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Quantitative Traits

Important in Agriculture, Medicine and Ecology/Evolution.

e Agriculture
Growth, Yield, Disease Resistance, Stress Resistance

W
* Medicine \»v

Disease Susceptibility, Drug response, Diet response l!‘ _— 4(

13 ;

e Ecology and Evolution
Many of the above traits are essentially components of fitness.

Is there a genetic basis underlying quantitative traits?

Is there a way to robustly identify the genetic basis?



Quantitative Trait Locus (QTL)

Region of the genome affecting quantitative phenotype

Phenotype is measured numerically.
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Yengo et al. 2022 Nature
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Genetic architecture of complex traits

e Where are variants found in the
genome?

* What type of variants affect the trait?

* How much of trait variance is
explained?

* Through which mechanisms do the
variants exert their effects?

* How variations in pathway/network = =2
and molecular interactions contribute https://www.ebi.ac.uk/gwas/
to phenotype




Overview of the human genome

Exons (regions of genes coding

Repetitive
DNA that
includes
transposable
elements
and related
sequences
(44%)

Introns and
regulatory
sequences
(24%)

Alu elements
(10%)

Repetitive
DNA
unrelated to
transposable
elements

(15%)

Unique
noncoding
DNA (15%)

e

R

DNA (3%)

Simple sequence

Large-segment
duplications (5-6%)

for protein, rRNA, tRNA) (1.5 - 2%)

Majority of trait-associated
variation is non-coding.

Hypothesis: most of these
function by altering gene
expression.



Regulatory variation

What do trait-associated variants do?

Genetic changes to:
— Coding sequence **
— Gene expression levels
— Splice isoform levels
— Methylation patterns
— Chromatin accessibility

— Transcription factor binding kinetics

— Cell signaling
— Protein-protein interactions

DNA

i |

i) Pre-mRNA H\db'*b/
1 |

ii) MRNA 1 [ 1 *
1 |

iii) Protein %/%

iv) DNA j ﬂ;ﬁﬁ%E :> EXpression

Stranger and Dermitzakis, Human Genomics 2005



Effects of copy number variation on gene expression

Altered gene dosage Altered structure of regulatory elements

=
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Altered complement of coding elements Altered complement of regulatory elements

Hurles et al. 2008; Trends In Genetics



Understanding genetic-trait associations by exploring
the biology that lies between the two

MRNA expression protein expression

High
risk

!

QTL for higher-
order traits

Albert and Kruglyak, 2015 Nature Reviews Genetics



Regulatory variation and gene expression

Altered patterns of gene expression = disease.
* e.g., Type 1 diabetes, Burkitt’s lymphomas.

Widespread intraspecific variation.

Heritable genetic variation for transcript levels.
e Familial aggregation of expression profiles
* Median heritability 0.25 (Ouwens et al. 2019; EJHG)

* In humans, ¥95% of protein-coding loci exhibited a genetic component for expression
differences (GTEx Consortium 2020; Science)

Much of the detected influential variation is located c¢/s-to the coding locus.

* In humans, mouse, and maize, 25-60% of the genetic basis for intraspecific differences in
transcription level are cis- to the coding locus

* More recent work in humans estimated ~35% heritable expression variation due to variants
acting in cis-

Some variants associated with disease also associate with gene expression variation

e Variants associated with Asthma, Rheumatoid arthritis, Crohn’s disease, Bipolar Disorder, T1D,
polygenic dyslipidaemia, lupus, blood lipid traits, etc. shown to affect gene expression.



Expression guantitative trait locus (eQTL) mapping:
identify genomic regions affecting expression levels

c 95-
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mRNA 7
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Population of individuals $ p=1.3e-6
Characterize transcriptomes CC CG GG
Characterize genomes genotype
Perform statistical analysis _p-value
-r?2orrho

- Effect size: fold-change

Multiple testing correction.



Obtain primary
datasets

[ Multiple wolset for QC |

Genotype data
(WGS, SNP array)

[ GATK, BCFools, DeepVariant,
Strelka2, FreeBayes

PLINK, VCFtools

Genotype Data QC

Preprocessing
(Quality Control)

Covariate
matrices

e)TL analysis

L L

Download datasets from
public datasource

RMA-seq data
(Gene count data)

Phenotype Data QC

| Sample-level QC ‘

‘ Variant-level QC

Remove poor-quality
samples

low call rate
Remowve variants with high
missing genotyping rate
( Check gend-er mismatch )
( I-I'i'E; h:lem?yguus ) Exclude variams
Ao ;,mm:}pe violating HWE

