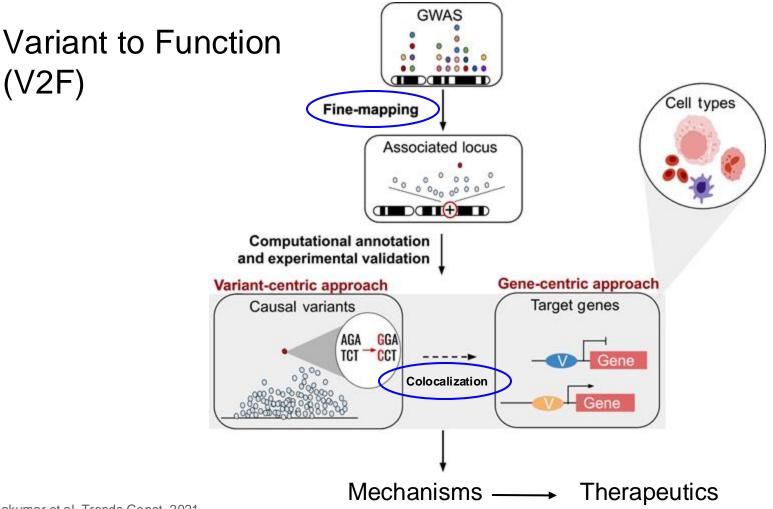
Fine-mapping and colocalization

Ran Cui, Ph.D. Neale lab and Daly lab at Broad Institute Analytic and Translational Genetics Unit, MGH

Outline

- A context: Variant to Function model (V2F)
- Fine-mapping
 - The goal of fine-mapping
 - Factors that influence fine-mapping
 - Overview of methods and benchmarking
 - Multi-cohort fine-mapping
 - Resources
- Colocalization
 - The goal of colocalization
 - Methods and outputs
 - How well does it work
 - Resources

