous variant had the highest PIP. These

included known missense variants such as rs116483731

(p.Arg20Gln) in SPDL1 for idiopathic pulmonary fibrosis (IPF)61,62

and rs28929474 (p.Glu366Lys) in SERPINA1 for chronic obstruc-

tivepulmonary disease (COPD).63,64 In addition,weobserved suc-

cessful fine-mapping in two novel loci for asthma: (1) rs41286560

(p.Pro558Thr) in RTL1, a missense variant known for decreasing

height65,66; and (2) rs34187696 (p.Gly337Val) in ZSCAN5A, a

known missense variant for increasing monocyte count.29

To characterize fine-mapping failures in suspicious loci, we

examined suspicious loci in which a nonsynonymous variant did

not achieve the highest PIP. For example, the FCGR2A/FCGR3A
Genomics 2, 100210, December 14, 2022 7
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Figure 5. SLALOM prediction results in the GBMI summary statistics

(A–O) For (A) all 14 traits and (B–O) individual traits, a number of predicted suspicious (SL), non-suspicious (NSL), and non-applicable (NA;maximumPIP <0.1) loci

were summarized. Individual traits are ordered by the total number of loci. Color represents the maximum PIP in a locus. Label represents the fraction of loci in

each prediction category. AAA, abdominal aortic aneurysm; AcApp, acute appendicitis; COPD, chronic obstructive pulmonary disease; HCM, hypertrophic

cardiomyopathy; HF, heart failure; IPF, idiopathic pulmonary fibrosis; POAG, primary open-angle glaucoma; ThC, thyroid cancer; UtC, uterine cancer; VTE,

venous thromboembolism.
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(1q23.3) locus for COPD contained a genome-wide significant

lead intergenic variant rs2099684 (p = 1.7 3 10�11), which is in

LD (r2 = 0.92) with a missense variant rs396991 (p.Phe176Val) of

FCGR3A; Figure 6D). This locus was not previously reported for

COPD but is known for associations with autoimmune diseases

(e.g., inflammatory bowel disease,43 rheumatoid arthritis,7 and

systemic lupus erythematosus67) and encodes the low-affinity hu-

man FC-gamma receptors that bind to the Fc region of immuno-

globulin (Ig) G and activate immune responses.68 Notably, this

locus contains copy number variations that contribute to the dis-

ease associations in addition to single-nucleotide variants, which

makes genotyping challenging.68,69 Despite strong LD with the

lead variant, rs396991 did not achieve genome-wide significance

(p= 9.13 10�3), showing a significant deviation from the expected

association (PDENTIST-S = 5.33 10�41; Figure 6E). This is primarily

due to missingness of rs396991 in eight biobanks out of 17 (Neff =

76,790 and 36,781 for rs2099684 and rs396991, respectively; Fig-

ure 6F), which is caused by its absence from major imputation

reference panels (e.g., 1000GP,48 HRC,49 and UK10K70) despite

having a high MAF in every population (MAF = 0.24–0.34 in Afri-

can, admixed American, East Asian, European, and South Asian

populations of gnomAD56).

Sample size imbalance across variants was pervasive in the

GBMI meta-analyses,71 and was especially enriched in pre-

dicted suspicious loci: 84% of suspicious loci versus 24% of

non-suspicious loci showed a maximum/minimum effective
8 Cell Genomics 2, 100210, December 14, 2022
sample size ratio >2 among variants in LD (r2 > 0.6) with lead var-

iants (a median ratio = 4.2 and 1.2 in suspicious and non-suspi-

cious loci, respectively; Figure S12). These observations are

consistent with our simulations, recapitulating that sample size

imbalance results in miscalibration for meta-analysis fine-map-

ping. Notably, we observed a similar issue in other GBMI down-

stream analyses (e.g., polygenic risk score [PRS]71 and drug dis-

covery72), where predictive performance improved significantly

after filtering out variants with maximum Neff <50%. Although

fine-mapping methods cannot simply take this approach

because it inevitably reduces calibration and recall by removing

true causal variants, other meta-analysis downstream analyses

that primarily rely on polygenic signals rather than individual var-

iants should consider this filtering as an extra QC step.

Comparison of fine-mapping results between the GBMI
meta-analyses and individual biobanks
Motivated by successful validation of SLALOM performance, we

investigated whether fine-mapping confidence and resolution

were improved in the GBMI meta-analyses over individual bio-

banks. To this end, we used our fine-mapping results16 of nine

disease endpoints (asthma,64 COPD,64 gout, heart failure,73

IPF,62 primary open-angle glaucoma,74 thyroid cancer, stroke,75

and venous thromboembolism76) in BBJ,58 FinnGen,19 and

UKBB18 Europeans that also contributed to the GBMI meta-an-

alyses for the same traits.
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Figure 6. Evaluation of SLALOM performance in the GBMI summary statistics

(A–C) Similar to Figure 4, we evaluated whether (A) nonsynonymous coding variants (pLoF and missense), (B) high-PIP (>0.9) complex trait variants in biobank

fine-mapping, and (C) high-PIP (>0.9) cis-eQTL variants in GTEx v8 and eQTL Catalog were lead PIP variants, in 95%CS, or in 99%CS in suspicious versus non-

suspicious loci. Depletion was calculated by relative risk (i.e., a ratio of proportions; STAR Methods). Error bars correspond to 95% confidence intervals using

bootstrapping. Significance represents a Fisher exact test p value (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 10�4).