Qdenlif}' sample relatednesa

Remove outlying dataset

Identify sample swap
or mislabeled sample

KING, SEEKIN,
correctkin, IBDkin

Population stratification
(PCA)

oili da
X 7/ Post-QC genut}p('dﬂla/ /PO?{E‘.TIE[:Z‘;;::;F;H) I']/

Toolset for eQTL mapping |

Tensor()TL, Matrix e(JTL,
GEMMA, LIMIX, APEX

e(JTL mapping with
linear regression model

v

Multiple testing correction

'

FastQTL/QTLwools, (

Genome-wide significant cis-eQTL

Selecting covariates
(Technical/biological, latent covariates)
4

“

Remove variants
with low MAF Cross-sample normalization

MultiQQC, RNA-SeQC2,
RSeQC, FastQC, Picard

PCAtools, factoexira,
pecaExplorer, smarlPCA

|
)

MBV, VerifyBamID2, ]

edgeR, DESeq2,
EDAseq, NOIseq, cgn

PCA, 5VA,
PEER, HCP

J

)

A brief guide to analyzing
expression quantitative
trait loci

Ko et al. 2024, Molecules
and Cells



MRNA guantification by array

Cell
AT AN AT AN
A C
RMNA
;Eﬁ;‘fﬁed ! ! ! A Fluorescent dye

¥ Eaction oo bl ggggg

Detection
I
Genedl Gened GeneC
DMA microarray
Exprassion
Cluantity ot expressed geneas is level
measured based on color strength

(luminescence intensity)

Geneh Gene= GeneC



RNA Sequencing

Fragment RNA into
@ Isolate RNA from samples short segments

Ligate sequencing
adapters and amplify

@ Perform NGS sequencing

LT
LTI
T
LT

[T

Convert RNA fragments

into cDNA

Map sequencing reads to
the transcriptome/genome

Intron




Very(!) general bulk RNA-seq workflow steps

g & M A
o o o o

Quality control Quantification/ Normalization Downstream analyses
A Alignment PN
- h r N
Sequence quality Dimension Reduction
trimming Differential expression

Image by Candace Savonen



RNA-seq Quality Control

countData

'gene ctrl_1 | ctrl_2 |exp_1|exp_1
geneA| 10 11 56 45
geneB 0 0 | 128 | 54
geneC| 42 41 59 41
geneD| 103 | 122 1 23
genekE| 10 23 14 56
'geneF o) 1 2 0

Count matrix

Sample-Level QC

QC Metric

Read depth per

sample

Uniquely mapped

reads
RIN score

Gene body

coverage

PCA/MDS outlier

detection

Sex check

Recommended Cutoff

>10 million mapped reads (preferably >20M)

>70%

>6 (Remove degraded RNA samples)

Even distribution (avoid extreme 3’ bias)

Remove samples >6 SD from the mean

Match XIST (high in females) and Y-linked gene

expression with reported sex

Reason

Ensures sufficient power for

expression quantification

Avoids samples with excessive

multi-mapped reads
Ensures RNA integrity

Ensures non-degraded transcripts

Identifies batch effects or outlier

samples

Detects mislabeled samples



Trimmed Mean of M-values (TMM) normalization

Goal: normalize RNA-seq count data across samples.
Adjusts for sequencing depth and RNA composition bias.

1. Compute M-values and A-values

2. Trim Extreme M-values and Low-Expression Genes
e M-value (log-fold change):

» Removes highly differentially expressed genes that could skew

X, normalization.
M; = log, ( Xt)
i 3. Calculate a Weighted Mean

e Uses the remaining M-values to compute a scaling factor.
where Xj; is the count for gene 7 in the sample of interest and X is the

4. Apply the Scaling Factor

count for the same gene in a reference sample.
M-A Plot: TMM Normalization Trimming

i . -~ ® Adjusts raw counts for more accurate cross-sample comparisons.
e A-value (average abundance): o R

1
A; = 3 log,(X; x X))




Rank-based inverse normal transformation
(INT)

eQTL methods assume normally distributed
expression values

* RNA-seq counts = negative binomial or A
Poisson distribution > violates assumptions.

* Transformation of count data = suitable for /.__.\
parametric statistical models. e :

Typical Transformation (per gene): >

Rank-based inverse normal transformation
(INT), common in eQTL analysis, biobank
guantitative traits



Factors influencing gene expression: known & unknown

Measured
“Actual” >
Expression gene_
expression

What kinds of factors?

batches, library size, RNA quality,
medications, disease, infection,
age, sex, etc.

Courtesy of Paul Pavlidis, UBC



Controlling for sources of variation

Why?
* trying to link genetic variation to gene expression
* known and hidden factors can obscure real genetic effects
* reduce false positives and improve statistical power

How?

