
MAGMA practical - answers 
 
 
In this practical we will run through the three basic steps of performing a (MAGMA) gene-set 
analysis: annotation of SNPs to genes, gene analysis and subsequent gene-set analysis. 
Additionally, we will also perform a number of more advanced analyses using the generalized 
gene-set analysis framework that MAGMA provides, including conditional and joint gene-set 
analysis, as well as analysis of tissue-specific gene expression levels. Input files are provided 
alongside this instruction, and consist of: 
 
* the MAGMA v1.10 executable (magma) 
* the MAGMA manual (manual_v1.10.pdf) 
* a PLINK data set containing simulated GWAS data of a small but more or less realistic 
size  
 (magma_practical.bed, magma_practical.bim, magma_practical.fam) 
* a file containing 10 PCs to correct for population stratification, to be included as covariates 
in  
 the gene analysis (magma_practical.cov) 
* a gene-set file containing 1013 Reactome gene sets (reactome.sets) 
* a gene covariate file containing tissue-specific gene expression levels per gene for 11 
tissues,  
 simulated based on real expression data (tissue_gex.cov) 
* a gene definition file (NCBI37.3.gene.loc) 
* two additional auxiliary files (step3a.signif, step6a.partitioned.sets) 
 
Notes 
* To determine significance in this practical, we will use the traditional significance threshold   
 of 0.05. We will use Bonferroni correction to account for multiple testing. As a reminder, a  
 test is significant after Bonferroni correction when its p-value is smaller than 0.05/K, where  
 K is the number of tests you want to correct for. 
 
 
#### Step 0: set-up #### 
Log in to the remote computer. Create a new folder for today’s tutorial on gene- and pathway 
analysis called thursday_magma and copy the following files into that new folder. Use the following 
commands: 
 
mkdir thursday_magma 
cd thursday_magma 
cp /home/douglasw/Boulder2025/magma_session.zip . 
unzip magma_session.zip 
 
 



The PLINK data used in the practical is located in the /usr/local/data/ folder. We will reference this 
directly, rather than copy it. For readability, we will store the name of this folder in a variable DATA, 
as follows: 
 
DATA=/usr/local/data/ 
 
 
#### Step 1: annotation #### 
In this step we will annotate the SNPs in the data to genes. To do so, use the command: 
 
./magma --annotate window=1,0.5 --snp-loc $DATA/magma_practical.bim --gene-loc 
input/NCBI37.3.gene.loc --out output/step1 
 
This tells MAGMA to perform annotation, mapping SNPs to genes based on the transcription 
region of each gene. A SNP is mapped to a gene if it is located either inside the transcription 
region of the gene, or in a window around it. In this case we specify the window to reach up to 1 
kilobase upstream of the transcription start site, and 0.5 kilobases downstream of the transcription 
stop site. 
       The --snp-loc flag specifies which file to use to read the SNP locations from, and the --gene-
loc flag specifies the file that defines the gene locations. The latter contains one row per gene, 
with the values: gene ID, chromosome, transcription start and stop site (in base-pair position), 
genomic strand (this relates to the direction in which the gene is transcribed: “front to back” or 
“back to front”; for genes on the negative strand, the transcription start site is the higher of the two 
base-pair values), and official gene symbol. 
 
Running this command will create the file step1.genes.annot, containing the mapping of SNPs to  
genes. This will be used as an input file for the gene analysis. Each row in the file corresponds to 
a gene, containing: the gene ID, the mapping region (chromosome:start:stop), and then the list of 
SNP IDs mapped to that gene. A step1.log file will also be created, containing the output that was 
also printed to the screen. It provides you with useful information about the steps that were 
performed (such as the number of values read from input files or printed to output files), as well 
as any warnings and errors that occurred during execution. 
 
* Questions: 
 How many gene definitions were in the gene location file and how many genes have ended 
up in the .genes.annot file? What caused this difference, and how do you think this could affect 
the gene-set analysis? 
 