(D) Locuszoom plot of the 1q23.3 locus for COPD. (Top) A Manhattan plot, where the lead variant rs2099684 (purple diamond) and a missense variant rs396991

(orange diamond) are highlighted. Color represents r2 values to the lead variant. Horizontal line represents a genome-wide significance threshold (p = 5.03 10�8).

(Middle) PIP from ABF fine-mapping. Color represents whether variants belong to a 95% CS. (Bottom) r2 values with the lead variant in gnomAD populations.

(E) A diagnosis plot showing r2 values to the lead variant versus marginal c2. Color represents –log10 PDENTIST-S values. Outlier variants with PDENTIST-S < 10�4 are

depicted in red with a diamond shape. Diagonal line represents an expectedmarginal association. Horizontal line represents a genome-wide significance threshold.

(F) Z scores of the lead variant (rs2099684) versus the missense variant (rs396991) in the constituent cohorts of the meta-analysis. Open and closed circles

represent whether both variants exist in a cohort or rs396991 is missing. Circle size corresponds to an effective sample size. Color represents genetic ancestry.
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Figure 7. Fine-mapping improvement and retrogression in the GBMI meta-analyses over individual biobanks

(A–C) Functional enrichment of variants in each functional category based on top PIP rankings in the GBMI and individual biobanks (maximum PIP of BBJ,

FinnGen, and UKBB) using (A) all loci, (B) suspicious loci, or (C) non-suspicious loci. Shape corresponds to top PIP ranking (top 0.5%, 0.1%, and 0.05%).

Enrichment was calculated by a relative risk (i.e., a ratio of proportions; STARMethods). Error bars correspond to 95% confidence intervals using bootstrapping.

(D and E) Locuszoom plots for the same non-suspicious locus of asthma in the GBMI meta-analysis and an individual biobank (BBJ, FinnGen, or UKBB Eu-

ropeans) that showed the highest PIP in our biobank fine-mapping. Colors in the Manhattan panels represent r2 values to the lead variant. In the PIP panels, only

fine-mapped variants in the 95% CS are colored, where the same colors are applied between the GBMI meta-analysis and an individual biobank based on

merged CS as previously described. Horizontal line represents a genome-wide significance threshold (p = 5.0 3 10�8).

(legend continued on next page)
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To perform an unbiased comparison of PIP between the GBMI

meta-analysis and individual biobanks, we investigated func-

tional enrichment of fine-mapped variants based on top PIP

rankings in the GBMI and individual biobanks (top 0.5%, 0.1%,

and 0.05%PIP variants in theGBMI versusmaximumPIP across

BBJ, FinnGen, and UKBB; STAR Methods). Previous studies

have shown that high-PIP (>0.9) complex trait variants are signif-

icantly enriched for well-known functional categories, such as

coding (pLoF, missense, and synonymous), 50/30 UTR, promoter,

and cis-regulatory element (CRE) regions (DNase I hypersensi-

tive sites and H3K27ac).16 Using these functional categories,

we found no significant enrichment of variants in the top PIP

rankings in the GBMI over individual biobanks (Fisher’s exact

p > 0.05; Figure 7A) except for variants in the promoter region

(1.83; Fisher’s exact p = 4.9 3 10�4 for the top 0.1% PIP vari-

ants). We observed similar trends regardless of whether variants

were in suspicious or non-suspicious loci (Figures 7B and 7C). To

examine patterns of increased and decreased PIP for individual

variants, we also calculated PIP difference between the GBMI

and individual biobanks, defined as DPIP = PIP (GBMI) –

maximumPIP across biobanks (Figures S13 and S14). We inves-

tigated functional enrichment based on DPIP bins and observed

inconsistent enrichment results using different DPIP thresholds

(Figure S15). Finally, to test whether fine-mapping resolution

was improved in the GBMI over individual biobanks, we

compared the size of 95% CS after restricting them to cases

where a GBMI CS overlapped with an individual biobank CS

(STAR Methods). We observed the median 95% CS size of 2

and 2 in non-suspicious loci for the GBMI and individual bio-

banks, respectively, and 5 and 14 in suspicious loci, respectively

(Figure S16). The smaller CS size in suspicious loci in GBMI could

be due to improved resolution or to increased miscalibration.

These results provide limited evidence of overall fine-mapping

improvement in the GBMI meta-analyses over what is achiev-

able by taking the best result from individual biobanks.