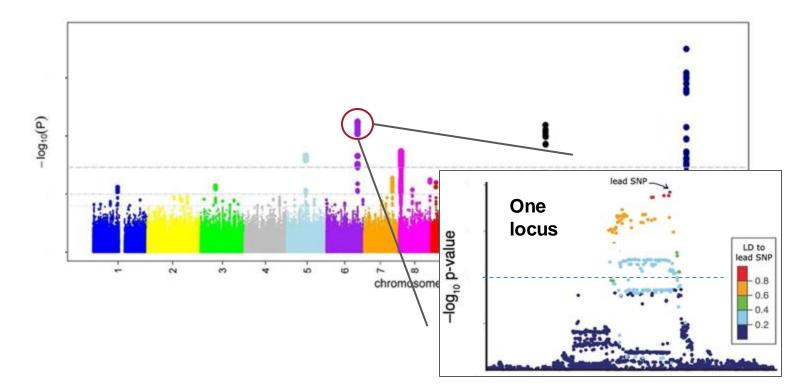


Nandakumar et al. Trends Genet. 2021

Part 1: Fine-mapping

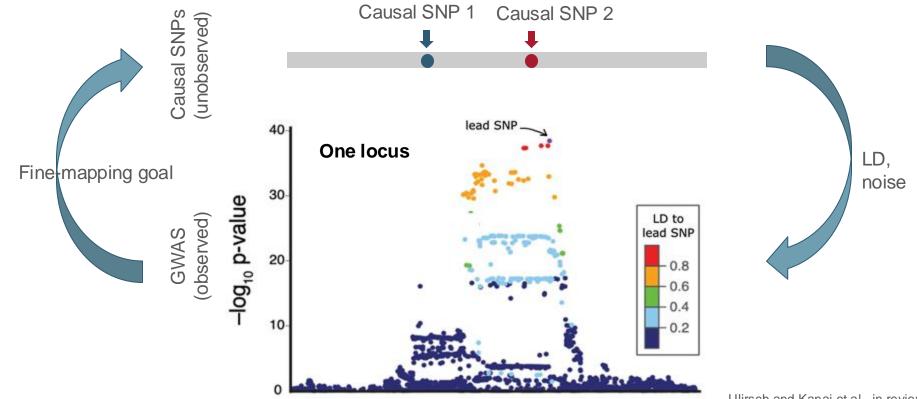
The goal of fine-mapping

GWAS aims to detect association



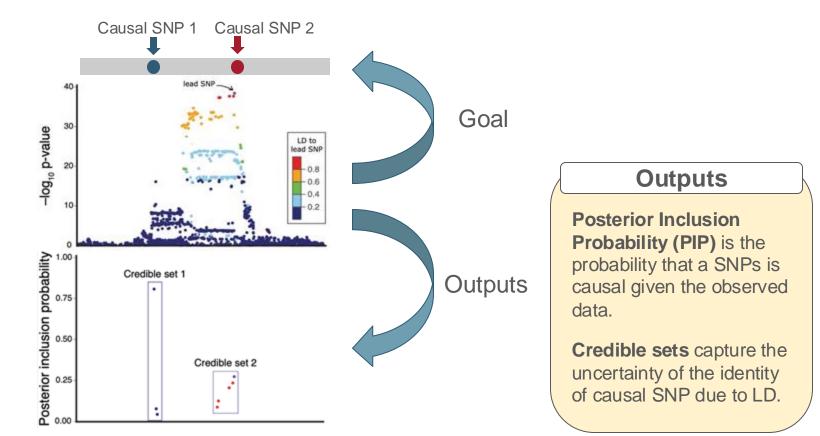
Association is not necessarily causation (cause: influence target trait in a nontrivial way)

Fine-mapping aims to nominate causal variants



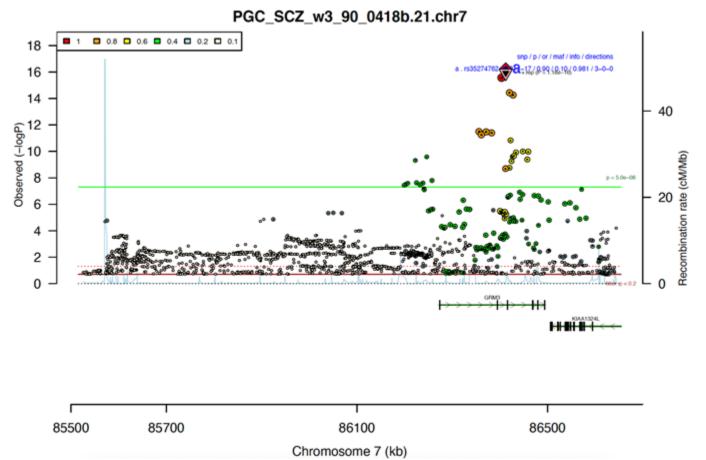
Ulirsch and Kanai et al., in review

Fine-mapping outputs PIP and credible sets



Ulirsch and Kanai et al., in review

A simpler case

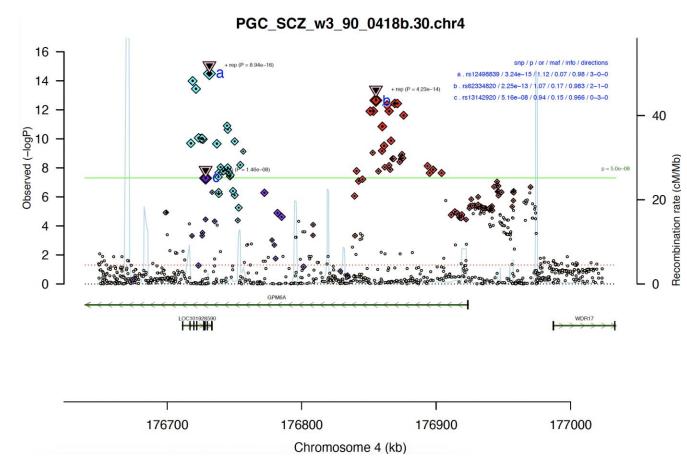


rs6943762: 0.591 rs35274762: 0.362 **Corresponding gene:** GRM3

PIPs:

