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Research Question 1

Proportion of phenotypic variance

Explained by genome-wide common genetic variants 

 SNP Heritability





Proportion of phenotypic covariance of two traits

Explained by genome-wide common genetic variants

Genetic Covariance

Research Question 2



Slope estimates heritability

LD Score Regression  
SNP Heritability (Recap)

Trait 1
Regress GWAS chi-square on LD Scores 

Across all SNPs (not just significant ones)



𝐸 𝜒𝑗
2| 𝓁𝑗 =

𝑁ℎ2

𝑀
𝓁𝑗 + 𝑁a + 1

LD Score Regression 
SNP Heritability 

Trait 1
The expectation for the GWAS 𝜒2 
 given the LD score for the SNP j

Note: 𝜒𝑗
2 is equivalent to 𝑍𝑗

2.
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𝑀
𝓁𝑗 + 𝑁a + 1

LD Score Regression 
SNP Heritability 

Trait 1

The Independent Variable

The LD score of SNP j.

𝓁𝑗 =  σ𝑖 𝑟𝑖𝑗 
2  



𝐸 𝜒𝑗
2| 𝓁𝑗 =

𝑁ℎ2

𝑀
𝓁𝑗 + 𝑁a + 1

LD Score Regression 
SNP Heritability 

Trait 1

The Regression Slope

h2 = SNP-based heritability

N = Sample size

M = Number of SNPs used in the LDSC analysesSlope estimates heritability



𝐸 𝜒𝑗
2| 𝓁𝑗 =

𝑁ℎ2

𝑀
𝓁𝑗 + 𝑁a + 1

LD Score Regression 
SNP Heritability 

Trait 1

The Intercept

N = Sample size

a = Confounding biases 

Slope estimates heritability
Under no confounding (a ≈ 0), intercept ≈ 1.



LD Score Regression 
SNP Heritability of 2 Traits

Trait 1

Trait 2
For two traits, we can estimate the 
respective SNP heritability.



LD Score Regression 
Genetic Covariance Between 2 Traits

Trait 1

Trait 2

RG

We can also estimate genetic covariance 
(“co-heritability”) from the product of 
the Z-scores for the two traits.

Here,
𝜒2 = 𝑍1 ×  𝑍2



𝐸 𝜒2| 𝓁𝑗 =
𝑁ℎ2

𝑀
𝓁𝑗 + 𝑁a + 1

Univariate LDSC

The expectation for the GWAS 𝜒2 (= 𝑍2) of one trait
given the LD score for the SNP j



Bivariate LDSC

Univariate LDSC: 𝐸 𝜒2| 𝓁𝑗 =
𝑁ℎ2

𝑀
𝓁𝑗 + 𝑁a + 1

𝐸 𝑧1𝑗𝑧2𝑗 |𝓁𝑗 =
𝑁1𝑁2 𝜌𝑔

𝑀
𝓁𝑗 + 𝑁1𝑁2𝑎 +

𝜌𝑁𝑠

𝑁1𝑁2



The expectation for the product of Z-statistics of two traits 
 given the LD score for the SNP j

Bivariate LDSC

𝐸 𝑧1𝑗𝑧2𝑗 |𝓁𝑗 =
𝑁1𝑁2 𝜌𝑔

𝑀
𝓁𝑗 + 𝑁1𝑁2𝑎 +

𝜌𝑁𝑠

𝑁1𝑁2



The “independent” variable is the same as before
 - LD score for a given SNP j

Bivariate LDSC

𝐸 𝑧1𝑗𝑧2𝑗 |𝓁𝑗 =
𝑁1𝑁2 𝜌𝑔

𝑀
𝓁𝑗 + 𝑁1𝑁2𝑎 +

𝜌𝑁𝑠

𝑁1𝑁2



Bivariate LDSC

𝝆𝒈 = Genetic covariance

𝑁1𝑁2 = Square root of the sample sizes of trait 1 and trait 2

M = the number of SNPs

𝐸 𝑧1𝑗𝑧2𝑗 |𝓁𝑗 =
𝑁1𝑁2 𝜌𝑔

𝑀
𝓁𝑗 + 𝑁1𝑁2𝑎 +

𝜌𝑁𝑠

𝑁1𝑁2



𝐸 𝑧1𝑗𝑧2𝑗 |𝓁𝑗 =
𝑁1𝑁2 𝜌𝑔

𝑀
𝓁𝑗 + 𝑁1𝑁2𝑎 +

𝜌𝑁𝑠

𝑁1𝑁2

Bivariate LDSC intercept
Protects against bias from shared population stratification & sample overlap

𝑁1𝑁2𝑎 → Shared sources of confounding across the two GWASs. 

