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Research Question 1
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Proportion of phenotypic variance

Explained by genome-wide common genetic variants

SNP Heritability






Research Question 2
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Proportion of phenotypic covariance of two traits

Explained by genome-wide common genetic variants

Genetic Covariance



LD Score Regression
SNP Heritability (Recap)

Chi square

| Trait 1

| | | | | |
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LD Score

Slope estimates heritability

Regress GWAS chi-square on LD Scores

Across all SNPs (not just significant ones)



LD Score Regression
SNP Heritability

The expectation for the GWAS y?
given the LD score for the SNP j
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Trait 1
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Note: y,* is equivalent to (Z))”.



LD Score Regression
SNP Heritability

Trait 1

, Nh?
E[)(j |£j] =7€j + Na+ 1

Chi

The Independent Variable

0 20 40 60 8 100 The LD score of SNP .

LD Score

/ tj = Zirii'



LD Score Regression
SNP Heritability

Chi square

Trait 1

10
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Slope estimates heritability

, Nh?
E[)(j |£]-] =7{’j + Na+ 1

The Regression Slope

h? = SNP-based heritability
N = Sample size

M = Number of SNPs used in the LDSC analyses



LD Score Regression
SNP Heritability

Trait 1

Chi square

| | | | | |
0 20 40 60 80 100
LD Score

Slope estimates heritability

, Nh?
E[)(j |£j] =7{’j + Na+ 1

The Intercept

N = Sample size

a = Confounding biases

Under no confounding (a = 0), intercept = 1.



LD Score Regression
SNP Heritability of 2 Traits

: |Trait1
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For two traits, we can estimate the
respective SNP heritability.



LD Score Regression
Genetic Covariance Between 2 Traits

Trait 1
. Trait 2 . . .
] R We can a.also‘e.stlmate genetic covariance
(“co-heritability”) from the product of
g i the Z-scores for the two traits.
M Here,
S x:=2Z, X Z,

0 20 40 60 80 100
LD Score



Univariate LDSC
, Nh?
E[X\fj]=7€j+Na+1

The expectation for the GWAS y? (= Z?) of one trait
given the LD score for the SNP j



Bivariate LDSC

. . 2 Nh?
Univariate LDSC: E[)( | fj] = 7@- + Na+1




Bivariate LDSC

E[lesz "gj]: €]+\/N1N2a |

The expectation for the product of Z-statistics of two traits
given the LD score for the SNP j




Bivariate LDSC
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The “independent” variable is the same as before
- LD score for a given SNP j



Bivariate LDSC
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P4 = Genetic covariance

\/NlNz = Square root of the sample sizes of trait 1 and trait 2
M = the number of SNPs



Bivariate LDSC
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Bivariate LDSC intercept
Protects against bias from shared population stratification & sample overlap

\/N:N,a => Shared sources of confounding across the two GWASs.

ol 5 Phenotypic correlation (o) among overlapping participant samples

JN{N,

weighted by proportional sample overlap (\/7
1 2



Bivariate LDSC
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Bivariate LDSC intercept
Protects against bias from shared population stratification & sample overlap

Under no shared confounding (a = 0) and no sample overlap (N = 0),

bivariate LDSC intercept = 0.



Bivariate LDSC
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Note:
We assume identical LD scores for both traits.

So, both GWAS samples must have similar LD structure.

Therefore, only valid for within-ancestry analyses.




Genetic Correlation
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The amount of genetic overlap on the standardized scale.
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Example
Across Psychiatric Disorders

Correlation  P-value

Anorexia nervosa
Anxiety disorder
Bipolar disorder
Schizophrenia
Tourette Syndrome

ASD
OCD

ADHD

1
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! 0.6
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The Brainstorm Consortium et al. (2018). DOI:10.1126/science.aap8757



Example
Between Psychiatric & Neurological Disorders
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Example
Correlations of Psychiatric & Neurological Disorders with
Behavioral-Cognitive Traits
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Key Points

* LDSC allows us to estimate the genetic correlation between traits
using only the GWAS sum stats.

