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Colocalization of GWAS and eQTL
Signals Detects Target Genes

Farhad Hormozdiari,1 Martijn van de Bunt,2,3 Ayellet V. Segrè,4 Xiao Li,4 Jong Wha J. Joo,1

Michael Bilow,1 Jae Hoon Sul,5,6 Sriram Sankararaman,1,8 Bogdan Pasaniuc,7,8 and Eleazar Eskin1,8,*

The vast majority of genome-wide association study (GWAS) risk loci fall in non-coding regions of the genome. One possible hypothesis

is that these GWAS risk loci alter the individual’s disease risk through their effect on gene expression in different tissues. In order to un-

derstand themechanisms driving a GWAS risk locus, it is helpful to determinewhich gene is affected in specific tissue types. For example,

the relevant gene and tissue could play a role in the diseasemechanism if the same variant responsible for a GWAS locus also affects gene

expression. Identifying whether or not the same variant is causal in both GWASs and expression quantitative trail locus (eQTL) studies is

challenging because of the uncertainty induced by linkage disequilibrium and the fact that some loci harbor multiple causal variants.

However, current methods that address this problem assume that each locus contains a single causal variant. In this paper, we present

eCAVIAR, a probabilistic method that has several key advantages over existing methods. First, our method can account for more than

one causal variant in any given locus. Second, it can leverage summary statistics without accessing the individual genotype data. We use

both simulated and real datasets to demonstrate the utility of our method. Using publicly available eQTL data on 45 different tissues, we

demonstrate that eCAVIAR can prioritize likely relevant tissues and target genes for a set of glucose- and insulin-related trait loci.
Introduction

Genome-wide association studies (GWASs) have success-

fully detected thousands of genetic variants associated

with various traits and diseases.1–4 The vast majority of

genetic variants detected by GWASs fall in non-coding

regions of the genome, and it is unclear how these non-

coding variants affect traits and diseases.5 One potential

approach to identifying the mechanism of these non-cod-

ing variants in disease is through integration of expression

quantitative loci (eQTL) studies and GWASs.5 This

approach is based on the concept that a GWAS variant,

in some tissues, affects expression at a nearby gene and

that both the gene and the tissue might play a role in the

disease mechanism.6,7

Unfortunately, integrating GWASs and eQTL studies is

challenging for two reasons. First, the correlation structure

of the genome, known as linkage disequilibrium (LD),8

produces an inherent ambiguity in interpreting results of

genetic studies. Second, some loci harbor more than one

causal variant for any given disease. We know that mar-

ginal statistics of a variant can be affected by other variants

in LD.8–11 For example, the marginal statistics of two vari-

ants in LD can capture a fraction of the effect of each other.

Although GWASs have benefited from LD in the human

genome by tagging only a subset of common variants to

capture a majority of common variants, a fine-mapping

process, which attempts to detect true causal variants

that are responsible for an association signal at the locus,
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becomes more challenging. Colocalization determines

whether a single variant is responsible for both GWAS

and eQTL signals in a locus. Thus, colocalization requires

correctly identifying the causal variant in both studies.

Recently, researchers proposed a series of methods6,12–17

to integrate GWASs and eQTL studies. PrediXscan7 and

TWAS,17 which impute gene expression and then associate

the imputed expressionwith the trait, are examples of such

methods. However, these methods do not provide a basis

for determining colocalization of GWAS causal variants

and eQTL causal variants. Another class of methods inte-

grates GWASs and eQTL studies to provide insight about

the colocalization of causal variants. For example, regula-

tory trait concordance (RTC)13 detects variants that are

causal in both studies while accounting for LD. RTC is

based on the assumption that removing the effect of causal

variants from eQTL studies will reduce or eliminate any sig-

nificant association signal at that locus. Thus, when the

GWAS causal variant is colocalized with the eQTL causal

variant, re-computing the marginal statistics for the

eQTL variant by conditioning on the GWAS causal variant

will remove any significant association signal observed in

the locus. Sherlock,12 another method, is based on a

Bayesian statistical framework that matches GWAS associ-

ation signals with eQTL signals for a specific gene in order

to detect whether the same variant is causal in both

studies. Similar to RTC, Sherlock accounts for the uncer-

tainty of LD. QTLMatch16 is another proposed method of

detecting cases where the most significant GWAS and
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eQTL variants are colocalized as a result of a causal relation-

ship or coincidence. COLOC,14,15 a method expanded

from QTLMatch, is the state-of-the-art method that coloc-

alizes GWAS and eQTL signals. COLOC utilizes an approx-

imate Bayes factor to estimate the posterior probabilities

that a variant is causal in both GWASs and eQTL studies.

Unfortunately, most existing colocalization methods that

utilize summary statistics assume the presence of only

one causal variant in any given locus for both GWASs

and eQTL studies. As we show below, this assumption

reduces the accuracy of results when the locus contains

multiple causal variants.

In this paper, we present a probabilistic model for inte-

grating GWAS and eQTL data. For each study, we use

only the reported summary statistics and simultaneously

perform statistical fine-mapping to optimize integration.

Our approach, eCAVIAR (eQTL and GWAS Causal Variant

Identification in Associated Regions), extends the

CAVIAR18 framework to explicitly estimate the posterior

probability that the same variant is causal in both a

GWAS and eQTL study while accounting for the uncer-

tainty of LD. We apply eCAVIAR to colocalize variants

that pass the genome-wide significance threshold in a

GWAS. For any given peak variant identified in a GWAS,

eCAVIAR considers a collection of variants around that

peak variant as one single locus. This collection includes

the peak variant itself, M variants upstream of this peak

variant, and M variants downstream of this peak variant

(e.g., M can be set to 50). Then, for all variants in a locus,

we consider their marginal statistics obtained from the

eQTL study in all tissues and all genes. We consider only

genes and tissues in which at least one of the genes is an

eGene.19,20 eGenes are genes that have at least one signif-

icant variant (p value % 10�5 when corrected for multiple

hypothesis) associated with the expression of that gene.

We assume that the posterior probability that the same

variant is causal in both a GWAS and eQTL study is inde-

pendent. Thus, this posterior probability is equal to the

product of posterior probabilities that a given variant is

causal in a GWAS and eQTL study. We refer to the amount

of support for a variant responsible for the associated sig-

nals in both studies as the colocalization posterior proba-

bility (CLPP).

Our framework allows for multiple variants to be causal

in a single locus, a phenomenon that is widespread in

eQTL data and referred to as allelic heterogeneity (AH).

Our approach can accurately quantify the amount of sup-

port for a variant responsible for the associated signals in

both studies and identify scenarios where there is support

for an eQTL-mediated mechanism. Moreover, we can iden-

tify scenarios where the variants underlying both studies

are clearly different. Utilizing simulated datasets, we

show that eCAVIAR has high accuracy in detecting target

genes and relevant tissues. Furthermore, the amount of

CLPP depends on the complexity of the LD.

We applied our method to colocalize the MAGIC

(Meta-analyses of Glucose and Insulin-Related Trait
1246 The American Journal of Human Genetics 99, 1245–1260, Dece
Consortium)21–24 GWAS dataset and publicly available

eQTL data on 45 different tissues. We obtained 44 tissues

from the Genotype-Tissue Expression (GTEx) eQTL dataset

(release v.6, dbGaP: phs000424.v6.p1)19 and one pancre-

atic islet tissue from the van de Bunt et al. study.25 Our re-

sults provide insight into disease mechanisms by identi-

fying specific GWAS loci that share a causal variant with

eQTL studies in a tissue. In addition, we have identified

several loci where GWAS and eQTL causal variants appear

to be different, suggesting that the genetic factors underly-

ing disease mechanisms are more complex than previously

thought.
Material and Methods

CAVIAR Model for Fine-Mapping
Standard GWAS and Indirect Association

We collect quantitative traits for N individuals and genotypes for

all individuals at M SNPs (variants). In this case, we collect data

for one phenotype and the expression of multiple genes. We as-

sume that both the phenotype and gene expression have at least

one significant variant. To simplify the description of our method,

we assume that the number of individuals and the pairwise Pear-

son’s correlations of genotype (LD) in both the GWAS and eQTL

study are the same. (In Appendix A, we describe a more general

model where the number of individuals and LD in both

the GWAS and eQTL study are not the same.) Let Y(p) indicate

an N 3 1 vector of the phenotypic values where y
ðpÞ
j denotes the

phenotypic value for the jth individual. We use Y(e) to indicate

an N3 1 vector of gene expression collected for one gene of inter-

est, for which there exists one significant variant associated with

the expression of that gene. Let G indicate an N 3 M matrix of

genotype information where Gi is an N 3 1 vector of minor allele

counts for all N individuals at the ith variant. In this setting, gji in-

dicates the jth element from vectorGi, or theminor allele count for

the jth individual. In diploid genomes, such as those of humans,

we can have three possible minor allele counts: gji ¼ {0, 1, 2}. We

standardize both the phenotypes and the genotypes to mean

0 and variance 1, where X is the standardized matrix of G. Let Xi

denote an N 3 1 vector of standardized minor allele counts for

the ith variant. We assume an ‘‘additive’’ Fisher’s polygenic model,

which is widely used by the GWAS community. In Fisher’s

polygenic model, the phenotypes follow a normal distribution.