There were 19,427 gene definitions in the NCBI37.3.gene.loc file; of these, 13,772 ended up in 
the .genes.annot.txt file (these numbers can be obtained from the output log and .log file for the 
annotation). The reason the other 5,655 genes were not present in the output is that for those 
genes none of the SNPs in the data fell inside their transcription region or the +1kb/+0.5kb window 
around it. This is largely caused by the relatively small number of SNPs; in modern GWAS data, 



to which genotype imputation is also always applied, the number of dropped genes is usually only 
a few hundred. 

Since in a gene-set analysis the genes are the data points, this means that effectively the 
‘sample size’ for the gene-set analysis and therefore the power to detect effects will be lowered, 
and for some gene sets it may not be possible to perform an analysis because all or most of the 
genes they contain are among those 5,655.  
 
 
#### Step 2: gene analysis #### 
In this step we will run a gene analysis, which will perform a test of association for each gene and  
create the input file needed for all subsequent gene-set analyses. We will do so using the 
command: 
 
./magma --bfile $DATA/magma_practical --covar file=input/magma_practical.cov --gene-annot 
output/step1.genes.annot --out output/step2 
 
 
The --bfile flag specifies the prefix of a binary PLINK file set (.bed, .bim and .fam) that will be used 
for the analysis. Because we are using raw genotype data as input, the default principal 
components linear regression model will be used for the analysis. It will use the phenotype 
embedded in the .fam file as the dependent variable, and will also include the variables in the 
practical.cov file specified using the --covar flag as additional covariates. For genes on the X 
chromosome, gender will also be included as a covariate. The --gene-annot flag tells MAGMA 
which SNP-to-gene mapping file to use to determine which genes to analyse and what SNPs they 
contain. 
 
This command will create two output files: step2.genes.out and step2.genes.raw. The .genes.raw 
file contains all the information MAGMA needs to perform the analyses in the next steps. It is a 
plain- text file and you can inspect the content if you want, but it is not really designed to be read 
by people and all the relevant output is also in the .genes.out file. 
       The step2.genes.out file is the main gene analysis output file, and contains the following  
information: the gene ID (GENE), gene mapping region (CHR, START and STOP), number of 
valid SNPs mapped to the gene (NSNPS), number of principal components extracted from those 
SNPs (NPARAM), sample size for that gene (N; in this case it is the same for all genes, but it can 
vary if there are missing values in the data), the test statistic and corresponding p-value (ZSTAT 
and P), and the r-squared and adjusted r-squared values (RSQ and RSQ_ADJ; these reflect the 
proportion of variance in the phenotype explained by the SNPs in that gene). 
 
* Questions: 
 How many genes are significant after Bonferroni correction (correcting for the total  number 
of genes)? What percentage of the genes has a p-value below 0.05? How would you  interpret 
that, does this indicate a lot of genetic signal in the data to you?  
 
 



 Note: To answer this, you can either load the output file into R and manipulate the resulting 
dataframe, or you can use Linux commands instead. Remember that google is your friend here. 
Most coding problems you encounter have been solved by many others before. Dedicated forums 
usually contain all the answers to your questions.  
 
 Here are two stack overflow pages that can help you with this question:  
 - print values below a threshold: https://stackoverflow.com/questions/6848606/print-only-
values-smaller-than-certain-threshold-in-bash  
 - count lines in output: https://stackoverflow.com/questions/12457457/count-number-of-
lines-in-terminal-output 
 
There are two genes significant at the Bonferroni-corrected threshold of 𝛼𝛼 = 0.05 13,772⁄ =
3.63 × 10−6. There are 857 genes with a p-value smaller than 0.05, which i s 6.22% of the total. 
Since by chance we would expect about 5% if there was no genetic signal in the data at all, this 
suggests a modest amount of genetic signal in the data. Given that the sample size of the GWAS 
data is only 2,500 individual however, we would generally not expect it to be much higher than 
this due to lack of statistical power. 
 
