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A literal history of polygenic indices 
• Once upon a time, people thought all human 

traits were influenced by a handful of genes. 
• In their folly, they came up with candidate genes 

chosen out of a few whose function were known

Thus, started the era of candidate gene studies, 
and the following replication crisis. 

• In the silence that followed the wake of these studies, tiny little GWAS started 
to emerge from the ashes

• They identified a few tiny genetic breadcrumbs that barely explained a fraction 
of the traits they were chasing. The top hits were underwhelming, the 
heritability gaps yawning…



It was then (2009) that a statistical 
alchemist came to the rescue.. 
Today, we know him as…

Sean Purcell

It is said that around the same time, in the land 
down under, a lesser wizard came up with the same 
idea, but there is absolutely no written record of 
this.
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What is a polygenic index?
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• An index that linearly aggregates the estimated effects of individual SNPs on the 
trait of interest.

• Can be considered a measure of an individual's genetic propensity towards a trait.
• Defined as a weighted sum of a persons genotypes at 𝑲𝑲 loci.
• Start with additive model using measured SNPs:

𝑦𝑦𝑖𝑖 = 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖 𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝑗𝑗=1

𝐾𝐾

𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗 + 𝜖𝜖𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆

additive SNP factor

What is a polygenic index?



⇒  �̂�𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖 = ∑𝑗𝑗=1𝐾𝐾 𝛽𝛽𝑗𝑗 + 𝑢𝑢𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗 = 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖 + 𝑈𝑈𝑖𝑖  where 𝑈𝑈𝑖𝑖 = ∑𝑗𝑗=1𝐾𝐾 𝑢𝑢𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

Additive SNP factor: 

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖 𝑥𝑥𝑖𝑖 ≡�
𝑗𝑗=1

𝐾𝐾

𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

True effect size of 
SNP j

What is a polygenic index?

PGI:

�̂�𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖 𝑥𝑥𝑖𝑖 ≡�
𝑗𝑗=1

𝐾𝐾

�𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

Estimated effect size of 
SNP j

�𝛽𝛽𝑗𝑗 = 𝛽𝛽𝑗𝑗 + 𝑢𝑢𝑗𝑗

If 𝑢𝑢 is mean-zero estimation 
error uncorrelated with 𝛽𝛽𝑗𝑗 

𝑈𝑈 is mean-zero 
measurement error  

𝐸𝐸 �̂�𝐴𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖
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Predictive power of a polygenic index

If we regress 𝑦𝑦 on �̂�𝐴𝑆𝑆𝑆𝑆𝑆𝑆 we get an OLS 
coefficient of

𝑏𝑏 =
𝐶𝐶𝐶𝐶𝐶𝐶 �̂�𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑦𝑦
𝑉𝑉𝑉𝑉𝑉𝑉(�̂�𝐴𝑆𝑆𝑆𝑆𝑆𝑆)

=
𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑈𝑈𝑖𝑖 ,𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜖𝜖𝑆𝑆𝑆𝑆𝑆𝑆

𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑈𝑈

=
𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆

𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈)

 
OLS:

𝑦𝑦𝑖𝑖 = 𝑉𝑉 + 𝑏𝑏𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖

𝑏𝑏 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥,𝑦𝑦
𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥

, 𝑅𝑅2 = 𝑏𝑏2𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥
𝑉𝑉𝑉𝑉𝑉𝑉 𝑦𝑦

And the expected predictive power is:

𝑅𝑅2 ≈
𝑏𝑏2𝑉𝑉𝑉𝑉𝑉𝑉 �̂�𝐴𝑆𝑆𝑆𝑆𝑆𝑆

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦)

=
𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆

𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈)

2 𝑉𝑉𝑉𝑉𝑉𝑉 �̂�𝐴𝑆𝑆𝑆𝑆𝑆𝑆
𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦)

⋮

≈
ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 2

ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 + 𝑀𝑀𝑒𝑒
𝑁𝑁

Sometimes called the 
Daetwyler formula 
(Daetwyler et al. 2008)

Effective number of SNPs in the PGI, estimated to 
be between 50k-70k in genome-wide data for 
EUR ancestry (Wray et al. 2013)



Theoretical projections for 𝑅𝑅𝑆𝑆𝑃𝑃𝑃𝑃2



Predictive power and heterogeneity
What if there is heterogeneity between GWAS and 
validation samples?

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖
∗ ≠ 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖 → ℎ2𝑆𝑆𝑆𝑆𝑆𝑆

∗ ≠ ℎ𝑆𝑆𝑆𝑆𝑆𝑆2

Define the genetic correlation to be 

𝑉𝑉𝑔𝑔 = 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖
∗ ,𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖)

The expected predictive power

𝑅𝑅2 ≈
ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 2

ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 + 𝑀𝑀𝑒𝑒
𝑁𝑁

 now becomes

𝑅𝑅2 ≈
𝑉𝑉𝑔𝑔ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 ℎ2𝑆𝑆𝑆𝑆𝑆𝑆

∗

ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 + 𝑀𝑀𝑒𝑒/𝑁𝑁

(De Vlaming et al. 2016)

EA1 
(2013)

EA2 Discovery 
(2016)

EA2 Discovery + Replication 
(2016)

EA3 (2018)

EA4 
(2022)

ℎ𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆
2 = 0.2 
ℎ𝐶𝐶𝑉𝑉𝑣𝑣2 = 0.2 
𝑉𝑉𝑔𝑔 = 1 

ℎ𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆
2 = 0.12 
ℎ𝐶𝐶𝑉𝑉𝑣𝑣2 = 0.16 
𝑉𝑉𝑔𝑔 = 0.95 