The additive assumption implies that each variant contributes

linearly to the phenotype. Thus, we consider the following linear

model:

YðpÞ ¼ mðpÞ1þ
XM
i¼1

b
ðpÞ
i Xi þ eðpÞ;

YðeÞ ¼ mðeÞ1þ
XM
i¼1

b
ðeÞ
i Xi þ eðeÞ;

where m(p) is the phenotypic mean and m(e) is the gene-expression

mean. Let b
ðpÞ
i and b

ðeÞ
i be the effect size of the ith variant toward

the phenotypes and gene expression, respectively. In addition,

e(p) is the environment and measurement error toward the

collected phenotype, and e(e) is the environment and measure-

ment error toward the gene expression. In this model, we assume
mber 1, 2016



that e(p) is a vector of independent and identically distributed and

normally distributed random variables. Let eðpÞ � Nð0;sðpÞ2
e IÞ,

where s
ðpÞ
e is a covariance scalar and I is an N 3 N identity

matrix. In our setting, we have the marginal statistics of M

variants for the phenotype of interest and gene expression. Let

SðpÞ ¼ fsðpÞ1 ; s
ðpÞ
2 ;/s

ðpÞ
M g indicate the marginal statistics for the

phenotype of interest, and let SðeÞ ¼ fsðeÞ1 ; s
ðeÞ
2 ;/s

ðeÞ
M g indicate the

marginal statistics for gene expression. The joint distribution of

the marginal statistics, given the true effect sizes, follows a multi-

variate normal (MVN) distribution and is similar to that found in

our previous works.18,26–28 Thus, we have�
SðpÞ j LðpÞ� � N �SLðpÞ;S

�
;�

SðeÞ j LðeÞ� � N �SLðeÞ;S
�
;

(Equation 1)

where S is the pairwise Pearson’s correlations of genotypes. Let

LðpÞ ¼ flðpÞ1 ; l
ðpÞ
2 ;/l

ðpÞ
M g and LðeÞ ¼ flðeÞ1 ; l

ðeÞ
2 ;/l

ðeÞ
M g be the true

standardized effect size for all the variants of the desired pheno-

type and gene expression, respectively. The true effect size is

zero for a non-causal variant and non-zero for a causal variant.

Let SL(p) and SL(e) be the LD-induced non-centrality parameter

(NCP) for the desired phenotype and gene expression,

respectively.

CAVIAR Generative Model for a Single Phenotype

We introduce a new variable,C(p), which is anM3 1 binary vector.

We refer to this binary vector as the causal status. The causal status

indicates which variants are causal and which are not. We set c
ðpÞ
i

to 1 if the ith variant is causal; otherwise, we set it to 0. In
fi ¼ P
�
c
ðpÞ
i ¼ 1; c

ðeÞ
i ¼ 1 j SðpÞ; SðeÞ

�
¼

X
C
�ðpÞ
=i

˛f0;1gM�1

X
C
�ðeÞ
=i

˛f0;1gM�1

P
�
C

ðpÞ
=i ¼ C

�ðpÞ
=i ;C

ðeÞ
=i ¼ C

�ðeÞ
=i ; c

ðpÞ
i ¼ 1; c

ðeÞ
i ¼ 1 j SðpÞ; SðeÞ

�
¼

X
C�ðpÞ˛f0;1gM

X
C�ðeÞ˛f0;1gM

P
�
CðpÞ ¼ C�ðpÞ;CðeÞ ¼ C�ðeÞ j SðpÞ; SðeÞ�I�c�ðpÞi ¼ 1; c

�ðeÞ
i ¼ 1

�
;

(Equation 5)
CAVIAR,18,27 we introduce a prior on the vector of effect sizes by

utilizing the MVN distribution. Given the vector of causal status,

we define this prior on the vector of effect sizes as

�
LðpÞ j CðpÞ� � N �0;sðpÞ2SðpÞ

c

�
; (Equation 2)

where S
ðpÞ
c is a diagonal matrix and sðpÞ2 is a constant that indi-

cates the variance of our prior over the GWAS NCPs. We set sðpÞ2
fi ¼
P

C�ðpÞ
P

C�ðeÞP
�
SðpÞ; SðeÞ j CðpÞ ¼ C�ðpÞ;CðeÞ ¼ C�ðeÞ�P�C�ðpÞ;C�ðeÞ�I�c�ðpÞi ¼ 1; c

�ðeÞ
i ¼ 1

�
P

C�ðpÞ
P

C�ðeÞPðSðpÞ; SðeÞ j CðpÞ ¼ C�ðpÞ;CðeÞ ¼ C�ðeÞÞPðC�ðpÞ;C�ðeÞÞ ; (Equation 7)
to 5.2.18,27 The diagonal elements of S
ðpÞ
c are set to 1 or 0 such

that for variants selected as causal in C(p), their corresponding di-

agonal elements in S
ðpÞ
c are set to 1; otherwise, we set them to 0.

CAVIAR uses this prior as a conjugate prior to compute the likeli-

hood of each possible causal status. The joint distribution of the

marginal statistics given the causal status is as follows:
The American Jou
�
SðpÞ j CðpÞ� � N �0;Sþ sðpÞ2SSðpÞ

c S
�
: (Equation 3)

In a similar way, for the gene of interest for which we perform

eQTL mapping, we have

�
LðeÞ j CðeÞ� � N �0;sðeÞ2SðeÞ

c

�
; (Equation 4)

where S
ðeÞ
c is a diagonal matrix and sðeÞ2 is set to 5.2.18,27 The diag-

onal elements of S
ðeÞ
c are set to 1 or 0. For variants selected as causal

in C(e), their corresponding diagonal elements in S
ðeÞ
c are set to 1;

otherwise, we set them to 0.
eCAVIAR Computes the Colocalization Posterior

Probability for a GWAS and eQTL Study
Given the marginal statistics for a GWAS and eQTL

study, which are denoted by S(p) and S(e), respectively, we

want to compute the CLPP. CLPP is the probability that

the same variant is causal in both studies. For simplicity,

we compute the CLPP for the ith variant. We define the CLPP

for the ith variant as PðcðpÞi ¼ 1; c
ðeÞ
i ¼ 1 j SðpÞ; SðeÞÞ, and we use fi

to indicate the CLPP for the ith variant. We utilize the law of

total probability to compute the summation probability of all

causal statuses where the ith variant is causal in both the

GWAS and eQTL study and other variants can be causal

or non-causal. Thus, the above equation can be extended as

follows:
where C
ðpÞ
=i and C

ðeÞ
=i are vectors of causal status for all variants,

excluding the ith variant for the phenotype of interest and gene

expression. Let IðÞ be an indicator function defined as follows:

I

�
c�ðpÞi ¼ 1; c

�ðeÞ
i ¼ 1

�
¼
�
1 c

�ðpÞ
i and c

�ðeÞ
i are causal

0 o=w
:

(Equation 6)

Utilizing the Bayes’ rule, we compute the CLPP as follows:
where PðC�ðpÞ;C�ðeÞÞ is the prior probability of the causal status of

C�ðpÞ and C�ðeÞ for the GWAS and eQTL study, respectively. We as-

sume that the prior probability over the causal status for the GWAS

and eQTL study is independent: PðC�ðpÞ;C�ðeÞÞ ¼ PðC�ðpÞÞPðC�ðeÞÞ.
To compute the prior of causal status, we use the same assump-

tions that are widely used in fine-mapping methods,18,27,29
rnal of Human Genetics 99, 1245–1260, December 1, 2016 1247



whereby the probability of causal status follows a binomial distri-

bution where the probability that a variant is causal is equal to g.