Trubetskoy et al. 2022 Nature

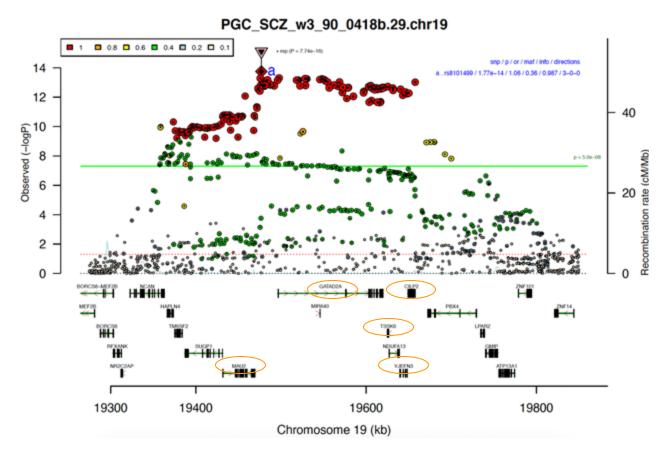
Multiple independent signals



PIPs: (a) rs12498839: 0.33 (b) rs62334820: 0.134 (c) rs13142920: 0.75

Corresponding gene: GPM6A

A more complicated case

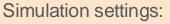


Credible sets spanning: MAU2 GATAD2A TSSK6 YJEFN3 CILP2

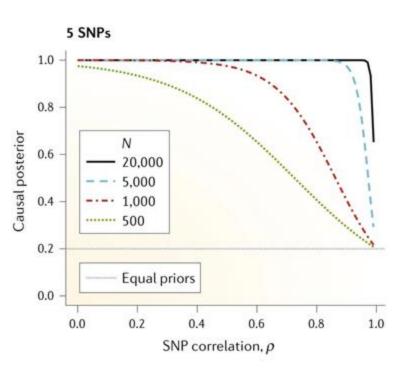
Factors that influence finemapping

Factors that influence fine-mapping

- Linkage Disequilibrium (LD)
- Sample size



- Single causal SNP;
- All SNPs are correlated with correlation *ρ*;
- Region contains 5 40 SNPs.



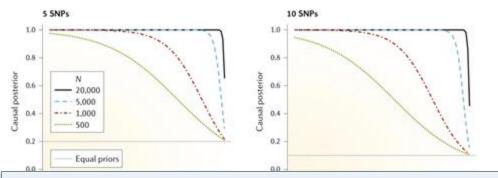
Schaid et al. 2018 Nat. Rev. Genet.

Factors that influence fine-mapping

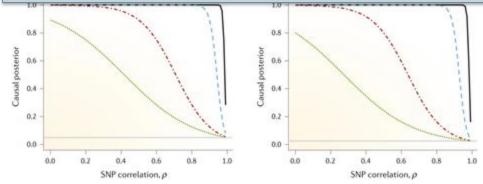
- Linkage Disequilibrium (LD)
- Sample size
- SNP density
- Number of causal variants
- Effect sizes
- Missing causal variants

Simulation settings:

- Single causal SNP;
- All SNPs are correlated with correlation *ρ*;
- Region contains 5 40 SNPs.



You will explore some of these factors and their effects on fine-mapping PIPs in the practicals.



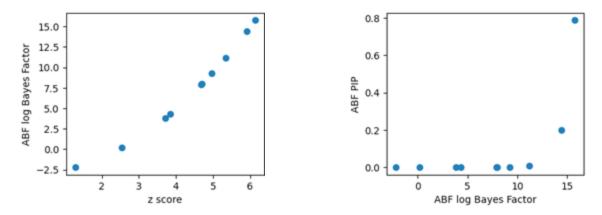
Schaid et al. 2018 Nat. Rev. Genet.

Overview of methods

(Approximate) Bayes Factor method: ABF

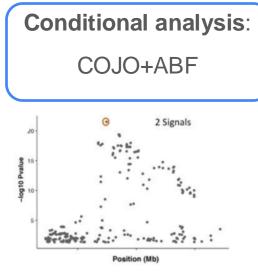
$$BF_i = \frac{p(\text{Data} | \text{SNP} i \text{ is causal})}{p(\text{Data} | \text{ no SNP is causal})} \quad PIP_i := Pr(\gamma_i = 1 | y, X) = \frac{BF_i}{\sum_k BF_k}$$

In this case, Bayes factors are roughly monotonic transformations of z scores. Highest PIP is almost always given to the most significant variant.



Maller et al. 2012 NatGenet.

Generalizing to multiple causal SNPs



Condition out the lead SNP



Position (MD)

Spain et al. 2015 Hum Mol Genet.