# show significant genes, with header 
awk 'NR == 1 || $9 < 0.05/13772' output/step2.genes.out 
 
# count number of nominally significant genes  
awk 'NR > 1 && $9 < 0.05' output/step2.genes.out | wc -l 
 
 
#### Step 3a: basic competitive gene-set analysis #### 
Having completed the gene analysis step, we will now perform a competitive gene-set analysis: 
 
./magma --gene-results output/step2.genes.raw --set-annot input/reactome.sets --out 
output/step3a 
 
The --gene-results flag specifies which gene analysis .genes.raw output file to use to perform the  
analysis, and the --set-annot flag which gene-set definition file. In this case we use the 
reactome.sets file, which contains 1013 gene sets. These are almost all real gene sets taken from 
various databases, reflecting known biological pathways. A few additional sets were added for the 
purpose of this practical. The gene sets are stored by row, with each row containing the name of 
the gene set followed by the list of gene IDs of genes that belong in that set. 
       With this command MAGMA will analyse each gene set in the reactome.sets file, one at a 
time, using the linear regression framework explained in the lecture. As you will see in the output 
log, a number of data-level properties of genes (eg. number of SNPs mapped to a gene) are 
automatically included as covariates in the analyses. In practice not all the genes mapped to a 
gene set in the reactome.sets will actually be included when analysing that set, because they are 
not present in the .genes.raw file. This could be because those genes were not included in the 
gene definition file during annotation or had no SNPs mapped to them; it could also be because 

https://stackoverflow.com/questions/6848606/print-only-values-smaller-than-certain-threshold-in-bash
https://stackoverflow.com/questions/6848606/print-only-values-smaller-than-certain-threshold-in-bash
https://stackoverflow.com/questions/12457457/count-number-of-lines-in-terminal-output
https://stackoverflow.com/questions/12457457/count-number-of-lines-in-terminal-output


all of the SNPs mapped to that gene were either missing from the genotype data, or were invalid 
(eg. because they had too many missing values). 
 
This  command  will  produce  three  output  files:  step3a.gsa.out,  step3a.gsa.genes.out  and 
step3a.gsa.sets.genes.out.  The  step3a.gsa.out contains  the   analysis results for all the gene 
sets, and has the following information: the name of the gene set (VARIABLE and FULL_NAME; 
the VARIABLE column is a truncated version of the full name, this is intended to make the file 
easier to read when there are very long variable names), the variable type (TYPE; in this case, all 
are gene set variables), the number of genes included in the gene set for the analysis (NGENES), 
and the linear regression parameters (BETA, BETA_STD, SE) and corresponding p-value (P). 
The BETA value is the actual model parameter as discussed in the lecture (with SE its standard 
error). BETA_STD is a standardized coefficient, dividing BETA by the standard deviation of the 
gene set (generally larger for larger gene sets). This can be useful for comparing the effect size 
of different gene sets. 
       The step3a.gsa.genes.out file contains information per gene for all the genes used in the  
analysis, and is very similar to the .genes.out file from step 2. You won’t need it for this practical. 
The step3a.gsa.sets.genes.out file contains information per gene for significant gene sets 
(determined using Bonferroni correction for the total number of gene sets analyzed). It contains 
mostly the same columns as the step2.genes.out file, in separate blocks for each of the significant 
gene sets. This is useful for better understanding the genes and associations of those genes in a 
significant set. 
 
* Questions:  
 how many gene sets are significant in the gene-set analysis (after Bonferroni correction 
for the total number of analyzed sets)? How do you interpret a significant result for a gene set in 
a competitive analysis like this, what do you conclude from the fact that for example  
SIGNALING_BY_NOTCH1_T is significant? 
 
   Inspect the gene analysis results for the SIGNALING_BY_NOTCH1_T set in the 
.gsa.sets.genes.out.txt file.  
  
Are any of the genes significant at the genome-wide level (i.e. Bonferroni- corrected for the total 
number of  genes in the data)? What percentage of the genes has a p-value below 0.05? Is this 
higher than the percentage you find for the data set as a whole in step 2? Do you think the genes 
with p-value greater than 0.05 still contribute to the gene-set association? 
 