Thus, this prior is equal to PðC�ðpÞÞ ¼QM
i¼1g

c
�ðpÞ
i ð1� gÞ1�c

�ðpÞ
i , and g

is set to 0.01.18,30–32

GWASs and eQTL studies are usually performed on independent

sets of individuals. Furthermore, given the causal status in both

studies, the marginal statistics for these two studies are indepen-

dent. We have PðSðpÞ; SðeÞ ��C�ðpÞ;C�ðeÞÞ ¼ PðSðpÞ ��C�ðpÞÞPðSðeÞ ��C�ðeÞÞ.
Thus, we simplify Equation 7 and compute the CLPP as follows:

fi ¼
P

C�ðpÞP
�
SðpÞ j CðpÞ ¼ C�ðpÞ�P�C�ðpÞ�I�c�ðpÞi ¼ 1

�
P

C�ðpÞPðSðpÞ j CðpÞ ¼ C�ðpÞÞPðC�ðpÞÞ

3

P
C�ðeÞP

�
SðeÞ j CðeÞ ¼ C�ðeÞ�P�C�ðeÞ�I�c�ðeÞi ¼ 1

�
P

C�ðeÞPðSðeÞ j CðeÞ ¼ C�ðeÞÞPðC�ðeÞÞ :

(Equation 8)

According to the above equation, the probability that the

same variant is causal in both the GWAS and eQTL study is

independent. This probability is equal to the multiplication of

two probabilities: (1) the probability that the variant is causal

in the GWAS and (2) the probability that the same variant

is causal in the eQTL study. Thus, we compute the CLPP

as PðcðpÞi ¼ 1; c
ðeÞ
i ¼ 1 j SðpÞ; SðeÞÞ ¼ PðcðpÞi ¼ 1 j SðpÞÞ3PðcðeÞi ¼ 1 j SðeÞÞ,

where PðcðpÞi ¼ 1 j SðpÞÞ and PðcðeÞi ¼ 1 j SðeÞÞ are computed from the

first and second parts of Equation 8, respectively.

Detecting Target Genes and Relevant Tissues
In the previous sections, we described the process of computing

the CLPP score for each variant in a locus for a given eGene in a

tissue. In this section, we describe a systematic way to detect the

target genes and relevant tissues.

We compute the CLPP score for every GWAS significant variant.

Thus, for a given GWAS variant, an eGene that has a CLPP score

above the colocalization cutoff is considered a target gene. In addi-

tion, we consider tissues from which the target genes are obtained

as the relevant tissues. Moreover, we can rank the relevant tissues

and target genes for a given GWAS significant variant according to

their CLPP scores. Thus, we utilize the magnitude of CLPP to rank

the tissues and genes on the basis of their importance for a given

GWAS risk locus.

Generating Simulated Datasets
Simulating Genotypes

We first simulate genotype data starting from the real geno-

types obtained from the European population in the 1000 Ge-

nomes data.33,34 In order to simulate the genotypes, we utilize

HAPGEN235 software, which is widely used to generate genotypes.

We focus on chromosome 1 and the GWAS variants obtained from

the NHGRI catalog.36 We consider 200-kb windows around the

lead SNP to generate a locus. Then, we filter out monomorphic

SNPs and SNPs with a low minor allele frequency (MAF % 0.01)

inside a locus.

Simulating Summary Statistics Directly from LD Structure

We generate an LD matrix for a locus by computing the Pearson’s

correlations of each pair of variants from the genotypes. Then, we

generate marginal summary statistics for each locus by assuming

that the marginal summary statistics follow the MVN distribution

utilized in our previous studies.18,26–28,37,38 We measure the

strength of a causal variant on the basis of NCPs. We set the

NCP of the causal variant to obtain a certain statistical power.

The NCPs of the non-causal variants are set to 0. The statistical
1248 The American Journal of Human Genetics 99, 1245–1260, Dece
power is the probability of detecting a causal variant under the

assumption that the causal variant is present. The statistical power

is computed as follows:

power ¼ 1� 1ffiffiffiffiffiffiffi
2p

p
Z F�1ð1�a=2Þþl

F�1ða=2Þþl

e�
1
2
x2dx

¼ F
�
F�1ða=2Þ þ l

�þ 1�F
�
F�1ð1� a=2Þ þ l

�
;

where a is the significant threshold. Moreover, F and F�1 denote

the cumulative density function (CDF) and the inverse of CDF,

respectively, for the standard normal distribution. In our experi-

ment, the NCP is computed for the genome-wide significance level

(a ¼ 10�8). We use a binary search to compute the NCP for a

desired statistical power.

Simulating Summary Statistics with a Linear Additive Model

We utilize 100 variants in a locus to generate the simulated pheno-

types from the simulated genotypes. We simulate the phenotypes

by assuming the following linear additive model:

Y ¼
XM
i¼1

biXi þ e ; (Equation 9)

where e � Nð0; s2e Þ. We generate the effect size of the causal variant

fromanormal distributionwithmean0 andvariances2
g=Mc, where

Mc indicates the number of causal variants in a locus. Furthermore,

we set the effect size to 0 for variants that are not causal. Thus, the

effect size for each variant is simulated as follows:(
bi ¼ 0 if the ith variant is non-causal

bi � N
�
0;s2

g

.
Mc

�
if the ith variant is causal

:

After simulating the phenotype for all the individuals, we utilize

linear regression to estimate the effect sizes and the marginal

statistics for allM variants in a locus. In our simulations,M is equal

to 100.
Results

Overview of eCAVIAR

The goal of our method is to identify target genes and the

most relevant tissues for a given GWAS risk locus while

accounting for theuncertainty of LD. Target genes are genes

with expression levels that affect the phenotype (e.g., dis-

ease status) of interest. Our method detects the target

gene and themost relevant tissue by utilizing our proposed

quantity ofCLPP. eCAVIAR estimates theCLPP,which is the

probability that the same variant is causal in both a GWAS

and eQTL study. eCAVIAR computes the CLPP by utilizing

the marginal statistics (e.g., Z score) obtained from GWAS

andeQTLanalyses, aswell as theLDstructureof genetic var-

iants in each locus. LDcanbe computed fromgenotypedata

or approximated from existing datasets, such as the 1000

Genomes data33,34 or HapMap.39 We show in the Material

and Methods that the marginal statistics of both the

GWAS and eQTL study follow a MVN distribution given

the causal variants and effect sizes for both studies. We

use the MVN distribution to estimate the CLPP. We show

that the CLPP is equal to the product of the posterior prob-

ability that the variant is causal in the GWAS and the poste-

rior probability that the variant is causal in the eQTL study.
mber 1, 2016



A B

Figure 1. Overview of Our Method for Detecting the Target Gene and Most Relevant Tissue
We compute the CLPP for all genes and all tissues.
(A) A simple case where we have only one tissue and want to find the target gene. We consider all genes for this GWAS risk locus and
observe that gene 4 has the highest CLPP. Thus, the target gene is gene 4.
(B)Wehave three tissues andutilize thequantityofCLPP. Thus, the target gene is gene 4 again.Moreover, in this example, liver andblood are
considered the relevant tissues for this GWAS risk locus, whereas the pancreas is not relevant.
Calculating the posterior probability of a causal variant

is computationally intractable. Therefore, we assume the

presence of at most six causal variants in a locus.

The estimated CLPP for a GWAS risk locus and a gene,

which is obtained from eQTL studies, can be used for infer-

ring specific disease mechanisms. First, we identify genes

that have expression levels affected by a GWAS variant.

These genes are referred to as target genes. Second, we

identify in which tissues the eQTL variant has an effect.