Direct modeling of casual configurations:

CAVIAR, CAVIARBF,

FINEMAP, DAP-G

Causal configuration γ : 0 1 0 1 0 0 0 1 0 0

Compute: $p(\gamma|y,X)$

Benner et al. 2016 Bioinformatics

	Sum of single effects:										
	SuSiE										
Single effect causal configurations											
γ ₁ :	0	1	0	0	0	0	0	0	0	0	
γ ₂ :	0	0	0	1	0	0	0	0	0	0	
÷											
γ_{L} :	0	0	0	0	0	0	0	1	0	0	

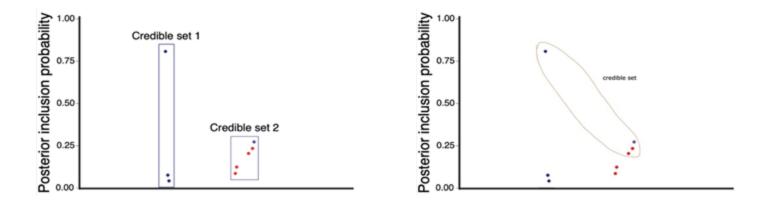
Using Iterative Bayesian Stepwise Selection (IBSS) to compute posterior distributions:

 $p(\gamma_i | \gamma, X, \gamma_{-i}, \beta_{-i})$

Wang et al. 2020 JRSS

Two ways to define credible sets

- 1. Aims to capture one causal SNP in each credible set of minimal size and report as many credible sets as the data supports (SuSiE).
- 2. Aims to find the smallest set of SNPs that contain all the causal SNPs. (ABF, CAVIAR, FINEMAP etc.)



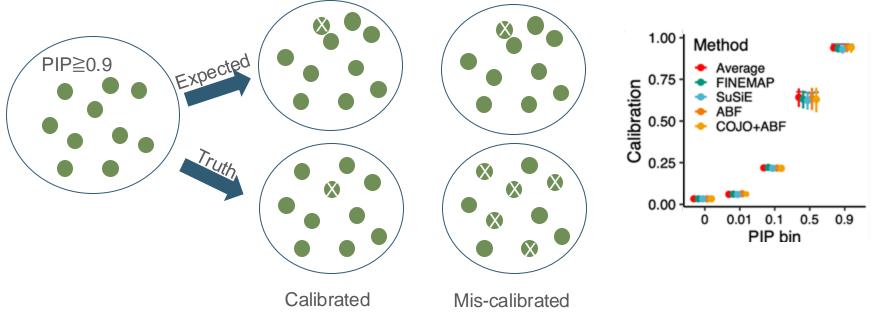
The two definitions coincide when assuming single causal variant per locus

Benchmarking

Benchmarking fine-mapping: in simulations

Two main metrics:

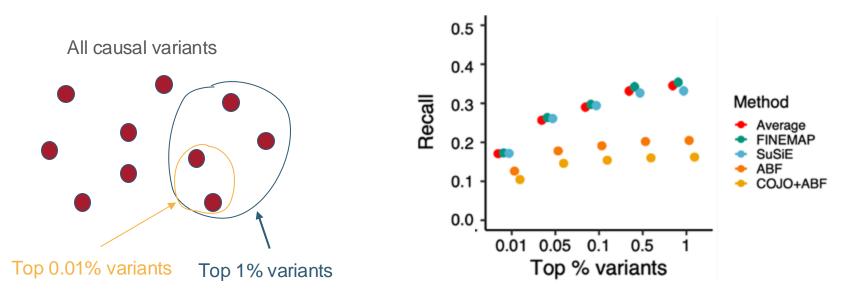
- **Calibration**: Of variants with PIP≅x%, are x% truly causal?
- **Recall**: What proportion of all causal variants are captured by the x% variants with highest PIP?



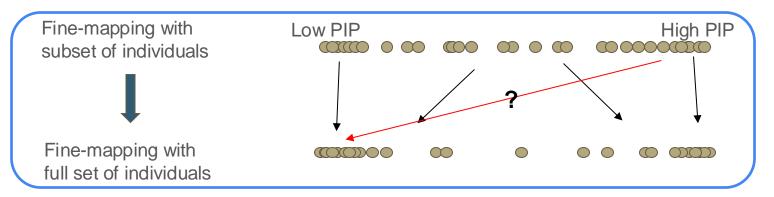
Benchmarking fine-mapping: in simulations

Two main metrics:

- **Calibration**: Of variants with PIP=x%, are x% truly causal?
- **Recall**: What proportion of all causal variants are captured by the x% variants with highest PIP?