Include covariates in linear regression model (known and unknown)
 typical known: age + sex + genotype principal components

* Hidden: inferred factors, learned from gene expression
* Principal components
* PEER (Probabilistic Estimation of Expression Residuals)



PEER (Probabilistic Estimation of Expression
Residuals)

e Bayesian method that identifies hidden confounders (PEER factors) by
modeling them as latent variables

e PEER factors can help remove unwanted variation from technical
artifacts (e.g., batch effects, RNA degradation) or biological differences
(e.g., cell composition) that aren’t directly measured.

* Pros: Effective, both technical & biological factors
* Cons: Slow, Computationally expensive

Stegle et al. 2012, Nature Protocols



PEER

Core idea of PEER is to represent gene expression as:

yi = Xif+ Z:f + &

Where:
« y; is the vector of gene expression for sample z,

X is the design matrix of observed covariates (e.g., treatment or clinical variables),

]

3 is the vector of coefficients for observed variables,

L ]

Z; links latent factors to gene expression,

L]

L]

f represents the latent factors (hidden variables),

€; is the residual error term (unexplained variation).

L]

PEER infers the latent factors f that explain the unexplained variation in
gene expression. These factors are estimated through Bayesian methods

PEER factors are then used as covariates in the eQTL model.
Stegle et al. 2012, Nature Protocols



Considerations for PEER

 When estimating, include known covariates (e.g., age, sex, batch)

* How many to include as covariates in eQTL model? Empirical
estimation: minimize covariates, maximize discovery

%2 5000 - PCA_all_genes

“CJ s PCA_HVG2000

o 4500 -+ PEER_all_genes
@) - PEER_HVG2000
()

+ 4000

0 10 20 30 40 50



Expression quantitative trait locus (eQTL) mapping:
to identify genomic regions affecting expression levels
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Characterize transcriptomes CC CG GG
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Perform statistical analysis _p-value
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- Effect size: fold-change

Multiple testing correction.



SNP - expression association analysis

AN
AN
T NN
gene ]
snps M THEREEEECTEE TE00E 10 fE 100 Tete 1 Teee o

MRNA levels

Model:Y;~ B, + B,Genotype + B, Covs + B, \PEERS + €

Normalized expression

8.0- ’~ p=1.3e-6

cC CT TT
genotype

- p-value
-r2orrho
- Effect size: fold-change



Whole-genome eQTL analysis is a GWAS
for expression of a gene

MRNA level
gene 1

-log,, pvalue
owmon

IS E— —
SLl
vL.

b
[4
£
14

w D =~ o W e ke

chromosome

Considerations: Same as for GWAS for complex traits / disease

SNP Quality Control (e.g., missingness, HW equilibrium)

Well-quantified phenotype (robust gene expression measurements)
Population stratification

Statistical considerations (MAF, power, multiple testing, covariates)

Interpretation of significant hits:
Significantly associated variant tags true causal variant



Whole-genome eQTL analysis is an independent GWAS
for expression of each gene

e.g., 3M SNPs x 20K genes ﬂnWngMu



Terminology

* cis-eQTL
* The position of the eQTL variant

maps near the physical position
of the gene.

* Promoter polymorphism?
* Insertion/Deletion?

* Methylation, chromatin
conformation?

* trans-eQTL

* The position of the eQTL variant
does not map near the physical
position of the gene.

e Regulator?
e Direct or indirect?

N
N
N
o [r—
J Y —_—
2
.f‘f 1.
! k| v
—
e
Lo
":'* \ e, S
o —
—
—

Cheung and Spielman 2009 Nature Genetics



More terminology

* eGene: A gene with 21
significantly associated SNP

* eSNP/eVariant: A SNP/variant
associated with >1 eGene

e eQTL: A SNP-gene pair where
genetic variation is associated
with gene expression association,
sometimes used synonymously
with eSNP/eVariant




Cis- eQTL analysis:
test SNPs within a pre-defined distance of gene

1Mb 1Mb
1Mb window —_ = =
gene L]
DT | T T N o 1 A A O L T AT AR T

Model:Y;~ B, + B,Genotype + B, Covs + B, \PEERS + €

probabilistic estimation of expression residuals (PEER): Stegle et al. 2012 Nature Protocols
FastQTL: Ongen et al. 2016 Bioinformatics
MatrixQTL: Shabalin et al. 2012 Bioinformatics



Multiple testing correction

1. Testing many SNPs for
association with each gene.

2. Testing many genes for
association with each SNP.

GOAL: control the false discovery
rate (FDR)

Control FDR: Benjamini-Hochberg
(BH) FDR or Storey’s g-value
method.

permutations: (shuffling expression
phenotypes, within gene)

JELLY BEANS
CAUSE ACNE!

SCIENTISTS!
lHUEEﬂGﬁTE'

2

Bur wsht
hmr.m:r'
F\NE

WE FOUND NO
LINK BETWEEN

JELLY BEANS AND
ANE (p > 0.05).

i

l

THAT SETILES THAT.

T HEAR ITS ONLY
A CERTAIN COLOR
THAT CAUSES IT.