To identify target genes, we compute the CLPP for all genes

in the GWAS risk locus. Genes that have a significantly

higher CLPP are selected as target genes (Figure 1A). Simi-

larly, we compute the CLPP for all tissues and identify rele-

vant tissues as those with comparatively high CLPP values

(Figure 1B). Figure 1B shows that the GWAS risk locus af-

fects gene 4, and the relevant tissues are liver and blood.

However, Figure 1B indicates that the pancreas is not a rele-

vant tissue for this GWAS risk locus. Another application of

CLPP is to identify loci where the causal variants between a

GWAS and eQTL study are different. We can identify these

loci if the CLPP is low for all variants in the loci and if there

are statistically significant variants in both the GWAS and

eQTL study.

To better motivate the behavior of CLPP, we consider the

following four scenarios in Figure 2. In the first scenario, the

same variant has effects in both the GWAS and eQTL study.

Thus, its CLPP is high (Figure 2A). In the second scenario,

we consider that the variant is associated with a phenotype

in the GWAS and not associated with gene expression.

In this case, the quantity of CLPP is low (Figure 2B). In the

third scenario,we consider that the variant is not associated

with a phenotype in the GWAS. However, it is associated

with expression of a gene. In this case, the CLPP is not

computed for this variant. Rather, we compute the CLPP
The American Jou
for GWAS risk loci that are considered significant. In the

fourth scenario, we have a variant that appears significant

in both theGWAS and eQTL study. However, other variants

in both studies are also significant because of high LD with

the causal variant. The complex LD (see Figure 2C) of these

variants results in a low CLPP. Here, we remain uncertain

about which variants are actual causal variants. Finally,

Figure 2D illustrates an example in which there is more

than one causal variant. This demonstrates that assuming

the presence of a single causal variant can result in under-

estimation of CLPP. In this example, we have a locus with

35 variants (SNPs), and we have two causal variants (SNP6

and SNP26) that are not in high LD with each other. If we

assume that we have only one causal variant, there are 35

possible causal variants for this locus, andmost of the causal

variants have a very low likelihood. The likelihoods of se-

lecting either SNP6 or SNP26 as causal are similar, and

they are higher than the likelihoods of selecting any other

variant as causal. In this example, the estimated posterior

probability that SNP6 or SNP26 is causal is 50%. Thus, the

estimated CLPP for SNP6 or SNP26 is 25%. However, if we

allow more than one causal variant in the locus, all sets of

causal variants have very low likelihood values, except the

set in which both SNP6 and SNP26 are selected as causal.

In this case, the posterior probability that SNP6 or SNP26

is causal is close to 1. In this case, we assume that we have

more than one causal variant in this locus given that the

CLPP values of SNP6 and SNP26 are close to 1.

eCAVIAR Accurately Computes the CLPP

In this section, we use simulated datasets to assess the ac-

curacy of our method. We simulated summary statistics

by utilizing the MVN distribution used in our previous

studies.18,26–28,38 More details on simulated data are
rnal of Human Genetics 99, 1245–1260, December 1, 2016 1249
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Figure 2. Overview of eCAVIAR
Broadly, eCAVIAR aligns the causal variants in an eQTL study and GWAS. The x axis is the variant (SNP) location, and the y axis is the
significance score (�log of p value) for each variant. The gray triangle indicates the LD structure, and every diamond in this triangle in-
dicates the Pearson’s correlation. The darker the diamond, the higher the correlation; and the lighter the diamond, the lower the cor-
relation between the variants.
(A) In the case where the causal variants are aligned, the colocalization posterior probability (CLPP) is high for the variant that is
embedded in the dashed black rectangle.
(B) However, in the case where the causal variants are not aligned (the causal variants are not the same variants), the quantity of CLPP is
low for the variant that is embedded in the dashed black rectangle.
(C) In this case, the LD is high, which implies that the uncertainty is high as a result of LD, and the CLPP value is low for the variant that
is embedded in the dashed black rectangle.
(D) A case where a locus has two independent causal variants. If we consider that we have only one causal variant in a locus, then the
CLPP of the causal variants is estimated to be 0.25. However, if we allow more than one causal variant in the locus, eCAVIAR estimates
the CLPP to be 1.
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Figure 3. eCAVIAR Is Robust to the Pres-
ence of AH
We simulated marginal statistics directly
from the LD structure for an eQTL study
and GWAS. In both studies, we implanted
one, two, or three causal variants on which
the statistical power was 50% (A–C, respec-
tively) or 80% (D–F, respectively). eCAVIAR
had a low TP for a high cutoff and a low
FP. This indicates that eCAVIAR has high
confidence in detecting a colocalized locus
in both the GWAS and eQTL study, even
in the presence of AH.
provided in the Material and Methods. In one set of simu-

lations, we fixed the effect size of a genetic variant so that

the statistical power for the causal variant was 50%. In

another set, we fixed the effect size so that the power was

80%. We considered two cases. The first case included

only one causal variant in both studies. The second case

included more than one causal variant in these studies.

For both scenarios, we simulated two datasets. In the first

dataset, we implanted a shared causal variant. We gener-

ated 1,000 simulated studies, which we used to compute

the true-positive rate (TP). In the second dataset, we im-

planted a different causal variant in the eQTL study and

GWAS. We filtered out cases where the most significant

variant was different between the two studies. As in the

previous case, we generated 1000 simulated studies.

eCAVIAR Is Accurate in the Case of One Causal Variant

We applied eCAVIAR to the simulated datasets and

computed the CLPP for each case.We used different cutoffs

to determine whether or not a variant was shared between

the two studies. For each cutoff, we computed the false-

positive rate (FP) and TP. The baseline method detects

themost significant variant in a study as the causal variant.

Thus, in the baseline method, we have colocalization

when the eQTL study and GWAS share the same most sig-

nificant variant. We refer to this method as the shared peak

SNP (SPS) method. The results are shown in Figures 3A and

3D. Moreover, the same results are plotted in a receiver

operating characteristic (ROC) curve (Figure S1). Our

method has a higher TP and lower FP than SPS. However,

eCAVIAR has a low TP when the cutoff for CLPP is high.

Furthermore, eCAVIAR has an extremely low FP. Our re-

sults imply that eCAVIAR has high confidence for selecting

loci to be colocalized between a GWAS and eQTL study.

eCAVIAR is conservative in selecting a locus to be colocal-
The American Journal of Human Geneti
ized. Given the high cutoff of CLPP,

eCAVIAR can miss some true colo-

calized loci. However, loci that are

selected by eCAVIAR to be colocalized

are likely to be predicted correctly.

The computed CLPP depends on the

complexity of the LD at the locus. We

applied eCAVIAR to the simulated data-

sets and computed theCLPP (Figure S2).

Here, the average quantity of CLPP
decreased as we increased the Pearson’s correlation (r) be-

tween paired variants. This effect increased the complexity

of LD between the two variants. Furthermore, the 95% con-

fidence interval for the computed quantity increased as we

increased the Pearson’s correlation. This result implies that

the computed CLPP can be small for a locus with complex

LD, even when a variant is colocalized in both a GWAS

and eQTL study.

eCAVIAR Is Robust to the Presence of AH

The presence of more than one causal variant in a locus is a

phenomenon referred to asAH.AHcan confound the associ-

ation statistics in a locus, and colocalization for a locus

harboringAH ischallenging. Inorder to investigate theeffect

of AH, we performed the following simulations. We im-

planted two or three causal variants in both the GWAS and

eQTL study, and we then generated the marginal statistics

by using the MVN distribution mentioned in the previous

section. Next, we computed the TP and FP for eCAVIAR

and SPS (see Figure 3). In the case of eCAVIAR, colocalization

is considered true when all colocalized variants are detected.

However, for SPS, colocalization is considered true when at

least one of the colocalized variants is detected. Figures 3A,

3B, and 3C illustrate the results of one, two, and three causal

variants, respectively, when the statistical power was 50%.

Similarly, Figures 3D, 3E, and 3F illustrate the results of

one, two, and three causal variants, respectively, when the

statistical power was 80%. Interestingly, SPS had a very low

TPwhentherewere twoor threecausalvariants (seeFigure3).

This implies that SPS is not accurate when AH is present.