* Traits need not be assessed in the same sample.

e Estimates are robust to bias from (shared) population stratification
and sample overlap.

* Both GWASs need to be performed in samples with similar genetic

ancestry



Key Points

We can estimate genetic correlations
* Between quantitative traits
* Between binary traits

* Between quantitative and binary traits

For binary traits, the heritability may be estimated on

- Observed scale

- Liability scale



Liability Threshold Model

* |Individuals have a latent continuous liability

underlying complex binary traits. \ Unaffected Affected

. o e . 0.4—
* The liability is assumed to have a normal
e : : 0.3
distribution in the population, with a mean of 0 _
- 2 02-
and a variance of 1. ks
o=
0 T I | L
—4 -2 0 2 4

Liability

Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15, 765—-776 (2014).
https://doi.org/10.1038/nrg3786



https://doi.org/10.1038/nrg3786

Liability Threshold Model

There exists a certain threshold, t, on the liability

scale. Unaffected Affected
e All individuals above this threshold exhibit the iy

trait. [“affected/cases”] s e
* All individuals below this threshold do not L

exhibit the trait. [“unaffected/controls”] 0_4 i i ]

Liability

Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15, 765—-776 (2014).
https://doi.org/10.1038/nrg3786
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Liability Threshold Model

Population prevalence (K) = Area under the

distribution curve to the right of the threshold, t. . Unaffected y Aficcied .

0.4
If we know the population prevalence, we may "

estimate t. § w1
e By using the probit function. o

. _ -1 0 | T I L

pTOblt(p) = @ (p) —4 =) 0 2 4

Liability |

NB: probit is the inverse of the cumulative distribution

Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15, 765—-776 (2014).
https://doi.org/10.1038/nrg3786 function of the standard normal distribution (¢).



https://doi.org/10.1038/nrg3786

From population prevalence of a binary disease status
To threshold on the latent continuous liability

t=90"1(1-K)

=

probit
o

Latent Liabili

/ 1-K

00 01 02 03 04 05 06 07 08 09 10
probability

(1 — Population prevalence)

Image credit: https://en.wikipedia.org/wiki/Probit#/media/File:Probit_plot.svg



Observed scale (visualized under the liability threshold model)

bb
Kpp
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Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15,
765-776 (2014). https://doi.org/10.1038/nrg3786

W =~ (1~ k,,RRgp)

Observed Scale
* Multiplicative

* Non-Linear

The observed disease risk
(prevalence among
individuals with that
genotype) increases

multiplicatively.


https://doi.org/10.1038/nrg3786

Observed scale to Liability scale

Liability Scale
* Additive

e Linear

The mean latent liability
(among individuals with
that genotype) increases

additively.

Witte, J., Visscher, P. & Wray, N. Nat Rev Genet 15,
765-776 (2014). https://doi.org/10.1038/nrg3786

bb

T =07 (1 —kyy)

W =~ (1~ k,,RRgp)

Observed Scale
* Multiplicative

* Non-Linear

The observed disease risk
(prevalence among
individuals with that
genotype) still increases

multiplicatively.


https://doi.org/10.1038/nrg3786

Frequency

Lee et al. (2011)

T

1
1

Phenotypic value

~

~

Control

Case

“In case-control studies
the proportion of cases is
usually (much) larger than
the prevalence in the
population yet estimates
of genetic variation are
most interpretable if
they are not biased by
this ascertainment.”



From observed-scale heritability
To liability-scale heritability

K(l — K)K(1 — K)
Z* P(1-P)

hZ

We need to specify two parameters:
- Sample prevalence (P)

- Population prevalence (K)

- Note that z is computed from K, so need not be specified.

Lee, S. H., Wray, N. R, Goddard, M. E., & Visscher, P. M. (2011). Am J Hum
Genet, 88(3), 294-305. https://doi.org/10.1016/}.ajhg.2011.02.002


https://doi.org/10.1016/j.ajhg.2011.02.002

From observed-scale heritability
To liability-scale heritability

K (1 - K)K(1 - K)
z* P(1 - P)

hi = h2

The first part of this equation
converts the heritability estimate
to the liability scale.