SCIENTISTS!
Mt

WE FOUND MO

WE FOUND NG

WE FOUND NO WE. FOUND NG WE FOUND NG
LINK GETWEEN LinK, BETWEEN INK,. GETWEEN LINK. GETWEEN LINK, GETWEEN
RRAE JELY BROWN JELLY Pirgie. JELLY BLE JELY TEAL JELLY
BEAMS AiD ACNE BEANS FHDAE. | | REANS AHD ACIE BEANS A ANE BEANS A AONE
(p>0.08) (p>005) (p>005), (P>005), (p>005)

/ ! / ! !

WE FOUND NG WE FOUND NO WE FOUND NO WE FOUND A WE FOUND NG
LINK BETWEEN LINK, GETWEEN LMK GETWEEN LMK, BGETWEEN LINK, BETWEEN
GREY JELLY TAHJELW oA JELLY GREEM JELLY MAVE JELLY
BEANS AHD ACNE BEANS AND ACNE BEANS AHD ACNE BEANS AND ACNE
(p>0.05) (pmos) (p>0.05) (p<o0.05) (p>0.05)

! / ‘/m‘w | !

== News ==

GREEN JELLY
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T ANE! [ @
?i/?ﬂﬂf*m .
5% CHANCE

COINCIDENCE! “"Sciewr: 9‘5
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http://xkcd.com/882/



http://xkcd.com/882/

Early eQTL mapping
44k =

CEU: 109 Caucasians living in Utah USA, of northern and western
CHB: 80 Han Chinese from Beijing, China

GIH: 82 Gujarati Indians in Houston, TX, USA

JPT: 82 Japanese in Tokyo, Japan

LWK: 82 Luhya in Webuye, Kenya

MEX: 45 Mexican ancestry in Los Angeles, CA, USA,

MKK: 138 Maasai in Kinyawa, Kenya

YRI: 108 Yoruba in Ibadan, Nigeria

200000000
§EEEELLEE
353538 $3

Q0

%% -
®e
Lymphoblastoid
cell lines (LCLs)

0000000 DOOO 00
88T T3 0060060806 6
3383333335353 353 353
33 a R 33388

European ancestry

a SNPs
Chromosome 1
Chromosome 2

Chromosome 3
Chromosome 4

b Haplotypes

c Tag SNPs

SNP

AACACGCCA....
AACACGCCA....
AACATGCCA....
AACACGCCA....

SNP

TTCGGGGTC....
TTCGAGGTC....
TTCGGGGTC....
TTCGEGGTC....

SNP

v

AGTCGACCG....
AGTCA ACCG....
AGTCA ACCG....
AGTCC:ACCG....

e

Haplotype1 CTCAAAGTACGGTTCAGGCA
Haplotype2 TTGATTGCGCAACAGTAATA
Haplotype3 CCCGATCTGTGATACTGGTG

Haplotype4 TCGATTCCGCGG

A% BE o

ON= |+

avo <« a



Early cis-eQTL findings

GIH

significant associations are symmetrically
distributed around TSS, strongest at TSS

a0 4

Denser SNP maps = better resolution

PT LWE MEX

L &0

cross-population meta-analysis increased
discovery

-log10(pvalue]

e SR a

For population-shared eQTLs, effect sizes
and direction largely similar across
populations

a

distance to TSS

HapMap LCLs cis-eQTLs
Most significant SNP per gene Stranger et al., 2012 PLoS Genetics



Context specificity

condition 1 condition2
A A
Q
eQTL 2
presence/absence ©
| L .
/ N
same gene, Q'g
different SNPs &
| I | L
A /]
single SNP, o
different genes :OB'
! ! =N \
N 2N
[ 1] /\
effect size S ﬂ Lo S
variability “ | °° ey » 3
& L= |y & )
0 1 2 0 1 2
allelic direction g ﬂ ¥ S E:
i S| 5| i
¥ | 2 g 3




Contexts of interest

e Populations of different ancestry (HapMap, Geuvadis)

* Tissue or cell type (primary blood cells, fat, skin)

e Baseline vs stimulated

* Males vs females

* Differential with respect to age

* Impacted by environment (exogenous, endogenous, pertubations)



Population-specific cis-eQTLs (4-6%)

CCDCZ23 (rs3768027)

=
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. Tl . i
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o ]
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EU AA EA Raj et al., 2014 Science