𝜌𝑁𝑠

𝑁1𝑁2
 → Phenotypic correlation (𝜌) among overlapping participant samples  

  weighted by proportional sample overlap (
𝑁𝑠

𝑁1𝑁2
) 

Bivariate LDSC



𝐸 𝑧1𝑗𝑧2𝑗 |𝓁𝑗 =
𝑁1𝑁2 𝜌𝑔

𝑀
𝓁𝑗 + 𝑁1𝑁2𝑎 +

𝜌𝑁𝑠

𝑁1𝑁2

Bivariate LDSC intercept
Protects against bias from shared population stratification & sample overlap

Bivariate LDSC

Under no shared confounding (a ≈ 0) and no sample overlap (𝑁𝑠 ≈ 0), 

bivariate LDSC intercept ≈ 0.



Note: 
We assume identical LD scores for both traits.
So, both GWAS samples must have similar LD structure.

Therefore, only valid for within-ancestry analyses.

Bivariate LDSC

𝐸 𝑧1𝑗𝑧2𝑗 |𝓁𝑗 =
𝑁1𝑁2 𝜌𝑔

𝑀
𝓁𝑗 + 𝑁1𝑁2𝑎 +

𝜌𝑁𝑠

𝑁1𝑁2



𝑟𝑔 =
𝜌𝑔

ℎ𝑌1
2 ℎ𝑌2

2

Genetic Correlation

𝐸 𝑧1𝑗𝑧2𝑗 |𝓁𝑗 =
𝑁1𝑁2 𝝆𝒈

𝑀
𝓁𝑗 + 𝑁1𝑁2𝑎 +

𝜌𝑁𝑠

𝑁1𝑁2

The amount of genetic overlap on the standardized scale.



Example
 Across Psychiatric Disorders

The Brainstorm Consortium et al. (2018). DOI:10.1126/science.aap8757



Example
 Between Psychiatric & Neurological Disorders

The Brainstorm Consortium et al. (2018). DOI:10.1126/science.aap8757



Example
 Correlations of Psychiatric & Neurological Disorders with 

Behavioral-Cognitive Traits

The Brainstorm Consortium et al. (2018). DOI:10.1126/science.aap8757



Key Points

• LDSC allows us to estimate the genetic correlation between traits 

using only the GWAS sum stats.

• Traits need not be assessed in the same sample.

• Estimates are robust to bias from (shared) population stratification 

and sample overlap.

• Both GWASs need to be performed in samples with similar genetic 

ancestry



Key Points

We can estimate genetic correlations 

• Between quantitative traits

• Between binary traits

• Between quantitative and binary traits

For binary traits, the heritability may be estimated on

- Observed scale

- Liability scale



Liability Threshold Model

• Individuals have a latent continuous liability 

underlying complex binary traits.

• The liability is assumed to have a normal 

distribution in the population, with a mean of 0 

and a variance of 1. 

Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15, 765–776 (2014). 
https://doi.org/10.1038/nrg3786 

https://doi.org/10.1038/nrg3786


Liability Threshold Model

There exists a certain threshold, t, on the liability 

scale.

• All individuals above this threshold exhibit the 

trait. [“affected/cases”]

• All individuals below this threshold do not 

exhibit the trait. [“unaffected/controls”] 

Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15, 765–776 (2014). 
https://doi.org/10.1038/nrg3786 

https://doi.org/10.1038/nrg3786


Liability Threshold Model

Population prevalence (K) = Area under the 

distribution curve to the right of the threshold, t.

If we know the population prevalence, we may 

estimate t.

• By using the probit function.