There are ten gene sets significant at the Bonferroni-corrected threshold of 𝛼𝛼 = 0.05 1,013⁄ =
4.94 × 10−5. A significant result in a competitive gene-set analysis means that the mean genetic 
association of genes in the gene set is higher than the mean genetic association among all the 
other genes in the data (probably; it could of course still be a type 1 error). We would conclude 
from this that (in this example) there is evidence that the Notch1 signaling pathway plays a role in 
the genetics of our phenotype. 
 None of the genes in the gene set are significant, the lowest p-value among them is 
3.48 × 10−4. However, 28.3% (15 out of 53) of genes in the set has a p-value below 0.05, much 



more than the 6.22% found in the data as a whole. This shows that the level of association is 
indeed much higher inside the gene set, than in the rest of the genes. The mean gene p-value in 
the data is 0.49. The mean p-value among the genes in the set, even when looking at only those 
with p-values greater than 0.05, is still lower than this, at 0.41. This suggests that at least some of 
the genes with p-values greater than 0.05 are still positively contributing to the gene-set 
association. 
 
# show significant gene sets, with header 
awk '$1 != "#" && ($7 == "P" || $7 < 0.05/1013)' output/step3a.gsa.out 
 
# count number of genes in NOTCH1 set with p-value < 0.05  
awk '$1 == "_SET1_" && $10 != "P" && $10 < 0.05' output/step3a.gsa.sets.genes.out | wc -l 
 
 
#### Step 3b: conditional gene-set analysis #### 
The reactome.sets file contains a very strongly associated gene-set helpfully labelled  
CRITICAL_PATHWAY. Gene sets often overlap with each other, and it is possible that some gene 
sets are significant simply because they overlap with this CRITICAL_PATHWAY. We will therefore 
run a conditional gene-set analysis to test whether this is the case here for any of the other 
significant gene sets. The command to do so is: 
 
./magma --gene-results output/step2.genes.raw --set-annot input/reactome.sets --model 
analyse=file,aux/step3a.signif condition=CRITICAL_PATHWAY --out output/step3b 
 
 
The ‘analyse’ option of the --model flag tells MAGMA to only analyse a selection of gene sets, in 
this  case all the gene sets listed in the step3a.signif file. This file lists all the significant gene sets 
from step  3a, for convenience this has already been created for you. With the ‘condition’ option 
we tell MAGMA  that CRITICAL_PATHWAY should be included as an additional covariate in the 
gene-set analysis. As such, for each of the gene sets to be analysed (ie. those listed in 
step3a.signif), MAGMA will use a linear regression model containing two gene set variables: the 
gene set to be analysed, and the  CRITICAL_PATHWAY gene set. 
 
The output files from this step are of the same kind as in step3a, the only difference is that now 
the.gsa.out file contains an additional MODEL column. Each row still corresponds to the results of 
a single gene set, so this MODEL column tells you which rows belong together in the same 
regression model. The parameter estimates and p-value therefore reflect the strength of the gene 
set effect when the other gene sets in the same model are taken into account. So for example, in 
this case model 1 will contain both CRITICAL_PATHWAY and SIGNALING_BY_NOTCH1_T, and 
the results for the SIGNALING_BY_NOTCH1_T reflect its effect conditional on 
CRITICAL_PATHWAY. Keep in mind that these multi-variable models are symmetrical: the 
CRITICAL_PATHWAY result for model 1 thus reflects the effect of CRITICAL_PATHWAY 
conditional on SIGNALING_BY_NOTCH1_T. 
When interpreting results from a conditional analysis, it is always useful to compare the conditional  



association of a gene set with its marginal association (ie. the association that the variable had 
before conditioning on the other gene set). This tells you how much of that marginal association 
could beexplained by the other gene set. To do so we could go back to the step 3a results file, but 
we can also just rerun that analysis with only the gene sets of interest included: 
 
./magma --gene-results output/step2.genes.raw --set-annot input/reactome.sets --model 
analyse=file,aux/step3a.signif --out output/step3c 
 
 
* Questions:  
 how does conditioning on the CRITICAL_PATHWAY gene set affect the associations of 
the  other gene sets? How many of those gene sets remain significant (at the original Bonferroni-
corrected threshold) when the CRITICAL_PATHWAY effect is taken into account? What would 
you conclude about  the gene sets that are no longer significant? Does the CRITICAL_PATHWAY 
remain significant in all cases? How do you interpret the results from models in which it does not? 
 