Individual examples, however, provide insights into the types

of fine-mapping differences that can occur. To characterize the

observed differences in fine-mapping confidence and resolution,

we further examined non-suspicious loci with DPIP > 0.5 in

asthma. In some cases, the increased power and/or ancestral di-

versity ofGBMI led to improved fine-mapping: for example, an in-

tergenic variant rs1888909 (�18 kb upstream of IL33) showed

DPIP = 0.99 (PIP = 1.0 and 0.008 in GBMI and FinnGen, respec-

tively; Figure 7D), whichwas primarily owing to increased associ-

ation significance in ameta-analysis (p = 3.03 10�86, 7.43 10�2,

3.63 10�16, and 1.93 10�53 in GBMI, BBJ, FinnGen, and UKBB

Europeans, respectively) as well as a shorter LD length in the Af-

rican population than in the European population (LD length = 4

versus41kb for variantswith r2>0.6with rs1888909 in theAfrican

and European populations, respectively;Neff = 4,270 for Africans

in the GBMI asthma meta-analysis; Figure S17). This variant was
(D) rs1888909 for asthma in the GBMI and FinnGen.

(E) rs16903574 for asthma in the GBMI and UKBB Europeans. Nearby rs52816745

CS in UKBB Europeans, but not in the GBMI (r2 = 0.67).

(F) rs1295686 for asthma in the GBMI and UKBB Europeans. A nearby missense, r

(G) rs12123821 for asthma in the GBMI and UKBB Europeans. Nearby stop-gaine

the GBMI due to a single causal variant assumption in the ABF fine-mapping.
also fine-mapped for eosinophil count in UKBBEuropeans (PIP =

1.0; p = 1.3 3 10�314)16 and was previously reported to regulate

IL33 gene expression in human airway epithelial cells via allele-

specific transcription factor binding of OCT-1 (POU2F1).77

Likewise, we observed a missense variant rs16903574

(p.Phe319Leu) in OTULINL showed DPIP = 0.79 (PIP = 1.0 and

0.21 in GBMI and UKBB Europeans, respectively; Figure 7E)

owing to improved association significance (p = 7.7 3 10�15

and 4.7 3 10�12 in GBMI and UKBB Europeans, respectively).

However, we also observed very highDPIP for variants that are

not likely causal. For example, we observed that an intronic

variant rs1295686 in IL13 showed DPIP = 0.56 (PIP = 0.56 and

0.0002 in GBMI and UKBB Europeans, respectively; Figure 7F),

despite having strong LDwith a nearbymissense variant rs20541

(p.Gln144Arg; r2 = 0.96 with rs1295686), which only showed

DPIP = 0.13 (PIP = 0.13 and 0.0001 in GBMI and UKBB Euro-

peans, respectively). The missense variant rs20541 showed

PIP = 0.23 and 0.15 for a related allergic disease, atopic derma-

titis, in BBJ and FinnGen, respectively,16 and was previously

shown to induce STAT6 phosphorylation and upregulate CD23

expression in monocytes, promoting IgE synthesis.78 Although

the GBMImeta-analysis contributed to prioritizing these two var-

iants (sum of PIP = 0.69 versus 0.0003 in GBMI and UKBB Euro-

peans, respectively), the observed DPIP was higher for

rs1295686 than for rs20541.

While increasing sample size in meta-analysis improves asso-

ciation significance, we also found negative DPIP due to losing

the ability to model multiple causal variants. A stop-gained

variant rs61816761 (p.Arg501Ter) in FLG showed DPIP = �1.0

(PIP = 6.4 3 10�5 and 1.0 in GBMI and UKBB Europeans,

respectively; Figure 7G), which was primarily owing to a nearby

lead variant rs12123821 (�17 kb downstream of HRNR; r2 =

0.0 with rs61816761). This lead variant rs12123821 showed

greater significance than rs61816761 in GBMI (p = 9.3 3 10�16

and 2.0 3 10�11 for rs12123821 and rs61816761, respectively)

as well as in UKBB Europeans (p = 7.1 3 10�26 and

1.5 3 10�18). While our biobank fine-mapping16 assigned PIP =

1.0 for both variants based on multiple-causal-variant fine-map-

ping (i.e., FINEMAP20 and SuSiE22), our ABF fine-mapping in the

GBMI meta-analysis was only able to assign PIP = 0.74 for the

lead variant rs12123821 due to a single causal variant assump-

tion. This recapitulates the importance of multiple-causal-variant

fine-mapping in complex trait fine-mapping16; however, we note

that multiple-causal-variant fine-mapping with an external LD

reference is extremely error prone as previously reported.14,15

DISCUSSION

In this study, we first demonstrated in simulations that meta-

analysis fine-mapping is substantially miscalibrated when con-

stituent cohorts are heterogeneous in phenotyping, genotyping,
1 was also highlighted, which was in strong LD (r2 = 0.86) and in the same 95%

s20541, showed lower PIP than rs1295686 despite having strong LD (r2 = 0.96).

d rs61816761 was independent of rs12123821 (r2 = 0.0) and not fine-mapped in
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and imputation. Tomitigate this issue, we developed SLALOM, a

summary statistics-based QC method for identifying suspicious

loci in meta-analysis fine-mapping. Applying SLALOM to 14 dis-

ease endpoints from the GBMI meta-analyses10 as well as 467

summary statistics from the GWAS Catalog,47 we observed

widespread suspicious loci in meta-analysis summary statistics,

suggesting that meta-analysis fine-mapping is often miscali-

brated in real data too. Indeed, we demonstrated that the pre-

dicted suspicious loci were significantly depleted for having

likely causal variants as a lead PIP variant, such as nonsynony-

mous variants, high-PIP (>0.9) GWAS, and cis-eQTL fine-map-

ped variants from our previous fine-mapping studies.16 Our

method provides better calibration in non-suspicious loci for

meta-analysis fine-mapping, generating a more reliable set of

variants for further functional characterization.