𝑝𝑟𝑜𝑏𝑖𝑡 𝑝 =  Φ−1(𝑝)

Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15, 765–776 (2014). 
https://doi.org/10.1038/nrg3786 

NB: probit is the inverse of the cumulative distribution 

function of the standard normal distribution (ɸ).

https://doi.org/10.1038/nrg3786


Image credit: https://en.wikipedia.org/wiki/Probit#/media/File:Probit_plot.svg

(𝟏 − 𝐏𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐩𝐫𝐞𝐯𝐚𝐥𝐞𝐧𝐜𝐞)

𝐋
𝐚

𝐭𝐞
𝐧

𝐭 
𝐋

𝐢𝐚
𝐛

𝐢𝐥
𝐢𝐭

𝐲

𝟏 − 𝐊

t 𝐭 = 𝚽−𝟏(𝟏 − 𝐊)

From population prevalence of a binary disease status
To threshold on the latent continuous liability



Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15, 
765–776 (2014). https://doi.org/10.1038/nrg3786 

Observed Scale

• Multiplicative

• Non-Linear

The observed disease risk 

(prevalence among 

individuals with that 

genotype) increases 

multiplicatively.

Observed scale (visualized under the liability threshold model)

https://doi.org/10.1038/nrg3786


Observed scale to Liability scale

Liability Scale

• Additive

• Linear

The mean latent liability 

(among individuals with 

that genotype) increases 

additively.

Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15, 
765–776 (2014). https://doi.org/10.1038/nrg3786 

Observed Scale

• Multiplicative

• Non-Linear

The observed disease risk 

(prevalence among 

individuals with that 

genotype) still increases 

multiplicatively.

https://doi.org/10.1038/nrg3786


Lee et al. (2011)

“In case-control studies 
the proportion of cases is 

usually (much) larger than 
the prevalence in the 

population yet estimates 
of genetic variation are 

most interpretable if 
they are not biased by 
this ascertainment.”



From observed-scale heritability 
To liability-scale heritability

Lee, S. H., Wray, N. R., Goddard, M. E., & Visscher, P. M. (2011). Am J Hum 
Genet, 88(3), 294–305. https://doi.org/10.1016/j.ajhg.2011.02.002 

𝒉𝒍
𝟐 = ෡𝒉𝒐

𝟐
𝑲 (1 − 𝑲)

𝑧2

𝑲(1 − 𝑲)

𝑷(1 − 𝑷)

We need to specify two parameters:

- Sample prevalence (P)

- Population prevalence (K)

- Note that z is computed from K, so need not be specified.

https://doi.org/10.1016/j.ajhg.2011.02.002


Lee, S. H., Wray, N. R., Goddard, M. E., & Visscher, P. M. (2011). Am J Hum 
Genet, 88(3), 294–305. https://doi.org/10.1016/j.ajhg.2011.02.002 

The first part of this equation 
converts the heritability estimate 

to the liability scale.

From observed-scale heritability 
To liability-scale heritability

𝒉𝒍
𝟐 = ෡𝒉𝒐

𝟐
𝑲 (1 − 𝑲)

𝑧2

𝑲(1 − 𝑲)

𝑷(1 − 𝑷)

https://doi.org/10.1016/j.ajhg.2011.02.002


Lee, S. H., Wray, N. R., Goddard, M. E., & Visscher, P. M. (2011). Am J Hum 
Genet, 88(3), 294–305. https://doi.org/10.1016/j.ajhg.2011.02.002 

𝒉𝒍
𝟐 = ෡𝒉𝒐

𝟐
𝑲 (1 − 𝑲)

𝑧2

𝑲(1 − 𝑲)

𝑷(1 − 𝑷)

The second part of this equation 
performs the correction for 

ascertainment. 

From observed-scale heritability 
To liability-scale heritability

https://doi.org/10.1016/j.ajhg.2011.02.002


NOTE!

Conversion to the liability scale influences the estimates of

• SNP Heritability

• Genetic Covariance

However, it DOES NOT influence

• Genetic Correlation

• Both the numerator and the denominator are on the same scale.

• LDSC Intercept

𝑟𝑔 =
𝜌𝑔

ℎ𝑌1
2 ℎ𝑌2

2



The ascertainment calculated using total cases and controls is not the 
same as ascertainment calculated within each cohort.

Cohort-specific ascertainment in Meta-Analysis

𝒉𝒍
𝟐 = ෡𝒉𝒐

𝟐
𝑲 (1 − 𝑲)

𝑧2

𝑲(1 − 𝑲)

σ𝑖 𝑷𝒊 1 − 𝑷𝒊

We need to calculate the sum of 
the sample prevalence of each 

contributing cohort.

https://github.com/GenomicSEM/GenomicSEM/wiki/2.1-Calculating-Sum-of-Effective-Sample-Size-and-Preparing-GWAS-Summary-Statistics

See GenomicSEM Wiki page for more details

https://github.com/GenomicSEM/GenomicSEM/wiki/2.1-Calculating-Sum-of-Effective-Sample-Size-and-Preparing-GWAS-Summary-Statistics


Effective Sample Size (𝑁𝐸𝑓𝑓)

𝑁𝐸𝑓𝑓 = 4𝑷 1 − 𝑷 𝑵

P = Sample prevalence
N = Total sample size (cases + controls)

It is the sample size we would have had if the study design was balanced 
(50% cases and 50% controls).

