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Mixed-model association for biobank-scale 
datasets
To the Editor — Despite recent work 
highlighting the advantages of linear mixed-
model (LMM) methods for genome-wide 
association studies (GWAS) in datasets 
containing relatedness or population 
structure1–3, much uncertainty remains about 
best practices for optimizing GWAS power 
while controlling confounders. Several recent 
studies of the interim UK Biobank dataset4  
(∼​150,000 samples) removed >​20% of 
samples by filtering for relatedness or genetic 
ancestry and/or used linear regression in 
preference to mixed-model association.  
These issues are exacerbated in the full UK 
Biobank dataset (∼​500,000 samples),  
in which suggested sample exclusions 
decrease sample size by nearly 30%5.  
Here we release a much faster version of 
our BOLT-LMM Bayesian mixed-model 
association method3 and show that it can  
be applied with minimal sample exclusions 
and achieves greatly superior power as 
compared to common practices for analyzing 
UK Biobank data.

In analyses of 23 highly heritable UK 
Biobank phenotypes (Supplementary  
Table 1), we observed that BOLT-LMM 
(applied to all 459,327 European samples 
and ∼​20 million imputed variants) 
consistently achieved far greater association 
power than linear regression with principal-
component (PC) covariates (on 337,539 
unrelated British samples, following ref. 5), 
attaining an 84% increase in GWAS locus 
discovery (10,759 total independent loci 
versus 5,839; Fig. 1a and Supplementary 
Table 2). These gains in power were driven 
only partially by the increased number of 
samples analyzed; we observed that BOLT-
LMM achieved effective sample sizes as high 
as ∼​700,000 by conditioning on polygenic 
predictions from genome-wide SNPs, which 
effectively reduces noise in an association 
test2,3,6 (Fig. 1b, Supplementary Fig. 1 and 
Supplementary Table 3). (We estimated 
effective sample size by taking ratios of 
chi-squared statistics from BOLT-LMM 
versus linear regression at GWAS hits; 
Supplementary Note.) The large sample  
size of the UK Biobank—which enables 
BOLT-LMM to predict and condition 
away up to 43% of phenotypic variance 
(approaching hg

2 for several traits; Fig. 1b)— 
is now demonstrating the full power of 
this approach. We also confirmed that 
BOLT-LMM achieved substantial gains in 

power on the unrelated British sample set 
(Supplementary Tables 2 and 3).

To verify that BOLT-LMM analyses 
of all European samples were robust to 
potential confounding due to relatedness 
or population structure, we performed 
LD score regression (LDSC) analyses7 
of association statistics computed using 
both BOLT-LMM (on all European 
samples, allowing related individuals as 
well as population structure) and linear 
regression (on unrelated British samples 
stringently quality controlled to minimize 
confounding5); we ran LDSC using the 
baselineLD model8. We observed that, 
while the value of the LD score regression 
intercept (previously proposed as an 
indicator of confounding7) was generally 
difficult to interpret owing to attenuation 
bias3, which causes the intercept to rise 
above 1 with increasing sample size and 
heritability (Supplementary Fig. 2 and 
Supplementary Note), the ‘attenuation 
ratio’—(LDSC intercept – 1)/(mean  
χ2 – 1)—matched closely between 
BOLT-LMM and PC-corrected linear 
regression and was relatively small 
(Fig. 1c, Supplementary Fig. 2 and 
Supplementary Table 4). Across 23 traits, 
we observed similar mean attenuation 
ratios of 0.078 (standard error (s.e.) 0.006) 
for PC-corrected linear regression and 
0.082 (0.005) for BOLT-LMM, indicating 
that BOLT-LMM successfully controlled 
for sample structure (as expected for 
mixed-model methods)1–3. In contrast, 
uncorrected linear regression produced a 
mean attenuation ratio of 0.104 (0.012), 
indicating confounding (Supplementary 
Fig. 2 and Supplementary Table 4). 
Similarly, PC-corrected linear regression 
on all European samples exhibited slightly 
elevated attenuation ratios (mean 0.085, 
s.e. 0.006; binomial P =​ 0.01 versus 
attenuation on unrelated British samples), 
indicating slight confounding due to 
relatedness (Supplementary Table 4), while 
still achieving lower power than BOLT-
LMM (Supplementary Table 2). We note 
that attenuation ratios are broadly smaller 
under the LDSC baselineLD model8, 
which incorporates functional and linkage 
disequilibrium (LD)-related genome 
annotations, than under the original LDSC 
model (Supplementary Table 5), consistent 
with better model fit.

Our new BOLT-LMM software release 
(v2.3) implements additional computational 
improvements that provide ∼​4×​ speed-up, 
achieving running times that scaled 
nearly linearly with sample size and were 
comparable to those for linear regression  
(a few days for UK Biobank analyses;  
Fig. 1d and Supplementary Table 6).  
BOLT-LMM v2.3 performs much faster 
processing of imputed genotypes (the 
bottleneck for analyses of extremely large 
imputed datasets) via fast, multithreaded  
test statistic computation on imputed 
genotypes in BGEN v1.2 format 
(Supplementary Note). Additionally, for 
analyses of very large datasets, we now 
recommend including PC covariates for 
the purpose of accelerating convergence 
of iterative computations performed 
during BOLT-LMM’s model-fitting steps3. 
Projecting out top PCs improves the 
conditioning of the matrix computations 
that BOLT-LMM implicitly performs, 
roughly halving the iterations required for 
convergence (Supplementary Table 7).