Lee, S. H., Wray, N. R,, Goddard, M. E., & Visscher, P. M. (2011). Am J Hum
Genet, 88(3), 294-305. https://doi.org/10.1016/}.ajhg.2011.02.002


https://doi.org/10.1016/j.ajhg.2011.02.002

From observed-scale heritability
To liability-scale heritability

K(l ~ KK - K)
Z* P(1-P)

hZ

The second part of this equation
performs the correction for
ascertainment.

Lee, S. H., Wray, N. R,, Goddard, M. E., & Visscher, P. M. (2011). Am J Hum
Genet, 88(3), 294-305. https://doi.org/10.1016/}.ajhg.2011.02.002


https://doi.org/10.1016/j.ajhg.2011.02.002

NOTE!

Conversion to the liability scale influences the estimates of
* SNP Heritability

e Genetic Covariance

However, it DOES NOT influence Pg

. . \/hz hZ
* Genetic Correlation y1ly2

e Both the numerator and the denominator are on the same scale.

* LDSC Intercept



Cohort-specific ascertainment in Meta-Analysis

K(l—K) K(1 - K)

h? = )
z¢ 2, Pi(1—P;)

We need to calculate the sum of
the sample prevalence of each
contributing cohort.

The ascertainment calculated using total cases and controls is not the
same as ascertainment calculated within each cohort.

See GenomicSEM Wiki page for more details
https://github.com/GenomicSEM/GenomicSEM/wiki/2.1-Calculating-Sum-of-Effective-Sample-Size-and-Preparing-GWAS-Summary-Statistics



https://github.com/GenomicSEM/GenomicSEM/wiki/2.1-Calculating-Sum-of-Effective-Sample-Size-and-Preparing-GWAS-Summary-Statistics

Effective Sample Size (Ngf)

P = Sample prevalence
N = Total sample size (cases + controls)

It is the sample size we would have had if the study design was balanced
(50% cases and 50% controls).

To account for cohort-specific ascertainment in GWAS meta-analysis,
calculate the effective sample size of each cohort and then sum across
cohorts.



Why Are Two Traits Genetically Correlated?



Why Are Two Traits Genetically Correlated?

Genetic

Effects

m

Trait 1 has a causal effect on Trait 2
(Vertical Pleiotropy)




Why Are Two Traits Genetically Correlated?

Genetic
Effects

Genetic
Effects

Trait 2 Trait 2

Trait 1 has a causal effect on Trait 2 Genetic effects influence Trait 1 and Trait 2
(Vertical Pleiotropy) (Horizontal Pleiotropy)




Why Are Two Traits Genetically Correlated?

Genetic
Effects

Genetic
Effects

Trait 2 Trait 2

Trait 1 has a causal effect on Trait 2 Genetic effects influence Trait 1 and Trait 2
(Vertical Pleiotropy) (Horizontal Pleiotropy)

May be due to an unmeasured (or yet unknown)
intermediate trait

— Causal effects on both Trait 1 and Trait 2



Why Are Two Traits Genetically Correlated?

Genetic
Effects

Genetic
Effects

Trait 2 Trait 2

Trait 1 has a causal effect on Trait 2 Genetic effects influence Trait 1 and Trait 2
(Vertical Pleiotropy) (Horizontal Pleiotropy)

Further research to test these hypotheses, e.g.,
* Mendelian Randomization
* Genomic SEM



Practical for Continuous Traits



Only TWO Primary Steps to Run LDSC

We are using { GenomicSEM} libraryin R to run LDSC

1. Munge the summary statistics: munge ()

munge = convert raw data from one form to another

2. Run LD-Score Regression: 1dsc ()



We will be running LDSC for both European and East
Asian Samples

Using European GWAS sumstats for:
Height (Yengo et al., 2022)
BMI from GIANT + UKB

Using East Asian GWAS sumstats for:
Height (Yengo et al., 2022)

BMI from Biobank Japan

[ 3
E\ BioBank Japan PheWeb



munge .log file

The two sum stats files
are munged separately

Munging file: GIANT_UKB_BMI_EUR_chrl.txt

Interpreting the SNP column as the SNP column. BMI
Interpreting the Al column as the Al column.