We have found limited evidence of improved fine-mapping in

the GBMI meta-analyses over individual biobanks. A few empir-

ical examples in this study as well as other previous

studies7,9,25,26,29 suggested that multi-ancestry, large-scale

meta-analysis could have potential to improve fine-mapping

confidence and resolution owing to increased statistical power

in associations and differential LD pattern across ancestries.

However, we have highlighted that the observed improvement

in PIP could be due to sample size imbalance in a locus, miscali-

bration, and technical confoundings too, which further empha-

sizes the importance of careful investigation of fine-mapped var-

iants identified through meta-analysis fine-mapping. Given

practical challenges in data harmonization across different co-

horts, a large-scale biobank with multiple ancestries (e.g., UK

Biobank18 and All of Us79) would likely benefit the most from

meta-analysis fine-mapping across ancestries.

As high-confidence fine-mapping results in large-scale bio-

banks and molecular quantitative trait loci (QTLs) continue to

become available,15,16,60 we propose alternative approaches

for prioritizing candidate causal variants in ameta-analysis. First,

these high-confidence fine-mapped variants have been a valu-

able resource to conduct a phenome-wide association study

(PheWAS) to match with associated variants in a meta-analysis,

which provides a narrower list of candidate variants assuming

they would equally be functional and causal in related complex

traits or tissues/cell types. Second, a traditional approach based

on tagging variants (e.g., r2 > 0.6 with lead variants, or PICS57

fine-mapping approach that only relies on a lead variant and

LD) can still be highly effective, especially for known functional

variants such as nonsynonymous coding variants. As we high-

lighted in this and previous38 studies, potentially causal variants

in strong LD with lead variants might not achieve genome-wide

significance because of missingness and heterogeneity.

While using an external LD reference for fine-mapping has

been shown to be extremely error prone,14,15 we find here that

it can be useful for flagging suspicious loci, even when it does

not perfectly represent the in-sample LD structure of the meta-

analyzed individuals. However, our use of external LD reference

comes with several limitations. For example, due to the finite

sample size of external LD reference, rare or low-frequency var-

iants have larger uncertainties around r2 than common variants.

Moreover, our r2 values in a multi-ancestry meta-analysis are

currently approximated based on a sample-size-weighted
12 Cell Genomics 2, 100210, December 14, 2022
average of r2 across ancestries as previously suggested,80 but

this can be different from actual r2. These uncertainties around

r2 affect SLALOM prediction performance and should be

modeled appropriately for further method development. On the

other hand, we find it challenging to use an LD reference when

true causal variants are located within a complex region (e.g.,

MHC), or are entirely missing from standard LD or imputation

reference panels, especially for structural variants. These limita-

tions are not specific to meta-analysis fine-mapping, and sepa-

rate fine-mapping methods based on bespoke imputation refer-

ences have been developed (e.g., human leukocyte antigen

[HLA],81 killer cell immunoglobulin-like receptor [KIR],82 and var-

iable numbers of tandem repeats83).

We have found evidence in our simulations and real data of se-

vere miscalibration of fine-mapping results from GWAS meta-

analysis; for example, we estimate that the difference between

true and reported proportion of causal variants is 20% and

45% for high-PIP (>0.9) variants in suspicious loci from the sim-

ulations and the GWAS Catalog, respectively. Our SLALOM

method helps to exclude spurious results from meta-analysis

fine-mapping; however, even fine-mapping results in SLALOM-

predicted non-suspicious loci remain somewhat miscalibrated,

showing estimated differences between true and reported pro-

portion of causal variants of 4% and 15% for high-PIP variants

in the simulations and the GWAS Catalog, respectively. We

thus urge extreme caution when interpreting PIPs computed

from meta-analyses until improved methods are available. We

recommend that researchers looking to identify likely causal var-

iants employ complete synchronization of study design, case/

control ascertainment, genomic profiling, and analytical pipeline,

or rely more heavily on functional annotations, biobank fine-

mapping, or molecular QTLs.

Limitations of the study
There are several methodological limitations of SLALOM. First,

our simulations only include one causal variant per locus.

Although additional independent causal variants would not

affect SLALOM precision (but decrease recall), multiple corre-

lated causal variants in a locus would violate SLALOM assump-

tions and could lead to someDENTIST-S outliers that are not due

to heterogeneity or missingness but rather simply a product of

tagging multiple causal variants in LD. In fact, our previous

studies have illustrated infrequent but non-zero presence of

such correlated causal variants in complex traits.16 Second,

SLALOM prediction is not perfect. Although fine-mapping cali-

bration is certainly better in non-suspicious versus suspicious

loci, SLALOM has low precision, and we still observe some

miscalibration in non-suspicious loci. Optimal thresholds for

SLALOM prediction might be different for other datasets.