Similar to cases with one single casual variant (see Figures

3A and 3D), eCAVIAR had a very low FP when there were

two or three causal variants (see Figures 3B, 3C, 3E, and 3F).

This implies that eCAVIAR has high confidence in detecting

a locus to be colocalized between a GWAS and eQTL study.
cs 99, 1245–1260, December 1, 2016 1251
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Figure 4. eCAVIAR Is More Accurate Than
Existing Methods for Regions with One
Causal Variant
We compare the accuracy and precision of
eCAVIAR with those of the two existing
methods (RTC and COLOC). The x axis is
the colocalization cutoff threshold. In these
datasets, we implanted one causal variant,
and we utilized simulated genotypes. We
simulated the genotypes by using HAP-
GEN235 software. We used the European
population from 1000 Genomes data33,34 as
the starting point to simulate the genotypes.
The accuracy and precision of all three
methods are shown in (A) and (B), respec-
tively. We computed the TP (true-positive
rate), TN (true-negative rate), FN (false-nega-
tive rate), and FP (false-positive rate) for the

set of simulated datasets for which we generated the marginal statistics in a linear model. Accuracy ¼ (TP þ TN)/(TP þ FP þ FN þ
TN), and precision ¼ TP/(TP þ FP). We set the non-colocalization cutoff threshold to 0.001. We observed that eCAVIAR and COLOC
had higher accuracy and precision than RTC.
We generated simulated datasets where the causal vari-

ants were different between the two studies. We computed

the CLPP for all variants in a region. Our experiment indi-

cated that eCAVIAR has a high TN and an extremely low

FN. eCAVIAR has a high negative predictive value (NPV):

NPV ¼ TN/(TN þ FN). These results are shown in Figures

S3 and S4. Thus, eCAVIAR can detect with high accuracy

loci where the causal variants are different between the

two studies.

eCAVIAR Is More Accurate Than Existing Methods

Here, we compare the results of eCAVIAR with those of

RTC13 and COLOC,14 two common methods for eQTL

and GWAS colocalization. The procedure in the previous

section can be used to simulate datasets; however, RTC is

not designed to work with summary statistics. In order to

provide a dataset compatible with RTC, we simulated

eQTL and GWAS phenotypes under a linear additivemodel

in which we used simulated genotypes obtained from

HAPGEN2.35 More details on the simulated datasets are

provided in the Material and Methods.

We compare the accuracy, precision, and recall rate

of all three methods. Each method computes a probabil-

ity that a variant is causal in both a eQTL study and

GWAS. In order to determine this probability for our

comparison, we need to select two cutoff thresholds.

We devised one threshold for detecting variants that

are colocalized in both studies and another threshold

for detecting variants that are not colocalized. Here, we

consider a variant to be causal in both studies if the prob-

ability of colocalization is greater than the colocalization

cutoff threshold. The second cutoff threshold is used for

detecting variants that are not causal in both studies. We

consider a variant to be non-causal in both studies if the

probability of colocalization is less than the non-colocal-

ization cutoff threshold. In our experiment, we set the

non-colocalization cutoff threshold at 0.1% and the co-

localization cutoff threshold at a value ranging from

0.1% to 90%.
1252 The American Journal of Human Genetics 99, 1245–1260, Dece
eCAVIAR outperformed the existing methods when the

locus contained one causal variant. We observed that all

three methods had a similarly high recall rate (see

Figure S5). eCAVIAR had much higher accuracy and preci-

sion than RTC (see Figure 4). Next, we considered the per-

formance of the threemethods when the locus had AH.We

used the same simulation described in this section, but

instead we implanted two causal variants instead of one.

In this setting, eCAVIAR had higher accuracy and precision

than COLOC and RTC. However, RTC had a slightly higher

recall rate than eCAVIAR. Moreover, RTC tended to

perform better than COLOC in the presence of AH (see

Figure 5). This result indicates that eCAVIAR is more accu-

rate than existing methods—even in the presence of AH.

However, if a locus contains only one causal variant,

COLOC performs better than RTC. In cases with more

than one causal variant, RTC performs better. These results

were obtained when we set the non-colocalization cutoff

threshold to 0.1%. We changed this value to 0.01% to

check the robustness of eCAVIAR and observed that even

when we used different values of non-colocalization,

eCAVIAR outperformed existing methods (see Figures S6

and S7). In all of the above experiments, we implanted

the causal variants uniformly in the locus. Next, we simu-

lated causal variants in genomic variants enriched with

functional annotations. In order to simulate the genomic

enrichment, we used the same process utilized in

PAINTOR.40 We observed that eCAVIAR outperformed ex-

isting methods in these experiments (Figures S8 and S9).

Thus, eCAVIAR performs better than COLOC and RTC,

the pioneering methods for eQTL and GWAS colocaliza-

tion. COLOC and RTC require different input data to

perform the colocalization. COLOC requires only the

marginal statistics from a GWAS and eQTL study. Unlike

eCAVIAR, COLOC and RTC do not require the LD structure

of genetic variants in a locus. However, RTC requires indi-

vidual-level data (genotypes and phenotypes) and is not

applicable to datasets for which we have access to only

the summary statistics.
mber 1, 2016
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Figure 5. eCAVIAR Is More Accurate Than Existing Methods in the Presence of AH
To generate the datasets, we used a process similar to that shown in Figure 4. However, in this case, we implanted two causal variants. We
simulated the genotypes by using HAPGEN235 software. We used the European population from 1000 Genomes data33,34 as the starting
point to simulate the genotypes. We compared the accuracy, precision, and recall rate. In these results, eCAVIAR tended to have higher
accuracy and precision than RTC and COLOC. However, RTC had a slightly higher recall rate.
Effect of eQTL Sample Size on CLPP

We know that the statistical power to detect a true casual

variant increases as we increase the number of samples in

a GWAS. Because most GWAS sample sizes are in the order

of thousands of samples, we aimed to investigate the effect

of eQTL sample size on colocalization.

We simulated datasets in which we set the number of

GWAS samples to 5,000. Then, we varied the number of

eQTL samples from 500 to 3,500. We simulated the effect

size for the causal variant in the eQTL study such that it ac-

counted for 1%, 4%, and 10% of heritability. We computed

the CLPP for different cases; the distribution of CLPP is

shown in a boxplot in Figure S10. The red horizontal line

indicates the 1% colocalization cutoff used for eCAVIAR.

We observed that when the causal variant accounted for

1% of heritability, we required at least 2,000 eQTL samples.

Conversely, when the causal variant accounted for a larger

portion of heritability, eCAVIAR required fewer samples.

Using eCAVIAR to Integrate Available eQTLs for 45

Tissues and MAGIC Datasets

We utilized the MAGIC dataset and GTEx dataset19 to

detect the target gene and most relevant tissue for each

GWAS risk locus. MAGIC datasets consist of eight pheno-

types.21 These phenotypes are as follows: fasting glucose

(FG), fasting insulin, fasting proinsulin (FP), HOMA-B (b

cell function), HOMA-IR (insulin resistance), Hb1Ac

(hemoglobin A1c test for diabetes), 2 hr glucose, and 2 hr

insulin after an oral glucose-tolerance test. In our analysis,

we used FG and FP phenotypes containing the most signif-

icant loci. FG phenotypes had 15 variants, and FP pheno-

types had ten variants reported to be significantly associ-

ated with these phenotypes by previous studies.21,22 We

considered 44 tissues included in the GTEx Portal (release

v.6, dbGaP: phs000424.v6.p1).19 In addition, we used pre-

viously published data on human pancreatic islets,25 a key

tissue in glucose metabolism that is not captured in the

GTEx data. Table S1 lists tissues and the number of individ-

uals for each tissue.
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Wewanted to detect themost relevant tissue and a target

gene for each of the previously reported significant GWAS

variants. eCAVIAR utilizes the marginal statistics of all var-

iants in a locus obtained from a GWAS and eQTL study. We

obtained each locus by considering 50 variants upstream

and downstream of the reported variant. Then, we consid-

ered genes in which at least one variant is significantly

associated with expression of that gene. Thus, for one

GWAS variant, multiple genes in one tissue could satisfy

these requirements, and we considered these pairs of vari-

ants and genes as potential colocalization loci. Tables S2

and S3 list the potential colocalization loci for FG and FP

phenotypes, respectively. For any given variant, we used

the CLPP to detect the most relevant tissue and a target

gene. We selected the target gene and most relevant tissue

as the gene and tissue, respectively, demonstrating the

highest CLPP value.