 
For six of the other gene sets, their p-value when conditioning on CRITICAL_PATHWAY is no 
longer significant nor even below 0.05 anymore. For 5 of those 6 the p-value for 
CRITICAL_PATHWAY conditioned on those sets is still significant. This suggests that for those 
five gene sets, their original competitive p-value is actually the result of confounding: the 
associations for these gene sets found in step 3a is most likely entirely caused by the fact that 
they overlap to a considerable degree with CRITICAL_PATHWAY, which has a strong association; 
the sets do not have a genuine, biologically relevant association. 
 For the model with ANOTHER_CRITICAL_PATHWAY, the associations of this set and 
CRITICAL_PATHWAY both disappear entirely. This can happen if there is strong overlap between 
gene sets, and suggests that the two gene sets are tapping into the same association signal and 
the model cannot determine which of the two is the more likely source. The stronger the overlap, 
the greater the change in p-value; in this case the two gene sets almost completely overlap, which 
explains why in this analysis their originally very low p-values have disappeared entirely. The 
conclusion we would draw here is that there is a single strong association signal, but we cannot 
determine which of the two sets is most likely to have the true association. We therefore keep 
them both, and only interpret them as a pair. 
 For three of the gene sets the p-value doesn’t really change when conditioning on 
CRITICAL_PATHWAY. For these, we can conclude that their associations are independent of the 
CRITICAL_PATHWAY association. 
 
 
#### Step 4a: basic tissue expression analysis #### 
Continuous gene properties can be analyzed in much the same way as gene  
sets. In this tutorial we will analyse gene expression values (on a log2(RPKM) scale, higher values  
mean stronger expression) for different tissue types, which can provide insight into the tissue-  
specificity of our genetic associations. This analysis is run as follows: 
 



./magma --gene-results output/step2.genes.raw --gene-covar input/tissue_gex.cov --model 
direction-covar=positive --out output/step4a 
 
 
The --gene-covar flag is used to specify a file containing continuous gene properties, in this case 
the tissue_gex.cov file containing gene expression values. Each row in the file corresponds to a 
gene, with the gene ID listed in the first column followed by the all the gene expression variables 
in subsequent columns. The file contains expression variables for eleven different tissues, as well 
as a twelfth variable containing the mean expression across all the tissues. 
        
As when analysing the gene sets, this command will analyse each of the expression variables  
one at a time. The ‘direction-covar’ option sets the direction of the test that is performed. In this 
case we are testing whether the effect of the expression variable is positive. 
 
The command will generate a step4a.gsa.out output file, which has all the same columns as the  
.gsa.out.txt file from step 3a. Because the variables are continuous, the NGENES column is set 
to the total number of genes in the analysis. You will see that this is actually a few hundred genes 
less than before, this is because for some of the genes no gene expression data was available 
(this is quite common with such data). Those genes were therefore discarded from the analysis. 
 
* Questions:  
 how do you interpret a significant result for a continuous gene property in an analysis like  
 this, what do you conclude from the fact that for example BRAIN_EXPR is significant? We 
performed a one-sided test for positive association, do you think testing for negative associations 
would also be useful? How would you interpret a significant negative association for one of these 
tissue expression variables? 
 
        How many tissue expression levels are significantly (positively) associated with the genetic  
 associations (after Bonferroni correction for all tissue variables)? Taking all the results 
together, do you  think they are very informative about the phenotype? 
 
BRAIN_EXPR reflects gene expression measured in the brain, with higher scores denoting 
stronger expression. We would therefore interpret the positive association for BRAIN_EXPR as 
suggesting that genes tend to have stronger genetic associations with the phenotype the more 
strongly they are expressed in the brain. Had the association been negative (and significant), we 
would have interpreted this as suggesting that genes tend to have weaker genetic associations 
the more strongly brain-expressed they are (or equivalently, that they tend to have stronger 
genetic associations the more weakly brain expressed they are). From a biological perspective 
such a negative effect for an expression variable doesn’t seem very plausible, and the one-sided 
positive test is probably preferable to improve power to detect positive effects. 
 All the tissues except SKIN_EXPR are significant at the threshold of 𝛼𝛼 = 0.05 12⁄ =
0.00417, and so is the overall expression effect AVERAGE_EXPR. Although it is clear from this 
that gene expression plays a role, because almost everything is significant we cannot draw any 
more specific conclusions than that.  