Third, SLALOM does not model effect size heterogeneity.

Although SLALOM is able to detect suspicious loci due to effect

size heterogeneity as the method is agnostic to the source of

heterogeneity, methods that model effect size heterogeneity,

such as MR-MEGA,84 could improve SLALOM performance.

Finally, SLALOM is a per-locus QC method and does not cali-

brate per-variant PIPs. Further methodological development

that properly models heterogeneity, missingness, sample size

imbalance, multiple causal variants, and LD uncertainty across
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multiple cohorts and ancestries is needed to refine per-variant

calibration and recall in meta-analysis fine-mapping.
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HAPGEN2 Su, Z. et al., 201185 https://mathgen.stats.ox.ac.uk/

genetics_software/hapgen/hapgen2.html

PLINK 2.0 Chang, CC. et al., 201586 https://www.cog-genomics.org/plink/2.0/

Michigan Imputation Server Das, S. et al., 201687 https://imputationserver.sph.umich.edu/

TOPMed Imputation Server Taliun, D. et al., 202150 https://imputation.biodatacatalyst.nhlbi.

nih.gov/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and data should be directed to andwill be fulfilled by the lead contact, Masahiro Kanai

(mkanai@broadinstitute.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The GBMI summary statistics for the 14 endpoints are publicly available and are browserble at the GBMI PheWeb website (http://

results.globalbiobankmeta.org/). Example outputs from the meta-analysis fine-mapping simulation pipeline have been deposited

at Harvard Dataverse. All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs

and links are listed in the key resources table. Any additional information required to reanalyze the data reported in this paper is avail-

able from the lead contact upon request.

METHOD DETAILS

Meta-analysis fine-mapping simulation
To benchmark fine-mapping performance in meta-analysis, we simulated a large-scale, realistic GWAS meta-analysis and per-

formed fine-mapping under different scenarios. An overview of our simulation pipeline is summarized in Figure S2.
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Simulated true genotype
Using HAPGEN285 with the 1000 Genomes Project Phase 3 (ref. 48), we simulated ‘‘true’’ genotypes of chromosome 3 for multiple

independent cohorts from African, East Asian, and European ancestries. For each independent cohort from a given ancestry, we

simulated 10,000 individuals each using the default parameters, with an ancestry-specific effective population size set to 17,469,

14,269, and 11,418 for Africans, East Asians, and Europeans, respectively, as recommended.85 To mimic sample size imbalance

of different ancestries in the current meta-analyses, we simulated 10 independent European cohorts, 1 African cohort, and 1 East

Asian cohort.

To restrict our analysis to unrelated samples, we computed sample relatedness based on KING kinship coefficients88 using PLINK

2.0 (ref. 86) and removed monozygotic twins, duplicated individuals, or first-degree relatives with the coefficient threshold of 0.177.

The detailed sample sizes of unrelated individuals for each cohort is summarized in Table S1.

Genotyping and imputation
To simulate realistic genotyping and imputation procedures, we first virtually genotyped each cohort by restricting variants to those

that are available on different genotyping arrays.We selected threemajor genotyping arrays from Illumina, Inc. (Omni2.5,Multi-Ethnic

Global Array [MEGA], and Global Screening Array [GSA]) that have different densities of genotyping probes (Table S2). For each

cohort, we created three virtually genotyped datasets by retaining variants that are genotyped on each array. For the sake of

simplicity, we assumed no genotyping errors occurred between true genotypes and virtually genotyped data—however, in practice,

genotyping error is one of the major sources of unexpected confounding (e.g., see recent discussions here89,90) and should be

treated carefully.

For each pair of cohort and genotyping array, we then imputed missing variants using different imputation reference panels. We

used the Michigan Imputation Server (https://imputationserver.sph.umich.edu/)87 and the TOPMed Imputation Server (https://

imputation.biodatacatalyst.nhlbi.nih.gov/)50 with the default parameters, using three publicly available reference panels: the 1000

Genomes Project Phase 3 (version 5; n = 2,504; 1000GP3),48 the Haplo-type Reference Consortium (version r1.1; n = 32,470;

HRC),49 and the TOPMed (version R2; n = 97,256).50 Briefly, for each input, the imputation server created chunks of 20 Mb, applied

the standard QC, pre-phased each chunk with Eagle2 (ref. 91), and imputed non-genotyped variants using a specified reference

panel with Minimac4 (https://genome.sph.umich.edu/wiki/Minimac4). The detailed documentation of the imputation pipeline is avail-

able on the Michigan and TOPMed websites and has been described elsewhere.87

We applied post-imputation QCby only keeping variants withMAF >0.001 and imputation Rsq >0.6. Because the TOPMed panel is

based onGRCh38while the 1000GP3 and the HRC panels are on GRCh37, we lifted over TOPMed variants fromGRCh38 toGRCh37

to meta-analyze with other cohorts. We excluded any variants which were lifted over to different chromosomes or for which the con-

version failed. The number of virtually genotyped and imputed variants for each combination of cohort, genotyping array, and impu-

tation panel is summarized in Table S3.