Tables 1 and 2 indicate the results of eCAVIAR for FG and

FP, respectively. These results show genetic variants that

are causal in both the eQTL study and GWAS. We consid-

ered only variants reported to be significant with FG21

and FP22 phenotypes. We used a cutoff threshold of 0.01

(1%) to conclude that two causal variants are shared.

Many of the significant variants had CLPP values in a

range where it is difficult to conclude whether the causal

variants are shared. However, we detected a large number

of loci for which the GWAS causal variants were clearly

distinct from the causal variants in the eQTL data (Table

3). This included several genes that could be excluded in

all tissues tested (e.g., SEC22A [MIM: 612442] at the

rs11717195 FG locus, where there was non-colocalization).

More interesting examples could be found among genes

that colocalized in one tissue yet could be excluded in

many others. For example, ADCY5 (MIM: 600293) was

also at the rs11717195 FG locus. In pancreatic islet

data, the GWAS variant itself colocalized with ADCY5

eQTLs, whereas eQTLs for the same gene did not over-

lap the GWAS association signal in several GTEx tissues.

This suggests that the phenotype influences the disease
rnal of Human Genetics 99, 1245–1260, December 1, 2016 1253



Table 1. eCAVIAR Joint Analysis of FG and the GTEx Dataset

Chr Position rsID Relevant Tissuea Target Gene (MIM)

3 123,082,398 rs11717195 islet (N ¼ 118) ADCY5 (600293)

7 15,064,309 rs2191349 islet (N ¼ 118) DGKB (604070)

7 44,235,668 rs4607517 colon sigmoid (N ¼ 124) GCK (138079)

thyroid (N ¼ 278)

11 45,873,091 rs11605924 whole blood(N ¼ 338) MAPK8IP1 (604641)

11 47,336,320 rs7944584 nerve tibial (N ¼ 256) CELF1 (601074)

artery tibial (N ¼ 285) MADD (603584)

islet (N ¼ 118)

pituitary (N ¼ 87)

artery tibial (N ¼ 285) MDK (162096)

nerve tibial (N ¼ 256) NR1H3 (602423)

nerve tibial (N ¼ 256) RAPSN (601592)

The following abbreviation is used: Chr, chromosome.
aFor each tissue, N indicates the number of individuals for whom we had access to summary statistics from GTEx19 and van de Bunt et al.25
mechanism through a tissue-specific regulatory element

that is active in islets yet inactive in other tissues.

For a majority of loci in which we identified a single

causal variant in both the GWAS and eQTL study, our

results implicate more than one target gene across the 45

tissues. eCAVIAR detected that three of five colocalized

variants in the FG phenotype and all three variants in

the FP phenotype had multiple target genes. Other eQTL

studies support causal roles for MADD (MIM: 603584) at

rs7944584 (FG) and rs10501320 (FP) in human pancreatic

islets of Langerhans25 and for LARP6 (MIM: 611300) at

rs1549318 (FP) in adipose tissue.22 Assessing the potential

candidacy of these different implicated genes will require

additional sources of information, such as chromosome

conformation capture (3C) experiments,41 to demonstrate

chromatin interactions between causal variants and gene

promotors and/or in vitro function validation in relevant

model systems. Even so, the current analysis points to

many loci where no colocalizing variant can be identified.

The main reason for this is probably found in the limited

power of eCAVIAR at the current sample sizes for the ma-

jority of tissues, especially for those as pertinent to the

phenotype as human islets (see Figure S10). Overcoming

this hurdle and uncovering further mechanistic insights

will require additional collection of samples.
Discussion

Integrating GWASs and eQTL studies provides insights

into the underlying mechanism for genetic variants de-

tected in GWASs. In this paper, we propose a quantity

that can measure CLPP, the probability that the same

variant is causal in both a GWAS and eQTL study, while ac-

counting for the LD. Utilizing CLPP, we can identify target
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genes and relevant tissues. It is worth mentioning that we

can use epigenomic data (e.g., NIH Roadmap Epigenom-

ics42) to detect relevant tissues as an orthogonal analysis

instead of using eCAVIAR. Moreover, eCAVIAR can detect

loci where the causal variants are different between the

two studies with high confidence. In our analysis, GWAS

risk loci and eQTLs were different in most cases.

Because most GWAS loci are discovered to lie outside of

coding regions, it is implicitly assumed that these impli-

cated loci affect gene regulation. However, our results

show a lower than expected number of variants colocalized

between the GWAS and eQTL study. This points to a more

complicated relationship between gene regulation and dis-

ease. It is likely that future studies will shed some light to

explain this observation.

One conjecture is that the GWAS loci in fact do affect

expression but are secondary signals in comparison to

the stronger associations found in current eQTL studies.

Because eQTL studies are including an increasing number

of individuals, we will be able to prove or disprove this

conjecture. Furthermore, the heterogeneity of tissues

could render it hard to detect eQTLs specific to a disease-

relevant cell type that composes only a fraction of the tis-

sue. A second possibility is that GWAS variants affect other

aspects of gene regulation, such as splicing or regulation at

a level other than transcription regulation. Several studies

have shown that alternative splicing could explain the

causal mechanism of complex disease associations (e.g., a

multiple-sclerosis-associated variant that leads to exon

skipping in SP140 [MIM: 608602]43). Methods that iden-

tify variants associated with differences in relative expres-

sion of alternative transcript isoforms or exon-junction

abundances are being applied to the latest version of

GTEx data.44,45 As we obtain more functional genomic in-

formation and are able to measure quantities such as
mber 1, 2016



Table 2. eCAVIAR Joint Analysis of FP and the GTEx Dataset

Chr Position rsID Relevant Tissuea Target Gene (MIM)

11 47,293,799 rs10501320 pituitary (N ¼ 87) ARHGAP1 (602732)

esophagus muscularis (N ¼ 218) C1QTNF4 (614911)

artery tibial (N ¼ 285) MADD (603584)

esophagus mucosa (N ¼ 241)

islet (N ¼ 118)

artery tibial (N ¼ 285) MDK (162096)

11 72,432,985 rs11603334 skin of sun-exposed lower leg (N ¼ 302) ARAP1 (606646)

pituitary (N ¼ 87) PDE2A (602658)

islet (N ¼ 118) STARD10

15 71,109,147 rs1549318 adipose visceral omentum (N ¼ 185) LARP6 (611300)

cultured primary fibroblasts (N ¼ 272)

ovary (N ¼ 85)

The following abbreviation is used: Chr, chromosome.
aFor each tissue, N indicates the number of individuals for whom we had access to summary statistics from GTEx19 and van de Bunt et al.25
protein abundance, we will be able to systematically cata-

log variants that affect regulation at levels other than tran-

scription. A third possibility is that GWAS loci are eQTL

loci only in certain conditions, such as development,

where expression levels are not typicallymeasured. Regard-

less, our study demonstrates strong evidence in support of

the idea that most GWAS loci are not strong eQTL loci and

that the mechanism by which GWAS loci affect gene regu-

lation is more complicated than we expected.

Broadly, we have identified an analogy between colocali-

zation and fine-mapping methods. Fine-mapping methods

can be categorized into three main classes. One class relies

only on the computed marginal statistics that are obtained

from a GWAS or eQTL study. In this class of methods,

the probability that a variant is causal depends on a

variant’s rank, which is obtained from the marginal statis-

tics. Recently, Maller et. al46 proposed a fine-mapping

method that utilizes the Bayes factor. This method provides

results similar to those of approaches that rank variants

solely on the basis of their marginal statistics. The

Maller et. al46 method for fine-mapping is similar in nature

to COLOC,14 which is used for colocalization. The second

class of methods is based on a conditional model that re-

computes the marginal statistics of all variants by condi-

tioning on variants selected as causal. The conditional

method for fine-mapping and RTC13 have some similarities

in nature. The third class of methods includes CAVIAR,18,27

CAVIARBF,47 and FINEMAP,29 which assume a presence of

more than one causal variant in a region. These probabi-

listic-based methods use the MVN distribution and detect

a set of variants that can capture all causal variants with a

predefined probability. eCAVIAR is analogous in process

to CAVIAR, CAVIARBF, and FINEMAP. However, eCAVIAR

and CAVIAR-like methods try to solve different problems.