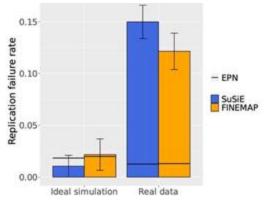


Benchmarking fine-mapping: in real data



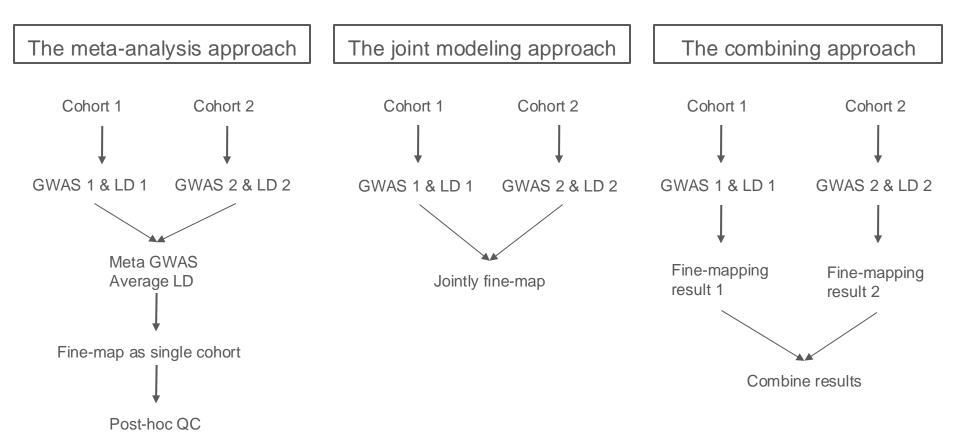
Replication failure: when a variant's PIP drops from high (>0.9) to low (<0.1) when sample size increases.

RFR (Replication Failure Rate): the proportion of replication failures.



Multi-cohort fine-mapping

Multi-cohort fine-mapping



Resources

Fine-mapping resources

Published fine-mapping results by large studies:

- FinnGen: <u>https://finngen.gitbook.io/documentation/methods/finemapping</u>
- UK Biobank: https://www.finucanelab.org/data
- PGC Schizophrenia study: <u>Supplementary Table 11</u>

LD resources:

- PolyFun published UK Biobank LD matrices.
- Pan-UKBB published multi ancestry LD matrices.

Fine-mapping pipelines:

- FinnGen pipeline: <u>https://github.com/FINNGEN/finemapping-pipeline</u>
- UK Biobank pipeline: <u>https://github.com/mkanai/finemapping-pipeline</u>

Derivations:

• ABF paper, CAVIARBF paper, Schaid et al. NatRev.

Use caution when applying fine-mapping

- Beware of reference LD, follow Weissbrod et al. 2020 NG guidelines.
- Meta-analysis fine-mapping is tricky, see Kanai et al. 2022 Cell Genomics.
- Don't forget to use covariate-adjusted LD when the cohort has more complex population structure, e.g. admixture. See <u>Pan-UKBB LD documents</u>.
- Keep in mind that model misspecifications and missing causal variants exist in real data applications. Use caution when interpreting fine-mapping results.
- Run different methods if you can.

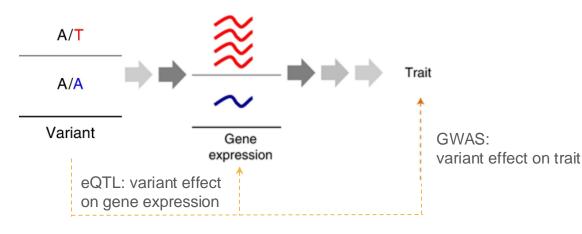
Part 2: Colocalization

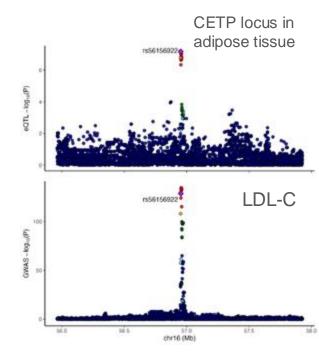
The goal of colocalization

High-level goal: Prioritize gene and cell type targets for functional follow-ups.

Some assumptions are made here.

Specific goal: To test if two associations at a locus share the same causal variant.