CD52 cis-eQTL shows directional regulatory effects across cell types

East Asian African American European American
c
C .. ) B I i e
.9 1- . . . ‘. : .-, el
a . . “1- . o _".
U wn . " e . e
40% cis o< | = 1% [ - P -
- . = . v R XA
° I9 o o B T e - O b
< 2 L . =~ OFw
eQlLs were 2§ : - : 1
E .a jme®
E B
cell-type S : :
.f. 8 I
SPECITIC O 1T poosap=307x107 o p=os7p=232x10" | . p=059,P=209x107
= ‘ '
c 1 3
QO .
. * - . e
@ =2 : . K . - L
o 7, 0- ) H . . .:° :. L .
X = “ . * ; . * . L : s
Ll Q : . = ‘.‘ “- e L .. . :: .. J*
Q': . . . - . ¢ .
g . t . <] 1 : 2
~ ' 5 . e
LN . . . .
S p=-030,P=7.0x10" . p= 0.56,P1.02J10‘° : p=-068 P=1.48x10"
cc TC T cc TC T cC TC T

rs10159433 Genotype

CD52 lymphocyte cell-surface glycoprotein, function in anti-adhesion, role in lymphoma. It is the protein
targeted by alemtuzumab, a monoclonal antibody used for the treatment of chronic lymphocytic leukemia



ikely to be eQTLs

Trait-associated SNPs are more |

eQTL Distribution: P < 10°® eQTL Distribution: P < 1078

eQTL Distribution: P < 107*

T \ o
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00y 00 00¢ 001 0
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0S¢ 002 051 001 0S 0
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15 20
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30 40 50
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500

Number of eQTLs Number of eQTLs

Number of eQTLs

GEU

CEU
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Nicolae et al., 2010, PLoS Genetics



Autoimmune and Infectious disease SNPs
from GWAS are eQTLs

RAD RERR RA ARG

%
TN )
® @ &\ 9\ ‘4'\ G @) | i (D)
) Gone) irors (oo) Brs) o) ooy

PS = Psoriasis T1D =Type 1 diabetes
SLE = Systemic lupus erythematosus LeP = Leprosy
5SS = Systemic sclerosis MS = Multiple sclerosis
CD = Crohn’s disease RA = Rheumatoid arthritis
AS = Ankylosing spondylitis CeD = Celiac’s disease

(4 ) | UC = Ulcerative colitis

orange: cis-reQTLs, yellow: stimulus-specific cis-eQTLs

Lee et al. 2014 Science



Geuvadis

* First large-scale transcriptome sequencing eQTL study

* First large-scale eQTL study with DNA sequencing data (1000genomes)
e L[CLs from 462 individuals from multiple human populations

* microRNAs, mRNAS

G widespread genetic variation affecting the regulation of most genes

c eQTLs for transcript structure and expression level are equally common,
genetically largely independent

Lappalainen et al. 2013 Nature



Summary: early eQTL Discoveries

Ubiquitous cis-eQTLs: Common variation impacts gene expression
levels in every study exploring it, #eGenes increases with sample
size, resolution increases with DNA sequencing

Context-specificity: Ancestry, tissue type, cell type, activation
status

Disease interpretation: Genetic basis of complex traits may
influence gene expression and suggest causal genes

Resource: Data sharing facilitates discovery



Understanding genetic-trait associations by exploring
the biology that lies between the two

MRNA expression protein expression
L&\&,\ /}‘é—\)‘a\/
B, “l —/}C;\J High Context:
AAA - —p disease -
M gV risk Ancestry
O AAA o
l Cell/Tissue type
l i QTL for higher- Activation State
order traits Sex
eQTL pQTL ’ S;?g“'s'“al ]
* Disease D|Sease
T » Fitness
L
— qiiase CONTEXT IS IMPORTANT!
ri

Albert and Kruglyak, 2015 Nature Reviews Genetics



NIH Genotype-Tissue Expression (GTEx) Project

Launched in 2010

Goal: Standardized collection
and profiling of 50 tissues
from 1000 deceased donor
patients

RNA-Seq and genotyping

Grenotype (genelic makaup)

Primary scientific goals:

Determine tissue specificity of
eQTLs and splicingQTLs (sQTLs)

Characterize trans-eQTLs

Create resource: Publicly-
available database of eQTLs

Consortium and expanded data
(whole genome sequencing +)
have enabled MUCH more than
this



© Cortex (205) / Frontal cortex (BA9) (175)

© Anterior cingulate cortex (BA24) (147) i :
@ Cautate {basalgangiia) (194) Cell type composition Gene expression

in tissues and splicing

© Nucleus accumbens (basal ganglia) (202)
i © Putamen (basal ganglia) (170)
Y\ © Hypothalamus (170)

= © Amygdala (129)

838 donors and 17,382 >
-2 © Substantia nigra (114)

tissue samp les | T\ © Cerebellum (209) / Cerebellar hemisphere (175)
\\— o Spinal cord (cervical c-1) (126)
-~ © Pituitary (237)

54 t ISSUes ( INC | u d In g Expression quantitative Splicing quantitative

11 brain re gions an d : trait loci (eQTLs) trait loci (sQTLs)
two cell lines) Lung (515)@ Wi e Minorsalivary gland (144) cis-eQTLs cis-sQTLs
Breast mammary tissue (396)® ———, B ;_ _—— @ Thyroid (574)
. Pancreas (305)®@ _— @ Aorta(387)
85.3% EUR-American Liver (208)@ . @ Atral appenage (372) eQTL analysis: 49
12.3% Af-American Ai:;::'%::z@ﬁ” - o d N @firtonar:f éflter; Sizm ol e Bmoem == isgues or cell lines
1.4% As-American s i AN — g ——
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GTEx eQTLs
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Functional mechanisms of genetic regulatory e
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Trans-eQTLs caused by cis-eQTLs?