CAVIAR-like methods (CAVIARBF and FINEMAP) are de-
The American Jou
signed to perform fine-mapping. CAVIARBF is based on

the CAVIAR statistical model that utilizes the Bayes factor

to detect the causal set. FINEMAP is based on the CAVIAR

statistical model that utilizes sampling techniques to speed

up the computational process of detecting the causal set.

eCAVIAR is a probabilistic method that integrates GWAS

and eQTL signals to detect biologicalmechanisms. eCAVIAR

has several advantages over prior approaches. First, it can ac-

count formultiple causalvariants inanygiven locus. Second,

it leverages summary statistics without accessing the raw in-

dividual data. In addition, eCAVIAR can provide confidence

levels for the colocalization of a GWAS risk variant. Utilizing

the confidence level, we can categorize a variant into three

categories: colocalizing variants, non-colocalizing variants,

and variants whose ambiguity prevents detection of their

colocalization status for the current data. eCAVIAR can

be extended to utilize functional annotations to improve

our results. The functional annotation can be used as a

prior for a given causal status. Alternatively, we can adopt

more sophisticated techniques similar to PAINTOR40 and

RiVIERA-beta,48 which incorporate functional annotations

to improve fine-mapping results. High-throughput tech-

nologies have made it possible to obtain multi-tissue eQTL

studies. Leveraging multi-tissue eQTL studies such as GTEx

and methods such as eCAVIAR will potentially advance dis-

covery of new biological mechanisms for GWAS risk loci.
Appendix A: CAVIAR and eCAVIAR General

Models where the GWAS and eQTL Study Have

Different Numbers of Individuals

Standard GWAS Association Test

We assume that there are N(p) individuals in the GWAS for

the phenotype of interest, and we collect the phenotypic
rnal of Human Genetics 99, 1245–1260, December 1, 2016 1255



Table 3. Loci where the Causal Variants between eQTL Studies and GWASs Are Different

Phenotype Chr Position rsID GWAS p Value eQTL p Value No. of Genes No. of Tissues

FG 2 27,741,237 rs780094 2.49 3 10�12 2.95 3 10�55 17 30

2 169,763,148 rs560887 4.61 3 10�75 1.36 3 10�14 5 20

3 123,065,778 rs11708067 8.72 3 10�9 4.28 3 10�42 5 34

9 4,289,050 rs7034200 0.0001204 9.95 3 10�12 8 7

10 113,042,093 rs10885122 8.41 3 10�11 7.73 3 10�11 2 3

11 61,571,478 rs174550 1.48 3 10�8 1.03 3 10�125 24 29

11 92,708,710 rs10830963 1.26 3 10�68 7.49 3 10�6 7 6

FP 1 99,177,253 rs9727115 5.285 3 10�6 7.04 3 10�16 3 12

10 114,758,349 rs7903146 3.48 3 10�18 7.92 3 10�33 7 26

15 62,383,155 rs4502156 3.80 3 10�11 8.48 3 10�14 7 15

17 2,262,703 rs4790333 2.15 3 10�8 5.39 3 10�75 21 33

The numbers of genes and tissues indicate the genes and tissues, respectively, that we applied to eCAVIAR for a GWAS risk variant. The complete lists of genes and
tissues are provided in Tables S2 (FG) and S3 (FP). eCAVIAR utilizes the marginal statistics of all variants in a locus obtained from a GWAS and eQTL study. We
obtain each locus by considering 50 variants upstream and downstream of the reported variant. Then, we consider genes where at least one of the variants in
the locus is significantly associated with the expression of that gene. Thus, for one GWAS variant, multiple genes in one tissue can satisfy our condition. The
eQTL p value indicates the most significant variant in eQTLs among all genes and all tissues. Abbreviations are as follows: Chr, chromosome; FG, fasting glucose;
and FP, fasting proinsulin.
values of a quantitative trait for all individuals. Moreover,

we collect the genotypes of all individuals for M variants.

Let Y(p) be anN(p)3 1 vector of phenotypic values obtained

from a GWAS. Let G(p) be an N(p) 3 M matrix of genotypes

where G
ðpÞ
i is an N(p) 3 1 vector of the minor allele count

for the ith variant. We use X
ðpÞ
i to indicate the standardized

vector of the minor allele count for the ith variant, G
ðpÞ
i ,

where x
ðpÞ
ji is the standardized genotype of the ith variant

for the jth individual. We assume that both phenotypes

and genotypes are standardized. We standardize a vector

to make the mean and variance equal to 0 and 1, respec-

tively. Thus, we have 1TX
ðpÞ
i ¼ 0 and X

ðpÞT
i X

ðpÞ
i ¼ NðpÞ,

which we can show as follows:

E
�
X

ðpÞ
i

�
¼ 0/

PN
j¼1x

ðpÞ
ji

N
¼ 0/

1

N
1TX

ðpÞ
i ¼ 0/1TX

ðpÞ
i ¼ 0;

Var
�
X

ðpÞ
i

�
¼ 1/E

�
X

ðpÞ2
i

�
� E
�
X

ðpÞ
i

�2
¼ 1/E

�
X

ðpÞ2
i

�
¼ 1/

1

N
X

ðpÞT
i X

ðpÞ
i ¼ 1/X

ðpÞT
i X

ðpÞ
i ¼ NðpÞ:

(Equation A1)

We assume the ‘‘additive’’ Fisher’s polygenic model. In

this model, each variant has a small effect toward the

phenotype, where these effects are linear and additive.

Thus, we have

Y ðpÞ ¼ mðpÞ1þ
XM
i¼1

b
ðpÞ
i X

ðpÞ
i þ eðpÞ; (Equation A2)

where m(p) is the populationmean for the phenotype, b
ðpÞ
i is

the effect of the ith variant toward the phenotype, and eðpÞ

is the environmental and measurement noise that we
1256 The American Journal of Human Genetics 99, 1245–1260, Dece
assume follows a normal distribution, eðpÞ � N ð0;sðpÞ2
e IÞ,

where s
ðpÞ2
e is a covariance scalar. As mentioned in the Ma-

terial and Methods, we test the significance of each variant

one at a time. Moreover, we assume that the cth variant is

causal. Thus, we have the following model:

Y ðpÞ ¼ mðpÞ1þ bðpÞ
c XðpÞ

c þ eðpÞ: (Equation A3)

To ease our notations, we utilize the fact that both phe-

notypes and genotypes are standardized. Thus, the pheno-

types follow a normal distribution with mean bðpÞc X
ðpÞ
c and

variance s
ðpÞ2
e I , YðpÞ � N ðbðpÞc X

ðpÞ
c ;s

ðpÞ2
e IÞ. To estimate the

effect size, we utilize the maximum likelihood. The likeli-

hood is computed as follows:

L
�
Y ðpÞ j mðpÞ; bc;s

ðpÞ
e

� ¼ 1ffiffiffiffiffiffiffi
2p

p
s
ðpÞ
e

exp

	
� 1

2s
ðpÞ2
e

3
�
Y ðpÞ � mðpÞ � bðpÞ

c XðpÞ
c

�T
3
�
Y ðpÞ � mðpÞ � bðpÞ

c XðpÞ
c

�

:

(Equation A4)

We compute the optimal effect size that maximizes the

above likelihood by computing the likelihood derivative

and setting it to 0. As a result, the optimal effect size is

computed as follows:

vL
�
Y ðpÞ j mðpÞ; bc;s

ðpÞ
e

�
vbc

¼ 0/ bbc

¼ �XðpÞT
c XðpÞ

c

��1
XðpÞ

c

�
YðpÞ � mðpÞ�/bbc

� N
 
bc;

s
ðpÞ2
e

X
ðpÞT
c X

ðpÞ
c

!
:

(Equation A5)
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We calculate the marginal statistics by dividing the esti-

mated effect size by the SD of the estimated effect size.