True phenotype
We simulated 300 true phenotypes that resemble observed complex trait genetic architecture and phenotypic heterogeneity across

cohorts. Based on previous literature, we set parameters as follows: 1) 50% of 1 Mb loci contain a true causal variant92; 2) probability

of being causal is proportional to functional enrichments of variant consequences (pLoF, missense, synonymous, 5’/30 UTR, pro-
moter, cis-regulatory region, and non-genic) for fine-mapped variants as estimated in a previous complex trait fine-mapping study16;

3) per-allele causal effect sizes have a variance proportional to where represents a maximumMAF across the three ancestries (AFR,

EAS, and EUR) and is set to be �0.38 (ref. 51); and 4) total SNP-heritability for chromosome 3 equals 0.03 (ref. 52). For the sake of

simplicity, we randomly draw a single true causal variant per locus because ABF assumes a single causal variant.30,31 We draw true

causal variants from 1,150,893 non-ambiguous single-nucleotide variants in 1000GP3 that showed MAF >0.01 in at least one of the

three ancestries (AFR, EAS, or EUR) and were not located within conversion-unstable positions (CUP)53 between the human genome

builds GRCh37 and GRCh38. To mimic phenotypic heterogeneity across cohorts in real-world meta-analysis (due to e.g., different

ascertainment, measurement error, or true effect size heterogeneity), we introduced cross-cohort genetic correlation of true effect

sizes rg which is set to be one of 1, 0.9, or 0.5. For a true causal variant j, true causal effect sizes bj across cohorts were randomly

drawn from b� MVN (0, Ʃ) where diagonal elements of Ʃ were set to be s2g,½2pð1 � pÞ�a and off-diagonal elements of Ʃ were set

to be rg,s2
g ½2pð1 � pÞ�a. s2g was determined by s2g = h2g=Sj½2p ð1 � pÞ�1+a. For each cohort, true phenotype y was computed via

y = Xb+ ˛ where X is the above true genotype matrix from HAPGEN2 and εi � Nð0; 1 �s2
gÞ i.i.d. We simulated 100 true phenotypes

for each of rg = 1, 0.9, and 0.5, respectively.

GWAS
For each combination of phenotype, cohort, genotyping chip, and imputation panel, we conducted GWAS via a standard linear

regression as implemented in PLINK 2.0 using imputed dosages. For covariates, we included top 10 principal components that

were calculated based on true genotypes after restricting to unrelated samples. We only used LD-pruned variants with

MAF >0.01 for PCA.
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Meta-analysis
To simulate meta-analyses that resemble real-world settings, we generated multiple configurations of the above GWAS results to

meta-analyze across 10 independent cohorts. Briefly, we chose configurations based on the following settings: 1) 10 EUR cohorts

are genotyped and imputed using the same genotyping array (one of GSA,MEGA, or Omni2.5) and the same imputation panel (one of

1000GP3, HRC, TOPMed, or TOPMed-liftover); 2) 10 cohorts consisting of multiple ancestries (9 EUR +1 AFR/EAS cohorts or 8

EUR +1 AFR +1 EAS cohorts), with all cohorts genotyped and imputed using the same array (Omni2.5) and the same panel

(1000GP3); 3) 10 EUR or multi-ancestry cohorts are genotyped using the same array (Omni2.5) but imputed using different panels

across cohorts; 4) 10 EUR or multi-ancestry cohorts are imputed using the same panel (1000GP3) but genotyped using different ar-

rays across cohorts; 5) 10 EUR or multi-ancestry cohorts are genotyped and imputed using different arrays and panels across co-

horts. For settings 3–5, we randomly draw a combination of a genotyping array and an imputation panel for each cohort five times

each for 10 EUR and multi-ancestry cohorts. In total, we generated 45 configurations as summarized in Table S4.

For each configuration, we conducted a fixed-effect meta-analysis based on inverse-variance weighted betas and standard errors

using a modified version of PLINK 1.9 (https://github.com/mkanai/plink-ng/tree/add_se_meta).

Fine-mapping
For each meta-analysis, we defined fine-mapping regions based on a 1 Mb window around each genome-wide significant lead

variant and applied ABF30,31 using prior effect size variance of = 0.04.We set a prior variance of effect size to be 0.04 which was taken

fromWakefield et al.30 and is commonly used in meta-analysis fine-mapping studies.2,7 We computed posterior inclusion probability

(PIP) and 95% credible set (CS) for each locus and evaluated whether true causal variants were correctly fine-mapped.

The SLALOM method
SLALOM takesGWAS summary statistics and external LD reference as input and predicts whether a locus is suspicious for fine-map-

ping. SLALOM consists of the following three steps:

Locus definition
Consistent with common fine-mapping region definition, we defined loci based on a 1 Mb window around each genome-wide sig-

nificant lead variant andmerged them if they overlapped.We excluded themajor histocompatibility complex (MHC) region (chr 6: 25–

36 Mb) from analysis due to extensive LD structure in the region.

DENTIST-S outlier detection
For each variant in a locus, we computed DENTIST-S statistics using Equation 1 based on the assumption of a single causal variant.