Cis-eQTL

SNP X has an effect on local Gene A

(o

SNP X Gene A
located in transcription factor
promoter region located on
chromosome 1

Gene A expression levels

AA AB BB
SNP X Genotype

Altered Protein A levels,
effect on the binding to
the transcription factor
binding sites of
downstream genes
Trans-eQTL
SNP X has an effect on distant Gene B through an
intermediary factor (such as a transcription factor)

5
| T
= L - '
5|4 5‘ .4
“ M
e (e wem BlE—F b
Sl .
Protein A Gene B g
binding site located on - ' ‘
chromosome 2 Y AA AB BB

SNP X Genotype

trans-eVariants enriched for
cis-eVariants in the same
tissue. Much less so by sQTLs

Enrichment

trans- M cis-eQTLs
sQTLs M cis-sQTLs
0 2 4 6
Odds ratio

Mediation analysis: 77% of
trans-eQTLs are mediated by
cis-eQTLs.
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Tissue specificity of cis-QTLs

Tissue clustering cis-eQTL
effect sizes:

TR W eQTLs
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better capture effects in Sl
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other tissues. BR”EQQ genetic regulatory effects tend to be either
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highly tissue specific or highly shared

Aguet, F. et al. 2020 Science. 'é’ GTEX
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Sex effects in the GTEx transcriptome

Breast: LINC00920

; Female Bela = DAS
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sex-biased eQTLs

Kidney Cortex: CSPG5

Female Bela = MA F= A

'

ion (kepm)

Express

Liver: HKDC1

b Female Bela = -095 F = 25882-07

- 9“

Oliva et al. 2020 Science *’_
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Colocalization GWAS + eQTLs: coloc

H1 (OI’HQ) eQTL: 00010000
biom: 00000000

genomic position

H3 eQTL: 00010000
biom: 00000010

genomic position

Ha eQTL: 00010000
biom: 00010000

genomic position

Giambartolomei et al. 2014 PLoS Genetics

Statistical approach to test
likelihood that a GWAS
association and eQTL have s:
causal variant

Creates

SNP = gene expression =2 trait

f GWAS === !

| |

e 1 [ {

E eQTL ) +
SNP —®» Transcription ——P Trait

Formal test: Mediation analysis
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GTEXx Summary

* Large resource of gene expression and eQTLs and sQTLs

* Allelic heterogeneity: multiple independent variants
Impacting expression levels

e trans-eQTLs mediated by cis-eQTLs
* Cell-type specific genetic regulation
* Relationship to complex traits (1000’s of hypotheses)

* Interaction QTLs (population/sex) present but will require
arger sample sizes




Enhancing GTEx (eGTEXx)

Adding additional data to GTEx samples

@ Protein guantification

Translation
Histone modifications / RMA methylation

Allele-specific expression

* DNA methylation of brain
* DNasel hs
* bisulfite sequencing 8 tissues + H3K27ac %__}
* somatic mutations across tissues )
* targeted allele specific expression

e telomere length across tissues

e protein QTLs 3 tissues (mass spec)

Stranger et al. 2017 Nature Genetics
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GTExPortal & . A
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The Genotype-Tissue Expression (GTEx) Portal is a comprehensive public resource for researchers studying tissue and cell-specific gene
expression and regulation across individuals, development, and species, with data from 3 NIH projects.

&= GTEX .-/dGTEX A" uHpdGTEX

T ecti The Developmental GTEx (dGTEXx) The Non-Human Primate
€ Add ) X PEDjectisa project is a new effort to study Developmental GTEx (NHP-dGTEX)
comprehensive resource of WGS, - 5 - :
development-specific genetic effects project is a complement to dGTEX in 2
RNA-Seq, and QTL data from samples i . . .
on gene expression and to establish a translational non-human primate

collartad franm 54 non-diceaged ticalia



eQTLGen Consortium

_'1'_ 31,684 blood samples §® 10,317 trait-associated SNPs

0oe

>
<$g 1TM SNPs (MAF = 1%) s Imm3 19,960 genes studied

cis-eQTL analysis:
11M SNPs studied
(Window size 1Mb, MAF = 1%)