Thus, we have

Sc ¼
bbcbsðpÞ
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðpÞT

c XðpÞ
c

q
� N

	
bc

s
ðpÞ
e

ffiffiffiffiffiffiffiffiffi
NðpÞ

p
;1



; (Equation A6)

where lc ¼ ðbc=sðpÞ
e Þ

ffiffiffiffiffiffiffiffiffi
NðpÞ

p
is the true effect size of the cth
variant, which is the causal variant. The normal distribu-

tion for the marginal statistics holds under asymptotic

assumptions.

Indirect GWAS Association Test

We assume that there are two variants where the cth variant

is causal and the ith variant is not causal. To estimate the

effect size, we use the same testingmodel as in the previous

section. Thus, we have

Y ðpÞ ¼ mðpÞ1þ b
ðpÞ
i X

ðpÞ
i þ eðpÞ; (Equation A7)

where we maximize the likelihood function to obtain the

optimal effect sizes. The optimal effect size for the ith

variant is as follows:

bbi ¼
�
X

ðpÞT
i X

ðpÞ
i

��1

X
ðpÞ
i

�
YðpÞ � mðpÞ�/bbi � N

 
bi;

s
ðpÞ2
e

X
ðpÞT
i X

ðpÞ
i

!
:

(Equation A8)

We compute the marginal statistics similarly to in the

previous section:

Si ¼
bbibsðpÞ
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

ðpÞT
i X

ðpÞ
i

q
� N

	
bi

s
ðpÞ
e

ffiffiffiffiffiffiffiffiffi
NðpÞ

p
;1



: (Equation A9)

The variance of the marginal statistics is 1. Thus, the cor-

relation and covariance of marginal statistics are equal. We

compute the covariance of the marginal statistics between

the causal variant and the non-causal variant. We compute

this correlation as follows:

CovðSc; SiÞ ¼ Cov

 bbcbsðpÞ
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðpÞT

c XðpÞ
c

q
;
bbibsðpÞ
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

ðpÞT
i X

ðpÞ
i

q !

¼ Cov

0B@X
ðpÞT
c Y ðpÞ

bsðpÞ
e

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðpÞT

c XðpÞ
c

q ;
X

ðpÞT
i YðpÞ

bsðpÞ
e

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

ðpÞT
i X

ðpÞ
i

q
1CA

¼ 1bsðpÞ2
e

X
ðpÞ
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
ðpÞT
i X

ðpÞ
i

q Cov
�
Y ðpÞ;Y ðpÞ� X

ðpÞ
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XðpÞT
c XðpÞ

c

q :

(Equation A10)

Using the Slutsky’s theorem and the fact that the number

of individuals in a study is large enough, we assume thatbsðpÞ2
e approaches Var(Y(p)). Thus, asymptotically we have

CovðSc; SiÞ ¼ X
ðpÞT
i X

ðpÞ
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
ðpÞT
i X

ðpÞ
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðpÞT

c XðpÞ
c

q ¼ rci: (Equation A11)
The American Jou
This indicates that the correlation between the marginal

statistics of two variants is equal to their genotype cor-

relation. This result is known from our previous

studies.18,27,49
Standard eQTL Association Test

We assume that in the eQTL study, we collect the expres-

sion of multiple genes for N(e) individuals. Let superscript

(p) and (e) indicate variables related to the GWAS and

eQTL study, respectively. Let Y(e) indicate the expression

level of all N(e) individuals for one gene. We consider one

gene to ease the presentation of the method. As illustrated

in the previous GWAS section, we use the ‘‘additive’’

Fisher’s polygenic model:

YðeÞ ¼ mðeÞ1þ
XM
i¼1

b
ðeÞ
i X

ðeÞ
i þ eðeÞ; (Equation A12)

where m(e) is the population mean for the expression of

the gene of interest, b
ðeÞ
i is the effect of the ith variant to-

ward the gene expression, and eðeÞ is the environmental

andmeasurement noise that follows a normal distribution,

eðeÞ � N ð0;sðeÞ2
e IÞ, where s

ðeÞ2
e is a covariance scalar. As

mentioned in theMaterial andMethods, we test the signif-

icant of each variant one at a time. Similarly, we assume

that the cth variant is causal. Thus, we have the following

model:

YðeÞ ¼ mðeÞ1þ bðeÞ
c XðeÞ

c þ eðeÞ: (Equation A13)

The optimal estimated effect size is similar between the

eQTL study and GWAS.
CAVIAR Model for GWASs and eQTL Studies

We know that the covariance between the estimated effect

size of two variants is equal to their genotype correlation.

Furthermore, the mean of the marginal statistics of the

non-causal variants is equal to the mean of the marginal

statistics of the causal variants scaled by the genotype cor-

relation. Thus, we have

�
SðpÞ j LðpÞ� � N �LðpÞSðpÞ;SðpÞ�; (Equation A14)

where the SðpÞ matrix is the pairwise genotype correlations

obtained from a GWAS. For the eQTL study, we obtain a

similar equation for the joint marginal statistics:

�
SðeÞ j LðeÞ� � N �LðeÞSðeÞ;SðeÞ�; (Equation A15)

where the SðeÞ matrix is the pairwise genotype correla-

tions obtained from the eQTL study. We consider LðpÞ

and LðeÞ to be the true effect-size vectors for the GWAS

and eQTL study, respectively. True effect sizes are non-

zero for causal variants and zero for the non-causal vari-

ants. Moreover, we consider LðpÞSðpÞ and LðeÞSðeÞ to be

the LD-induced effect sizes for the GWAS and eQTL study,

respectively.
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We introduce a MVN prior over the true effect-size vec-

tors. The true effect sizes for variants are independent

and, for causal variants, non-zero. Thus, we have the

following prior:�
LðpÞ j CðpÞ� � N �0;sðpÞ2SðpÞ

c

�
;

�
LðeÞ j CðeÞ� � N �0;sðeÞ2SðeÞ

c

�
; (Equation A16)

where S
ðpÞ
c is a diagonal matrix and sðpÞ2 is set to 5.2,18,27

which indicates the variance of our prior over the GWAS ef-

fect sizes. The diagonal elements are set to 1 or 0. For var-

iants that are selected as causal, we set the corresponding

diagonal elements to 1; otherwise, we set them to 0.

Utilizing the conjugate prior, we can combine Equations

A14 and A16 to obtain the joint distribution of the

marginal statistics given the vector of causal status. These

distributions are�
SðpÞ j CðpÞ� � N �0;SðpÞ þ sðpÞ2SðpÞSðpÞ

c SðpÞ�;
�
SðeÞ j CðeÞ� � N �0;SðeÞ þ sðeÞ2SðeÞSðeÞ

c SðeÞ�: (Equation A17)

To show the correctness of the above equations, we uti-

lize the law of total expectation and law of total variance.

Given two random variables A and B, the law of total

expectation is as follows:

E½A� ¼ EB

�
EAjB½A j B��: (Equation A18)

If we let A ¼ ðSðpÞ ��CðpÞÞ and B ¼ LðpÞ, we can compute

the mean of the marginal statistics given the causal status

as follows:

E
�
SðpÞ j CðpÞ� ¼ ELðpÞ

h
EðSðpÞ j LðpÞÞ

�
SðpÞ j LðpÞ�i ¼ ELðpÞ

�
SðpÞLðpÞ�

¼ SðpÞELðpÞ
�
LðpÞ� ¼ 0:

(Equation A19)

To compute the variance of the joint distribution of the

marginal statistics given the causal status, we use the law of

total variance:

Var½A� ¼ EB½Var½A j B�� þ VarB½EB½A j B��: (Equation A20)

Thus, we compute the variance of joint distribution as

follows:

Var
�
SðpÞ j CðpÞ� ¼ ELðpÞ

h
VarSðpÞ j LðpÞ

i
þ VarLðpÞ

�
E
�
SðpÞ j LðpÞ��

¼ ELðpÞ
�
SðpÞ�þ VarLðpÞ

�
SðpÞLðpÞ�

¼ SðpÞ þ sðpÞ2SðpÞSðpÞ
c SðpÞ:

(Equation A21)
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