DENTIST-S P-values (PDENTIST-S) were computed using the distribution with 1 degree of freedom. We applied ABF30,31 using prior

effect size variance of = 0.04 and used the lead PIP variant (the variant with the highest PIP) as an approximation of the causal variant

in the locus. To retrieve correlation r among the variants, we used publicly available LD matrices from gnomAD56 v2 as external LD

reference for African, Admixed American, East Asian, Finnish, and non-Finnish European populations. When multiple populations

exist, we computed a sample-size-weighted average of r2 using per-variant sample sizes for each population as previously sug-

gested.80 We excluded variants without r2 available in gnomAD from the analysis. Since gnomAD v2 LD matrices are based on

the human genome assembly GRCh37, variants were lifted over to GRCh38 if the input summary statistics were based on GRCh38.

We determined DENTIST-S outlier variants using two thresholds: 1) r2 > r to the lead and 2) PDENTIST-S < t. The thresholds r and t

were set to r = 0.6 and t = 1.0 3 10�4 based on the training in simulations as described below.

Suspicious loci prediction
Wepredicted whether a locus is suspicious or non-suspicious for fine-mapping based on the number of DENTIST-S outlier variants in

the locus > k. To determine the best-performing thresholds (r, t, and k), we used loci with maximum PIP >0.9 in the simulations for

training. Positive conditions were defined as whether a true causal variant in a locus is 1) a lead PIP variant, 2) in 95% CS, and 3) in

99%CS. We computed AUROC across different thresholds (r = 0, 0.1, 0.2,., 0.9; –log10 t = 0, 0.5, 1,., 10; and k = 0, 1, 2,.) and

chose r = 0.6, t = 1.03 10�4, and k = 0 that showed the highest AUROC for all the aforementioned positive conditions. Using all the

loci in the simulations, we then evaluated fine-mapping miscalibration (defined as mean PIP – fraction of true causal variants) at

different PIP thresholds in suspicious and non-suspicious loci and decided to only apply SLALOM to loci with maximum PIP >0.1

owing to relatively lower miscalibration and specificity of SLALOM at lower PIP thresholds.

GWAS catalog analysis
We retrieved full GWAS summary statistics publicly available on the GWAS Catalog.47 Out of 33,052 studies from 5,553 publications

registered at the GWAS Catalog (as of January 12, 2022), we selected 467 studies from 96 publications that have 1) full harmonized

summary statistics preprocessed by the GWAS Catalog with non-missing variant ID, marginal beta, and SE columns, 2) a discovery

sample size of more than 10,000 individuals, 3) African (including African American, Afro-Caribbean, and Sub-Saharan African), ad-

mixed American (Hispanic and Latin American), East Asian, or European samples based on their broad ancestral category metadata,

4) at least one genome-wide significant association (p < 5.0 3 10�8), and 5) our manual annotation as a meta-analysis rather than a
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single-cohort study (Table S6).We applied SLALOM to the 467 summary statistics and identified 35,864 genome-wide significant loci

(based on 1Mbwindow around lead variants), of which 28,925 loci withmaximumPIP >0.1 were further classified into suspicious and

non-suspicious loci. Since per-variant sample sizes were not available, we used overall sample sizes of each ancestry (African, Ad-

mixed American, East Asian, and European) to calculate the weighted-average of r2. All the variants were harmonized into the human

genome assembly GRCh38 by the GWAS Catalog.

GBMI analysis
We usedmeta-analysis summary statistics of 14 disease endpoints from the GBMI (Table S8). Thesemeta-analyses were conducted

using up to 1.8million individuals across 18 biobanks for discovery, representing six different genetic ancestry groups (approximately

33,000 African, 18,000 Admixed American, 31,000 Central and South Asian, 341,000 East Asian, 1.4 million European, and 1,600

Middle Eastern individuals). Detailed procedures of the GBMI meta-analyses were described in the GBMI flagship publication.10

Across the 14 summary statistics, we used 489 out of 500 genome-wide significant loci (p < 5.03 10�8; 1 Mbwindow around each

lead variant, as defined in the GBMI flagship publication10), excluding 11 loci that overlap with the MHC region. We applied SLALOM

to 422 loci with maximum PIP >0.1 based on the ABF fine-mapping and predicted whether they were suspicious or non-suspicious

for fine-mapping. We used per-variant sample sizes of each ancestry (African, Admixed American, East Asian, Finnish, and non-

Finnish European) to calculate theweighted-average of r2. Since gnomAD LDmatrices were not available for Central and South Asian

and Middle Eastern, we did not use their sample sizes for the calculation. All the variants were processed on the human genome

assembly GRCh38.