Disease
SNP

CO@m

cis-eQTL effect

cis-eQTL analysis results:
16,989 (88.3%) cis-eQTL genes

trans-eQTL analysis: Polygenicrisk score analysis:
10,317 trait-associated 1,263 traits studied
SNPs studied

Disease °- s g
SNP . ,.c_;:' .
= - .."i‘-:. Pet
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Gene A Gene B Gene C Polygenic risk for disease
trans-eQTL analysis results: Polygenic score analysis results:
6,298 (31%) trans-eQTL genes 2,658 (13%) eQTS genes

3,853 (36%) genetic risk factors 689 (54%) traits affect gene expression



Moving forward

* Context-specific experimental designs

* Context-specific analysis and reporting

* Novel statistical approaches

e Context-specific annotations

* Single-cell approaches

e Larger-sample sizes (esp. for trans-eQTLs)
* Machine learning to predict function

1D

= 5

O

L




eQTL resources

» Genotype-Tissue Expression Project: https://www.gtexportal.org/home/

« eQTLGen consortium: https://www.eqtlgen.org/

 Fivex eQTL browser: https://fivex.sph.umich.edu/about

* Open Targets: https://www.opentargets.org/

 scQTLbase: http://bioinfo.szbl.ac.cn/scQTLbase/

* singleQ:_http://www.sqgraolab.com/scqtl



https://www.gtexportal.org/home/
https://www.eqtlgen.org/
https://fivex.sph.umich.edu/about
https://www.opentargets.org/
http://bioinfo.szbl.ac.cn/scQTLbase/
http://www.sqraolab.com/scqtl

eQQTL software tools

Matrix eQTL: Shabalin et al. 2012 Bioinformatics
* Pros: Supports cis- and trans-, Fast and scalable, Memory-efficient, highly parallelizable
e Cons: Does not handle random effects or more complex mixed models, Limited visualization
capabilities
FastQTL: Ongen et al. 2016 Bioinformatics
* Pros: extremely fast, memory efficient for cis-eQTLs
e Cons: not for trans-, does not support complex models

QTLtools: Delaneau et al. 2017 Nature Comm

* Pros: more flexible to other data types (methylation, proteins), supports mixed models, built-in
support for permutation tests, which help assess statistical significance

e Cons: slower than Matrix eQTL (permutations), more complex model specification

tensorQTL: Taylor-Weiner et al. 2019 Genome Biology

* Pros: GPU-based, can capture complex interactions between multiple variables, powerful for
datasets with rich, multi-dimensional data beyond just SNP-expression pairs.

* Cons: computationally intense, more complex to implement and interpret, requiring
knowledge of tensor decomposition methods, slow for basic eQTL analysis tasks.
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Where to obtain transcriptome datasets

CeD

Cpimalt L Rgrpainn Cvmnibagg

-

-
€S NCBI

SOHE | TEAETH | ST

GEC Publications | FAG

MIAME Emal GEOQ

WCEI = GED

Lubfiddeons. MTay- and fequence-based dats afe sccepted. Tools afe prownded
daownlpad expenments and curated gene expression profiles, More information =

ataSets |-C'-f.r-'.::F A

s G profdiles |

i

GEO accession ||

GEQ BLAST
rataSets pe Platfornis
oy : GED accessions ——; Sl

Saries

w Miew account
w Recover passwond

User id: |
Fassword: |

Mot lopged in | Login

Gene Expression Omnalbus: a public fundional genomics data repository supporting MIAME <comphant data

to help users guery and

| Site contents .
Public daia
Plathorms 7411
Samples 430,450
Senes 17,145
Dopcumentation

Overview | FAD | Find
Subnmggion Juide
Lankaned & abing
Jowrnal ctatiods
Programimalsd Aocess
DataSet dusters
GED announod ket
Data disclaarmner

GED tadf

Cuery & Browse @
Repositary browser
Submitters
SAZEmap

FTP e

GED Proflas

GED DataSets
Submit @

Mew acoount

fenn

m &l Dalabases s | Enar Texi Here

The ArrayEupress Archive = o detebase of funchions] gercmice expenmants wchdng gane axprassion where you cen guery and downlosd data
collecied 1o MIAME and MINSEQE standards. Gene Experession Atlas contains a subsel of owrated and re-aswotnied Archive dma which cam be
guered for individusl gene expression under dfferent biclcgical condiions sorces expenments.

Experiments Archive B .