To account for cohort-specific ascertainment in GWAS meta-analysis, 
calculate the effective sample size of each cohort and then sum across 
cohorts.



Why Are Two Traits Genetically Correlated?



Why Are Two Traits Genetically Correlated?

Trait 1 Trait 2

Trait 1 has a causal effect on Trait 2
(Vertical Pleiotropy)

Genetic
Effects



Why Are Two Traits Genetically Correlated?

Trait 1 Trait 2Trait 2

Trait 1 has a causal effect on Trait 2
(Vertical Pleiotropy)

Trait 1

Genetic
Effects

Genetic
Effects

Genetic effects influence Trait 1 and Trait 2
(Horizontal Pleiotropy)



Why Are Two Traits Genetically Correlated?

Trait 1 Trait 2Trait 2

Trait 1 has a causal effect on Trait 2
(Vertical Pleiotropy)

Trait 1

Genetic
Effects

Genetic
Effects

Genetic effects influence Trait 1 and Trait 2
(Horizontal Pleiotropy)

May be due to an unmeasured (or yet unknown) 
intermediate trait

→ Causal effects on both Trait 1 and Trait 2



Why Are Two Traits Genetically Correlated?

Trait 1 Trait 2Trait 2

Trait 1 has a causal effect on Trait 2
(Vertical Pleiotropy)

Trait 1

Genetic
Effects

Genetic
Effects

Genetic effects influence Trait 1 and Trait 2
(Horizontal Pleiotropy)

Further research to test these hypotheses, e.g.,

• Mendelian Randomization

• Genomic SEM



Practical for Continuous Traits



Only TWO Primary Steps to Run LDSC

We are using {GenomicSEM} library in R to run LDSC

1. Munge the summary statistics: munge()

 munge = convert raw data from one form to another

2. Run LD-Score Regression: ldsc()



We will be running LDSC for both European and East 
Asian Samples

Using European GWAS sumstats for:

Height (Yengo et al., 2022)

BMI from GIANT + UKB

Using East Asian GWAS sumstats for:

Height (Yengo et al., 2022)

BMI from Biobank Japan



munge .log file
The two sum stats files
are munged separately

BMI

Height



ldsc .log file
Three parts (for two traits)

[1/3]



ldsc .log file
Three parts (for two traits)

[2/3]



ldsc .log file
Three parts (for two traits)

[3/3]



ldsc .log file

(Standardized) Genetic Correlation printed at the end of the log file.







Practical for Binary Traits



We will be estimating LDSC for European Ancestry Samples for 
Schizophrenia and Bipolar



The ldsc function takes 6 arguments:

1.traits: a vector of file names/paths to files which point to the munged 
sumstats.

2.sample.prev: A vector of sample prevalences of length equal to the 
number of traits. Enter 0.5 if inputting [sum of] effective N. 

3.population.prev: A vector of population prevalences. 

4.ld: A folder of LD scores used as the independent variable in LDSC 

5. wld: A folder of LDSC weights (Typically same folder as specified for 
the ld argument) 

6. trait.names: The trait names. 



The ldsc function takes 6 arguments:

1.traits: a vector of file names/paths to files which point to the munged 
sumstats.

2.sample.prev: A vector of sample prevalences of length equal to the 
number of traits. Enter 0.5 if inputting [sum of] effective N. 

3.population.prev: A vector of population prevalences. 

4.ld: A folder of LD scores used as the independent variable in LDSC 

5. wld: A folder of LDSC weights (Typically same folder as specified for 
the ld argument) 

6. trait.names: The trait names. 





Practical Working Directory

cd  ~/practicals/3.2.GeneticCorrelation_MadhurSingh/final

Qualtrics link

This link is also on top of the R script: LDSC_Practical2_GeneticCorrelation.R

https://qimr.az1.qualtrics.com/jfe/form/SV_781CgwvIn2YqyqO  

59

https://qimr.az1.qualtrics.com/jfe/form/SV_781CgwvIn2YqyqO
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