Fine-mapping results of complex traits and cis-eQTL
We retrieved our previous fine-mapping results for 1) complex traits in large-scale biobanks (BBJ,58 FinnGen,19 and UKBB18

Europeans)16 and 2) cis-eQTLs in GTEx59 v8 and eQTL Catalogue60 Briefly, we conducted multiple-causal-variant fine-mapping

(FINEMAP20,21 and SuSiE22) of complex trait GWAS (# unique traits = 148) and cis-eQTL gene expression (# unique tissues/cell-

types = 69) using summary statistics and in-sample LD. Detailed fine-mapping methods are described elsewhere.16

In this study, we collected 1) high-PIP GWAS variants that achieved PIP >0.9 for any traits in any biobank and 2) high-PIP cis-eQTL

variants that acheived PIP >0.9 for any gene expression in any tissues/cell-types. All the variants were originally processed on the

human genome assembly GRCh37 and lifted over to the GRCh38 for comparison.

Additional fine-mapping results
To compare with the GBMImeta-analyses, we additionally conductedmulti-causal-variant fine-mapping of four additional endpoints

(gout, heart failure, thyroid cancer, and venous thromboembolism) that were not fine-mapped in our previous study.16 We used

exactly the same fine-mapping pipeline (FINEMAP20,21 and SuSiE22) as described previously.16 For UKBB Europeans, to use the

exact same samples that contributed to the GBMI, we used individuals of European ancestry (n = 420,531) as defined in the Pan-

UKBB project (https://pan.ukbb.broadinstitute.org), instead of those of ‘‘white British ancestry’’ (n = 361,194) used in our previous

study.16

Enrichment analysis of likely causal variants
To validate SLALOM performance, we asked whether suspicious and non-suspicious loci were enriched for having likely causal var-

iants as a lead PIP variant, and for containing them in the 95 and 99%CS. We defined likely causal variants using 1) nonsynonymous

coding variants, i.e., pLoF andmissense variants annotated93 by the Ensembl Variant Effect Predictor (VEP) v101 (using GRCh38 and

GENCODE v35), 2) the high-PIP (>0.9) complex trait fine-mapped variants, and 3) the high-PIP (>0.9) cis-eQTL fine-mapped variants

from our previous studies as described above.

We estimated enrichment for suspicious and non-suspicious loci as a relative risk (i.e., a ratio of proportion of variants) between

being in suspicious/non-suspicious loci and having the annotated likely causal variants as a lead PIP variant (or containing them in the

95% or 99%CS). That is, a relative risk = (proportion of non-suspicious loci having the annotated variants as a lead PIP variant)/(pro-

portion of suspicious loci having the annotated variants as a lead PIP variant). We computed 95% confidence intervals using

bootstrapping.

Comparison of fine-mapping results between the GBMI and individual biobanks
To directly compare with fine-mapping results from the GBMI meta-analyses, we used our fine-mapping results of nine disease end-

points (asthma,64 COPD,64 gout, heart failure,73 IPF,62 primary open-angle glaucoma,74 thyroid cancer, stroke,75 and venous throm-

boembolism76) in BBJ,58 FinnGen,19 and UKBB18 Europeans that were also part of the GBMI meta-analyses for the same traits. For

comparison, we computed themaximumPIP for each variant and theminimum size of 95%CS across BBJ, FinnGen, and UKBB.We

restricted the 95% CS in biobanks to those that contain the lead variants from the GBMI. We defined the PIP difference between the

GBMI and individual biobanks as DPIP = PIP (GBMI) – the maximum PIP across the biobanks.

We conducted functional enrichment analysis to compare between the GBMI meta-analysis and individual biobanks because un-

biased comparison of PIP requires conditioning on likely causal variants independent of the fine-mapping results, and functional an-

notations have been shown to be enriched for causal variants. Using functional categories (coding [pLoF, missense, and
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synonymous], 5’/30 UTR, promoter, and CRE) from our previous study,16 we estimated functional enrichments of variants in each

functional category based on 1) top PIP rankings and 2) DPIP bins. Since fine-mapping PIP in the GBMI meta-analysis can be mis-

calibrated, we performed a comparison based on top PIP rankings to assess whether the ordering given by GBMI PIPs is more infor-

mative than the ordering given by the biobanks. For the top PIP rankings, we took the top 0.5%, 0.1%, and 0.05% variants based on

the PIP rankings in the GBMI and individual biobanks.We computed enrichment as a relative risk = (proportion of top X%PIP variants

in the GBMI that are in the annotation)/(proportion of top X% PIP variants in the individual biobanks that are in the annotation). For

DPIP bins, we defined three bins using different thresholds (q = 0.01, 0.05, and 0.1): 1) decreased PIP bin, DPIP < –q, 2) null bin, –q%

DPIP% q, and 3) increased PIP bin, q < DPIP. We computed enrichment as a relative risk = (proportion of variants in the decreased/

increased PIP bin that are in the annotation)/(proportion of variants in the null PIP bin). We combined coding, UTR, and promoter

categories for this analysis due to the limited number of variants for each bin.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed using R 4.0.3, Hail 0.2, PLINK 1.9 and 2.0. All methodological details can be found in themethod

details, and all statistical tests are named as they are used.
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