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Part 1: Fine-mapping



The goal of fine-mapping



GWAS aims to detect association
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Association is not necessarily causation (cause: influence target trait in a nontrivial way)



Fine-mapping aims to nominate causal variants
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Fine-mapping outputs PIP and credible sets
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A simpler case
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Multiple independent signals

PGC_SCZ w3_90_0418b.30.chr4
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A more complicated case
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Factors that influence fine-
mapping



Factors that influence fine-mapping

e Linkage Disequilibrium (LD)
e Sample size

/Simulation settings:

e Single causal SNP;

e All SNPs are correlated with
correlation p;

e Region contains 5 - 40
SNPs.
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Schaid et al. 2018 Nat. Rev. Genet.
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Factors that influence fine-mapping
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Overview of methods



(Approximate) Bayes Factor method: ABF

BF;

p(Data | SNP i is causal)

- p(Data | no SNP is causal)

PIP; := Pr(v; = 1|y, X)

_ _BF;
> 1 BFy

In this case, Bayes factors are roughly monotonic transformations of z
scores. Highest PIP is almost always given to the most significant variant.

Maller et al. 2012 NatGenet.

15.0 1
12.5 4
10.0 +

wo-
[ =T ¥
1 L

ABF log Bayes Factor

o M
=
1

|
b
A

ABF PIP

0.8 1

0.6 4

o
B

o
x

=
L]

0

5

ABF log Bayes Factor

10

15




Generalizing to multiple causal SNPs

Conditional analysis:
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Sum of single effects:
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Using lterative Bayesian Stepwise
Selection (IBSS) to compute
posterior distributions:
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Two ways to define credible sets

1. Aims to capture one causal SNP in each credible set of minimal size
and report as many credible sets as the data supports (SuUSIE).

2. Aims to find the smallest set of SNPs that contain all the causal
SNPs. (ABF, CAVIAR, FINEMAP etc.)

8
8

'DrﬂdiE set 1

0.75

e
o
[

=]
(=]
=]
(]

&eqibla sal 2

=)
hJ
o

025

o
8

Posterior inclusion probability
Posterior inclusion probability

8

The two definitions coincide when assuming single causal variant per locus



Benchmarking



Benchmarking fine-mapping: in simulations

Two main metrics:
e Calibration: Of variants with PIP=x%, are x% truly causal?
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Benchmarking fine-mapping: in simulations

Two main metrics:

e Recall: What proportion of all causal variants are captured by the x% variants with highest PIP?
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Benchmarking fine-mapping: in real data
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Multi-cohort fine-mapping



Multi-cohort fine-mapping

The meta-analysis approach

The joint modeling approach

The combining approach

Cohort 1 Cohort 2
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Resources



Fine-mapping resources

Published fine-mapping results by large studies:

e FinnGen: https://finngen.gitbook.io/documentation/methods/finemapping
e UK Biobank: https://www.finucanelab.org/data
e PGC Schizophrenia study: Supplementary Table 11

LD resources:

e PolyFun published UK Biobank LD matrices.
e Pan-UKBB published multi ancestry LD matrices.

Fine-mapping pipelines:

e FinnGen pipeline: https://github.com/FINNGEN/finemapping-pipeline
e UK Biobank pipeline: https://github.com/mkanai/finemapping-pipeline

Derivations:

e ABF paper, CAVIARBF paper, Schaid et al. NatReuv.


https://finngen.gitbook.io/documentation/methods/finemapping
https://www.finucanelab.org/data
https://www.nature.com/articles/s41586-022-04434-5
https://github.com/FINNGEN/finemapping-pipeline
https://github.com/mkanai/finemapping-pipeline

Use caution when applying fine-mapping

e Beware of reference LD, follow Weissbrod et al. 2020 NG guidelines.
Meta-analysis fine-mapping is tricky, see Kanai et al. 2022 Cell Genomics.
Don'’t forget to use covariate-adjusted LD when the cohort has more complex
population structure, e.g. admixture. See Pan-UKBB LD documents.

e Keep in mind that model misspecifications and missing causal variants exist
in real data applications. Use caution when interpreting fine-mapping results.

e Run different methods if you can.



https://pan.ukbb.broadinstitute.org/blog/2020/10/29/ld-release/index.html

Part 2: Colocalization



The goal of colocalization

High-level goal: Prioritize gene and cell type targets for functional follow-ups.

CETP locus in

Specific goal: To test if two associations at a locus adipose tissue

share the same causal variant.
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Modified from Baca et al. 2022 NatGenet Hakim et al. 2025 Genes



Colocalization is closely related to fine-mapping

Pr(vi =1,d; = 1|y, X, YeQTL, XeQTL)

e / |
SNP i is causal Data from

for trait SNP i is causal GWAS analysis Data from eQTL
for expression analysis

Pr(y; = 1|y, X) & Pr(d; = 1yeqrr, XeqTL)



Colocalization methods and
outputs



coloc outputs

H1 (or H2)

eQTL: 00010000
{biom: 00000000

}

H3

genomic position

eQTL: 00010000
biom: 00000010

}

genomic position

H4

eQTL: 00010000
{biom: 00010000

!

genomic position

Datasets
- eQTL

—e— biomarker

coloc considers 5 hypotheses:

* H,: No association with either trait.

* H;: Association with trait 1, none for trait 2.

* H,: Association with trait 2, none for trait 1.

* Hj: Different SNPs associated with trait 1 and 2.

* H,: Same SNP associated with trait 1 and 2.

coloc outputs posterior probabilities for all H;:
p(Hy|Data), p(H,|Data), -, p(H,|Data)

Giambartolomei et al. 2014 PLOS Genetics



Colocalization methods and their outputs

e coloc

O

O

coloc.abf: Giambartolomei et al. 2013 PL0oS Genet.
coloc.susie: Wallace et al. 2021 PLoS Genet.

o eCAVIAR

O

Hormozdiari et al. 2016 AJHG

e enloc/fastENLOC
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Wen et al. 2017 PL0oS Genet.
Pividori et al. 2020 Sci. Adv.
Hukku et al. 2022 AJHG

—
—
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Posterior probabilities
of 5 hypotheses

CLPP for each variant

SNP and regional
level colocalization
probabilities (SCP and
RCP)



How well does
colocalization work



It doesn’t work as well as we had hoped

We have reasons to believe that

most trait associations should be

eQTLs:

« Trait associated SNPs are
more likely to be eQTLs.

» A large fraction of heritability
resides in regions with gene
regulatory potential.

However, only 5-40% of trait
associations colocalize with
eQTLs using various methods.

Genes
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. Gene under peak
B Gene under peak with eQTL

Connally et al. 2023 eLife



Some possible explanations

Power

Cell type

Cell context

Other molecular phenotypes (sQTL, pQTL etc.)

Gene by environment interaction (GXE)

Development

Fine-mapping inaccuracies

Re-examine assumptions (Mostafavi et al. 2023 NatGenet)



Resources

Published fine-mapping results by large studies:

e https://gtexportal.org/home

e GTEX fine-mapping results
e twas hub.org

Visualization tool:
e lLocuscomparer

Derivations:

e coloc paper, eCAVIAR paper, enloc paper, TWAS paper


https://gtexportal.org/home

Qualtrics link:
https://qimr.az1.qualtrics.com/jfe/form/SV_5bifg
SVkOIrbCdO



https://qimr.az1.qualtrics.com/jfe/form/SV_5bifqSVk0lrbCd0
https://qimr.az1.qualtrics.com/jfe/form/SV_5bifqSVk0lrbCd0
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