11755 exparimants, 325077 assavs

Expeinmin!, laletd, Shnple and IBLLas BANGLESAE

(Gomr]

Browse sxpariments
Adcarsed qusry mierace

* Subrmtterfreviewer login ﬁ ArrayEupress Query Help

Mews E
@ 23 Ame 2010 s Glabal "Expressian Space”

ER-melsinki Team [ntegrates drray Dots from Thousands of
Sarpled b Hap Glansl Espredtdn SPace . mhale

& 0f Age 2010 - A glebal map of h gonn aEp

By ibegrating gens sxpressson data from & bengs vaneiy of
human tiies samples, & global mag of Faman gend axpreisesn
s produced. For mane details, please see the Nsture

B-m».‘.hg B]nﬂqg-.- [POF - 67EsE] or EMBL preis relesis [FDF -
1£B108],

. Gene Exprassion Atlas
at tha

Iefarmatest o ynavailall

Gened

Condtisng
wadoan e |

Fbht Expresfeon Allas Home

Links

LA N

HrrayEapresa User Survey

Heldp | Traiming | FAD | Citing

Subsmit Data (srray based snd re-peawenaing)
Frogrammalic Aconss | FIPF Access

Software Downleads and Statistics

EFD | Boconductor Package | Juality Hetrics
ArrayExpredd Sodntls Athviddsy Boaard

Fumnahiona | Genoirecs Group

Igtrasiins  ERfwdes  SecteciERl @ Ewciimen Beinfroates badtss 3010, ESe an Ousktebon of 59 Earaosad Mokswar Bk Labarigasy




Example of PEER Factors in Action

* Imagine you measure gene expression from 100 individuals and want to find
eQTLs. However, some individuals’ samples were processed on different
days, some had slightly degraded RNA, and some had more immune cells in

their blood than others.

* Without correction, these factors create systematic noise in your expression
data, making it harder to detect true genetic effects. PEER analyzes
expression patterns to find these hidden influences and removes them

before eQTL mapping.

» Before PEER correction: Expression levels for a gene are highly variable due
to technical and biological confounders.

 After PEER correction: The expression levels are adjusted, making genetic
associations easier to detect.



More details for TMM

Choose a Reference Sample
. One sample is selected as a reference (typically the sample with median total library size).
. All other samples are compared to this reference to compute M-values and A-values.

Compute M-values and A-values Per Sample

. For each gene, M-values (log-fold change) and A-values (average abundance) are computed per sample relative
to the reference.

. This means that each sample gets its own M-A plot when calculating its normalization factor.

Trim Low-Expression and Extreme M-Value Genes (Per Sample)

. Genes with low A-values (low abundance) or extreme M-values (large fold changes) are excluded from the scaling
factor calculation.

. This trimming is done for each sample separately.

Calculate the TMM Scaling Factor Per Sample
. The weighted mean of M-values is computed after trimming.
. This results in a TMM normalization factor for each sample.

Apply Normalization Factors Across All Samples
. Once all samples have their own TMM factor, the raw counts are adjusted accordingly across all samples.



	Expression Quantitative Trait Locus (eQTL) mapping and use in complex trait mapping
	Quantitative Traits
	Quantitative Trait Locus (QTL)
	Slide Number 4
	Genetic architecture of complex traits
	Overview of the human genome
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Regulatory variation and gene expression
	Expression quantitative trait locus (eQTL) mapping:�identify genomic regions affecting expression levels
	Slide Number 12
	mRNA quantification by array
	RNA Sequencing
	Very(!) general bulk RNA-seq workflow steps
	RNA-seq Quality Control
	Trimmed Mean of M-values (TMM) normalization
	Rank-based inverse normal transformation (INT)
	Factors influencing gene expression: known & unknown
	Controlling for sources of variation
	PEER (Probabilistic Estimation of Expression Residuals)
	PEER
	Considerations for PEER
	Expression quantitative trait locus (eQTL) mapping:�to identify genomic regions affecting expression levels
	Slide Number 25
	Whole-genome eQTL analysis is a GWAS �for expression of a gene
	Whole-genome eQTL analysis is an independent GWAS for expression of each gene
	Terminology
	More terminology	
	Cis- eQTL analysis: �test SNPs within a pre-defined distance of gene
	Multiple testing correction
	Early eQTL mapping
	Slide Number 33
	Slide Number 34
	Contexts of interest
	Slide Number 36
	Slide Number 37
	Trait-associated SNPs are more likely to be eQTLs
	Autoimmune and Infectious disease SNPs �from GWAS are eQTLs
	Geuvadis
	Slide Number 41
	Slide Number 42
	NIH Genotype-Tissue Expression (GTEx) Project
	Slide Number 44
	GTEx eQTLs
	Functional mechanisms of genetic regulatory effects
	Trans-eQTLs caused by cis-eQTLs?
	Slide Number 48
	Slide Number 49
	Colocalization GWAS + eQTLs: coloc
	GTEx Summary
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Moving forward
	eQTL resources
	eQTL software tools
	Extra slides
	Where to obtain transcriptome datasets
	Example of PEER Factors in Action
	More details for TMM