Interpreting the A2 column as the A2 column.

Interpreting the BETA column as the effect column.

Interpreting the P column as the P column.

Interpreting the N column as the N column.

Interpreting the MAF column as the MAF column.

Interpreting the SE column as the SE column.

Merging file:GIANT_UKB_BMI_EUR_chrl.txt with the reference file:eur_w_ld_chr/w_hm3.snplist

175116 rows present in the full GIANT_UKB_BMI_EUR_chrl.txt summary statistics file.

94386 rows were removed from the GIANT_UKB_BMI_EUR_chrl.txt summary statistics file as the rs-ids for these rows were not present in the reference file.

No INFO column, cannot filter on INFO, which may influence results

4 rows were removed from the GIANT_UKB_BMI_EUR_chrl.txt summary statistics file due to missing MAF information or MAFs below the designated threshold of@.01
80726SNPs are left in the summary statistics file GIANT_UKB_BMI_EUR_chrl.txt after QC.

I am done munging file: GIANT_UKB_BMI_EUR_chrl.txt

The file is saved as BMI.sumstats.gz in the current working directory.

Munging file: Yengo_Height_EUR_chrl.txt -
Interpreting the RSID column as the SNP column. HEIght
Interpreting the EFFECT_ALLELE column as the Al column.

Interpreting the OTHER_ALLELE column as the A2 column.

Interpreting the BETA column as the effect column.

Interpreting the P column as the P column.

Interpreting the N column as the N column.

Interpreting the MAF column as the MAF column.

Interpreting the SE column as the SE column.

Merging file:Yengo_Height_EUR_chrl.txt with the reference file:eur_w_ld_chr/w_hm3.snplist

96851 rows present in the full Yengo_Height_EUR_chrl.txt summary statistics file.

7910 rows were removed from the Yengo_Height_EUR_chrl.txt summary statistics file as the rs-ids for these rows were not present in the reference file.

No INFO column, cannot filter on INFQ, which may influence results

@ rows were removed from the Yengo_Height_EUR_chrl.txt summary statistics file due to missing MAF information or MAFs below the designated threshold of@.01
88941SNPs are left in the summary statistics file Yengo_Height_EUR_chrl.txt after QC.

I am done munging file: Yengo_Height_EUR_chril.txt

The file is saved as Height.sumstats.gz in the current working directory.



ldsc .log file

Three parts (for two traits)

[1/3]

Estimating heritability [1/3] for: BMI.sumstats.gz
Heritability Results for trait: BMI.sumstats.gz
Mean ChiAZ2 across remaining SNPs: 4.0559

Lambda GC: 2.7889

Intercept: 0.9355 (0.0803)

Ratio: -0.0211 (0.0263)

Total Observed Scale hZ: 0.2092 (0.021)

h2 Z: 9.96



ldsc .log file

Three parts (for two traits)

[2/3]

Calculating genetic covariance [2/3] for traits: BMI.sumstats.gz and Height.sumstats.gz
73669 SNPs remain after merging BMI.sumstats.gz and Height.sumstats.gz summary statistics
Results for genetic covariance between: BMI.sumstats.gz and Height.sumstats.gz

Mean Z*Z: -0.3982

Cross trait Intercept: -0.0688 (0.0772)

Total Observed Scale Genetic Covariance (g_cov): -0.008 (0.0129)

g_cov Z: -0.623

g_cov P-value: ©0.53315



ldsc .log file

Three parts (for two traits)

[3/3]

Estimating heritability [3/3] for: Height.sumstats.gz
Heritability Results for trait: Height.sumstats.gz

Mean ChiA2 across remaining SNPs: 15.303

Lambda GC: 5.6174

Intercept: 1.3365 (0.3003)

Ratio: 0.0235 (0.021)

Total Observed Scale hZ2: 0.4158 (0.0448)

h2 Z: 9.29

Genetic Correlation Results

Genetic Correlation between BMI and Height: -0.0272 (0.0436)



ldsc .log file

(Standardized) Genetic Correlation printed at the end of the log file.