 
 
#### Step 4b: conditional tissue expression analysis #### 
As with the gene-set analysis, conditional analysis can again be used to obtain more specificity in 
our results. In this case, the significance of AVERAGE_EXPR in the previous step show us that 
in general, more strongly expressed genes also tend to be more strongly associated with our 
phenotype. This means that associations found for the specific tissue expression levels may 
simply reflect this general relation, rather than saying anything specifically about the expression 
in that tissue type. In this step we will therefore condition on the average gene expression level 
per gene to obtain associations that are specific to individual tissue expression levels: 
 
./magma --gene-results output/step2.genes.raw --gene-covar input/tissue_gex.cov --model 
direction-covar=positive condition-hide=AVERAGE_EXPR --out output/step4b 
 
 
In this case we are using the ‘condition-hide’ option rather than ‘condition’, this suppresses output 
for AVERAGE_EXPR in the step4b.gsa.out file. This does not otherwise affect the results of the 
analysis, but since we are not very interested here in the output for AVERAGE_EXPR itself in 
these models for now it is helpful for making the output file easier to read. 
 
* Questions:  
 how many tissue expression levels remain significant (at the original threshold) now that  
 we have accounted for the overall average effect of gene expression? Taken together, 
what do you conclude from the results of step 4a and 4b? 
 
Once we condition on AVERAGE_EXPR, only BRAIN_EXPR remains significant; effects for the 
other tissues have entirely disappeared, with the lowest p-value among them still well above 0.05. 
The most likely interpretation of the results from 4a and 4b is that there are two real effects: an 
overall positive effect of gene expression in AVERAGE_EXPR, and an additional positive brain-
specific expression effect in BRAIN_EXPR. Associations found in 4a for the other tissues are the 
result of confounding. These were not actually specific to those tissues, but simply reflected the 
overall gene expression effect (as the tissue-specific expression variables are all strongly 
correlated with AVERAGE_EXPR, and can therefore easily pick up on that overall effect).  
 
 
#### Step 5: joint analysis of gene sets and tissue expression levels #### 
Confounding and overlap of association signals can of course also happen between gene sets 
and continuous gene properties, and with gene expression variables it is not uncommon for this 
to happen. For example, for psychiatric phenotypes like schizophrenia there is often a strong 
association with  
brain-specific expression levels. Any gene set that happens to contain many strongly brain-
expressed genes is therefore more likely to be significant as well, even if the underlying pathway 
or biological process has nothing to do with schizophrenia. We can again use conditional analysis 
to account for this. 



      For our example data we will do so in two steps, first correcting for the effect of average  
expression, then additionally correcting for the effect of brain-specific expression as well. 
 
./magma --gene-results output/step2.genes.raw --set-annot input/reactome.sets --gene-covar 
input/tissue_gex.cov --model analyse=file,aux/step3a.signif condition-hide=AVERAGE_EXPR --
out output/step5a 
 
./magma --gene-results output/step2.genes.raw --set-annot input/reactome.sets --gene-covar 
input/tissue_gex.cov --model analyse=file,aux/step3a.signif condition-
hide=AVERAGE_EXPR,BRAIN_EXPR --out output/step5b 
 
 
We are only reanalyzing the gene sets that were previously significant, as the aim is only to 
investigate whether those significant associations may have been the result of confounding 
caused by gene expression effects. We are again using the ‘condition-hide’ option to make the 
output files a bit tidier, since we are only interested now in what happens to the associations of 
the gene sets, not those of the expression variables. 
 
* Questions: how strongly are the gene-set p-values affected by conditioning on the general 
gene expression levels? And when you also condition on the brain-specific expression? How 
would you interpret these results? 
 
In this case the gene-set p-values barely change at all compared to step 3a/3c, in either of the two 
conditional analyses. This indicates that the associations in these gene sets are independent of 
the gene expression effects (ie. here we have essentially ruled out confounding by gene 
expression). 
 