Modified from Baca et al. 2022 NatGenet

Hakim et al. 2025 Genes

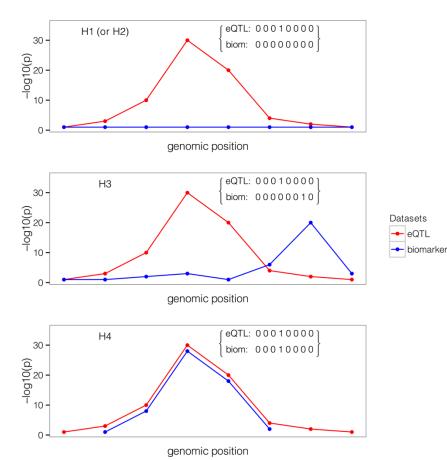
Colocalization is closely related to fine-mapping

$$\begin{array}{c} Pr(\gamma_i=1,d_i=1|y,X,y_{eQTL},X_{eQTL}) \\ \hline \\ \text{SNP i is causal} \\ \text{for trait} \end{array} \\ \begin{array}{c} \downarrow \\ \text{SNP i is causal} \\ \text{for expression} \end{array} \\ \begin{array}{c} \downarrow \\ \text{Data from} \\ \text{GWAS analysis} \end{array} \\ \begin{array}{c} \Box \\ \text{Data from} \\ \text{Data from eQTL} \\ \text{analysis} \end{array} \end{array}$$

$$Pr(\gamma_i = 1|y, X) \& Pr(d_i = 1|y_{eQTL}, X_{eQTL})$$

Colocalization methods and outputs

coloc outputs



coloc considers 5 hypotheses:

- H_0 : No association with either trait.
- H₁: Association with trait 1, none for trait 2.
- H₂: Association with trait 2, none for trait 1.
- H₃: Different SNPs associated with trait 1 and 2.
- H₄: Same SNP associated with trait 1 and 2.

coloc outputs posterior probabilities for all H_i :

 $p(H_0|Data), p(H_1|Data), \cdots, p(H_4|Data)$

Colocalization methods and their outputs

- coloc
 - coloc.abf: Giambartolomei et al. 2013 PLoS Genet.
 - coloc.susie: Wallace et al. 2021 PLoS Genet.
- eCAVIAR
 - Hormozdiari et al. 2016 AJHG
- enloc/fastENLOC
 - Wen et al. 2017 PLoS Genet.
 - Pividori et al. 2020 Sci. Adv.
 - Hukku et al. 2022 AJHG

Posterior probabilities of 5 hypotheses

CLPP for each variant

 SNP and regional level colocalization probabilities (SCP and RCP)

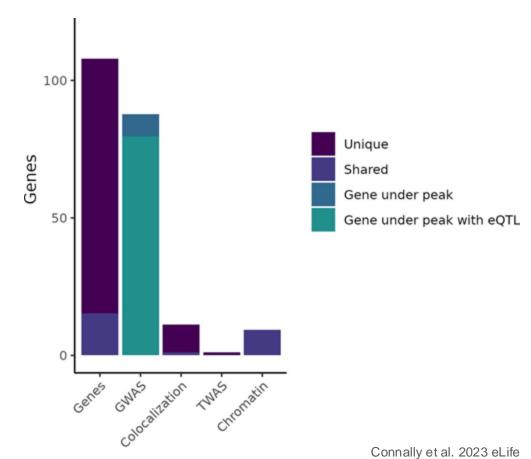
How well does colocalization work

It doesn't work as well as we had hoped

We have reasons to believe that most trait associations should be eQTLs:

- Trait associated SNPs are more likely to be eQTLs.
- A large fraction of heritability resides in regions with gene regulatory potential.

However, only 5-40% of trait associations colocalize with eQTLs using various methods.



Some possible explanations

- Power
- Cell type
- Cell context
- Other molecular phenotypes (sQTL, pQTL etc.)
- Gene by environment interaction (GxE)
- Development
- Fine-mapping inaccuracies
- Re-examine assumptions (Mostafavi et al. 2023 NatGenet)

Resources

Published fine-mapping results by large studies:

- <u>https://gtexportal.org/home</u>
- GTEx fine-mapping results
- twas_hub.org

Visualization tool:

• Locuscomparer

Derivations:

• coloc paper, eCAVIAR paper, enloc paper, TWAS paper

Qualtrics link: https://qimr.az1.qualtrics.com/jfe/form/SV_5bifq SVk0lrbCd0