Our results demonstrate the latent power 
that mixed-model association analysis 
unlocks in very large GWAS, both by 
reducing the need for sample exclusions 
and by amplifying effective sample sizes 
via conditioning on polygenic predictions 
from genome-wide SNPs. (We note that, 
in general, care must be taken to consider 
non-additive effects when retaining 
related individuals; however, the level of 
relatedness in UK Biobank was low enough 
not to noticeably affect the overall genetic 
structure of the dataset or interpretation 
of our results (Supplementary Note).) 
Our new BOLT-LMM release makes 
mixed-model association computationally 
efficient even on extremely large datasets 
without requiring distributed computing9. 
Our analyses also reveal subtleties in the 
interpretation of LD score regression 
intercepts as a means of differentiating 
polygenicity from confounding in very large 
GWAS; the attenuation ratio may be a more 
suitable metric as sample sizes increase. 
Finally, we note two caveats regarding 
mixed-model analysis of binary traits. First, 
chi-squared-based tests (such as BOLT-
LMM) can incur inflated type I error rates 
when used to analyze highly unbalanced 
case–control traits10; here the binary traits 
we analyzed were sufficiently balanced for 
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our results not to be impacted by this issue 
(which begins to arise at case fractions  
<​10% in UK Biobank–scale sample sizes; 
Supplementary Note and Supplementary 
Table 8), but in general the saddlepoint 
approximation of SAIGE10 is more robust 
in such scenarios. Second, conditioning on 
genome-wide signal can produce loss of 
power under case–control ascertainment2,3; 
specialized LMM methods are needed for 
modeling this scenario at scale. Overall, we 
hope that our findings provide clarity on 
analytical best practices for maximizing the 
value of large biobanks.

Code and data availability
BOLT-LMM v2.3 is open-source software 
freely available at http://data.broadinstitute.
org/alkesgroup/BOLT-LMM/. Access to 
the UK Biobank resource is available via 
application (http://www.ukbiobank.ac.uk/). 
BOLT-LMM association statistics computed 
in this study are currently available for public 
download at http://data.broadinstitute.org/
alkesgroup/UKBB/ and have been submitted 
to the UK Biobank Data Showcase. ❐
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Fig. 1 | Power, calibration and speed of BOLT-LMM v2.3 in UK Biobank analyses. a, Numbers of independent genome-wide significant associations  
(P <​ 5 ×​ 10−9) identified by BOLT-LMM analyses of all European-ancestry individuals (N =​ 459,327) versus linear regression analyses of unrelated British 
individuals (N =​ 337,539, following common practice5). Results for 23 phenotypes are plotted, with 8 representative phenotypes highlighted. b, Variance 
explained by genome-wide SNPs on which BOLT-LMM implicitly conditions to increase power. Conditioning on BOLT-LMM’s polygenic predictions—which 
attain accuracy ( −rBOLT LMM

2 ) approaching SNP heritability (hg
2) for some traits—achieves effective sample sizes (Neff) as high as ∼​700,000. (We measured 

effective sample size by comparing χ2 statistics at associated SNPs; Supplementary Note.) c, Test statistic calibration of BOLT-LMM on all European 
individuals versus linear regression on unrelated British individuals (using 20 PC covariates). Attenuation ratios from LD score regression7,8 match closely 
between the two methods, indicating that BOLT-LMM properly controls false positives (Supplementary Fig. 2). Error bars, jackknife standard error (N =​ 
200 blocks). d, Computational cost of association analysis using BOLT-LMM v2.3, the previous version of BOLT-LMM3 and linear regression (implemented 
efficiently within the BOLT-LMM software) on the UK Biobank N =​ 150,000 and N =​ 500,000 data releases. Analyses were run on eight threads on a 
2.10 GHz Intel Xeon E5-2683 v4 processor. Additional details and numerical data are provided in the Supplementary Note, Supplementary Fig. 1 and 
Supplementary Tables 1–9.
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Subfunctionalization versus neofunctionalization 
after whole-genome duplication
To the Editor: The question of what the 
predominant evolutionary fate is of genes 
after duplication events has been intensely 

debated for decades1,2. Two articles in Nature 
(Lien et al.3) and Nature Genetics (Braasch et al.4)  
investigated the regulatory fate of gene 

duplicates after the salmonid-specific (Ss4R) 
and teleost-specific (Ts3R) whole-genome 
duplication (WGD) events, respectively. 
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Fig. 1 | Tissue expression divergence in real and simulated data. Tissue expression correlation between duplicates in medaka or zebrafish and the 
corresponding orthologs in spotted gar (1,606 and 1,315 triplets, respectively) and between duplicates in Atlantic salmon and the orthologs in Northern pike 
(8,070 triplets). In the upper row, duplicated genes are assigned labels ‘duplicate 1’ and ‘duplicate 2’ randomly, while in the lower row the duplicates are 
ranked so that duplicate 1 has the lowest correlation with the ortholog and duplicate 2 has the highest. ‘Sum duplicates’ represents the correlation between 
the summed expression of the two duplicates and the ortholog in the unduplicated species. All correlations were computed using the Pearson correlation 
coefficient on the original expression data from the two publications in the first three columns and simulated data in the two last columns. All pairwise 
comparisons were statistically significant (P <​ 5 ×​ 10−11, Wilcoxon signed-rank test, two-sided), with the exception of comparisons between duplicate 1 and 
duplicate 2 in the upper row (randomly ordered). Box plots were produced using the function ‘boxplot’ in R with default settings. The boxes indicate upper and 
lower quartiles with the horizontal lines marking the medians. The lines extending vertically from the boxes (whiskers) indicate the maximum and minimum 
values excluding outliers. Outliers are plotted as open circles. The expression data are available in the Supplementary Data.
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