Genetic Correlation Results
Genetic Correlation between BMI and Height: -0.0272 (0.0436)



European

BMI

Height




East Asian

BMI

Height




Practical for Binary Traits



We will be estimating LDSC for European Ancestry Samples for
Schizophrenia and Bipolar

Article | Published: 08 April 2022

Mapping genomic loci implicates genes and synaptic
biology in schizophrenia

Vassily Trubetskoy, Antonio F. Pardifias, Ting Qi, Georgia Panagiotaropoulou, Swapnil Awasthi, Tim B.

Bigdeli, Julien Bryois, Chia-Yen Chen, Charlotte A. Dennison, Lynsey S. Hall, Max Lam, Kyoko Watanabe,

Oleksandr Frei, Tian Ge, Janet C. Harwood, Frank Koopmans, Sigurdur Magnusson, Alexander L.

Richards, Julia Sidorenko, Yang Wu, Jian Zeng, Jakob Grove, Minsoo Kim, Zhigiang Li, Indonesia

Schizophrenia Consortium, PsychENCODE, Psychosis Endophenotypes International Consortium, The

SynGO Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium

4+ Show authors

Nature 604, 502-508 (2022) | Cite this article

48k Accesses | 229 Citations | 461 Altmetric | Metrics

Article | Published: 17 May 2021

Genome-wide association study of more than 40,000
bipolar disorder cases provides new insights into the
underlying biology

Niamh Mullins &, Andreas J. Forstner, Kevin S. 0'Connell, Brandon Coombes, Jonathan R. |. Coleman,

Zhen Qiao, Thomas D. Als, Tim B. Bigdeli, Sigrid Barte, Julien Bryois, Alexander W. Charney, Ole Kristian

Drange, Michael J. Gandal, Saskia P. Hagenaars, Masashi lkeda, Nolan Kamitaki, Minsoco Kim, Kristi

Krebs, Georgia Panagiotaropoulou, Brian M. Schilder, Laura G. Sloofman, Stacy Steinberg, Vassily

Trubetskoy, Bendik S. Winsvold, HUNT All-In Psychiatry, ... Ole A. Andreassen =+ Show authors

Nature Genetics 53, 817-829 (2021) | Cite this article

25k Accesses | 224 Citations | 321 Altmetric | Metrics



The ldsc function takes 6 arguments:

1.traits: a vector of file names/paths to files which point to the munged
sumstats.

2.sample.prev: A vector of sample prevalences of length equal to the
number of traits. Enter 0.5 if inputting [sum of] effective N.

3.population.prev: A vector of population prevalences.
4.ld: A folder of LD scores used as the independent variable in LDSC

5. wid: A folder of LDSC weights (Typically same folder as specified for
the |d argument)

6. trait.names: The trait names.



The ldsc function takes 6 arguments:

2.sample.prev: A vector of sample prevalences of length equal to the
number of traits. Enter 0.5 if inputting [sum of] effective N.

3.population.prev: A vector of population prevalences.



SCZ/ BIP

SCZ

BIP




Practical Working Directory

cd ~/practicals/3.2.GeneticCorrelation MadhurSingh/final

Qualtrics link

This link is also on top of the R script: LDSC Practical2_GeneticCorrelation.R

https://dimr.azl.qualtrics.com/jfe/form/SV_781CgwvIn2YqyqO



https://qimr.az1.qualtrics.com/jfe/form/SV_781CgwvIn2YqyqO
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