Measuring observed predictive power
Most commonly used measure for continuous phenotypes is incremental-𝑹𝑹𝟐𝟐

• Regress phenotype on basic covariates (e.g. 𝑠𝑠𝑠𝑠𝑥𝑥, 𝑉𝑉𝑎𝑎𝑠𝑠, 𝑉𝑉𝑎𝑎𝑠𝑠2, 𝑠𝑠𝑠𝑠𝑥𝑥 × 𝑉𝑉𝑎𝑎𝑠𝑠, 𝑠𝑠𝑠𝑠𝑥𝑥 ×  𝑉𝑉𝑎𝑎𝑠𝑠2) and PCs
• Obtain the 𝑅𝑅2 of the regression
• Add the PGI to the RHS, obtain the new 𝑅𝑅2 
• The difference between the two 𝑅𝑅2’s is the incremental-𝑅𝑅2 of the PGI

For binary phenotypes analyzed using logistic regression, various other measures are used, such as

• Nagelkerke’s pseudo-𝑹𝑹𝟐𝟐 : 𝑅𝑅2 =
1− 𝐿𝐿0

𝐿𝐿1

2
𝑛𝑛

1−𝐿𝐿0
2
𝑛𝑛

where 𝐿𝐿0 and 𝐿𝐿1 are the likelihoods of the null model (with 

only covariates) and of the model with PGI, respectively 

• Area under the ROC curve (AUC): The probability that the model, if given a randomly chosen 
positive and negative example, will rank the positive higher than the negative. Ranges between 
0.5 and 1.
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Constructing polygenic indices

What is needed?
• Individual-level genotype data from a prediction sample.
• Weights: GWAS summary statistics from a discovery sample
• Reference genotypes to estimate LD

Caution:  The prediction sample should not overlap with the discovery sample!

GWAS PGI

Overfitting!
The 𝑅𝑅2 of the PGI 
will be biased 
upwards!

GWAS PGI



Weights

GWAS results give us �̂�𝛽𝑗𝑗𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆, not 𝛽𝛽𝑗𝑗. Two issues to consider when constructing 
∑𝑗𝑗=1𝐾𝐾 �̂�𝛽𝑗𝑗𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆𝑥𝑥𝑖𝑖𝑗𝑗  :
1. For some SNPs, �̂�𝛽𝑗𝑗𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆 may be a very noisy estimate of 𝛽𝛽𝑗𝑗 and/or 𝛽𝛽𝑗𝑗 may be 

close to 0, so adding those SNPs will add more noise than signal
2. If we include all SNPs, we will overweight (“double-count”) SNPs with high LD 

scores



Two solutions

Bayesian approaches
Include all SNPs but adjust the 
effect sizes for LD 

Clumping and thresholding
Include only the most strongly 
associated SNP from each LD 
block (Purcell et al., 2009)

�
𝑗𝑗=1

𝐾𝐾

�̂�𝛽𝑗𝑗𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆𝑥𝑥𝑖𝑖𝑗𝑗

Weights: Set equal to GWAS coefficients.
Loci: Selected by 
1. using a clumping algorithm that 

ensures the included markers are all 
approximately independent of each 
other

2. omitting SNPs whose P value for 
association with the phenotype is 
above a certain threshold

Weights: Set to GWAS coefficients adjusted 
for LD  approximate results from a 
theoretical multiple regression of the 
phenotype on all SNPs
Loci: Include all SNPs, no LD-based pruning

Examples: LDpred (Vilhjalmsson et al. 2015, 
Prive et al. 2020 ), PRS-CS (Ge et al. 2019), 
SBayesR (Lloyd-Jones et al. 2019)



• Cohort: Health and Retirement 
Study

• Phenotype: Educational 
attainment

C+T

𝑉𝑉2= 𝑉𝑉2= 𝑉𝑉2= 𝑉𝑉2= 𝑉𝑉2=

5 × 10−8 5 × 10−5 5 × 10−3 5 × 10−2 5 × 10−1 1



Bayesian approaches
Uses as weights

𝐸𝐸 𝛽𝛽𝑗𝑗 �̂�𝛽𝑗𝑗𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆,𝐷𝐷
By Bayes’s rule,

𝑓𝑓 𝛽𝛽𝑗𝑗 �̂�𝛽𝑗𝑗𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆,𝐷𝐷 =
𝑓𝑓 �̂�𝛽𝑗𝑗𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆 𝛽𝛽,𝐷𝐷 𝑓𝑓 𝛽𝛽𝑗𝑗 𝐷𝐷

𝑓𝑓 �̂�𝛽𝑗𝑗𝑃𝑃𝐺𝐺𝐺𝐺𝑆𝑆 𝐷𝐷

Shrinkage depends on the prior!

LD matrix
LDpred2: Gaussian or Spike-and-Slab

𝛽𝛽𝑗𝑗 𝐷𝐷 ~ � 𝑁𝑁 0, 𝜏𝜏2 , 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑉𝑉𝐶𝐶𝑏𝑏𝑉𝑉𝑏𝑏𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 𝜋𝜋
0 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑉𝑉𝐶𝐶𝑏𝑏𝑉𝑉𝑏𝑏𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 1 − 𝜋𝜋

𝜋𝜋 can be estimated from data, sparsity allowed 
(if �𝜋𝜋𝑗𝑗 <  𝜋𝜋, 𝑏𝑏𝑗𝑗 set to 0), 𝜏𝜏2 = ℎ2/𝑀𝑀𝜋𝜋

PRS-CS: “Continuous shrinkage”
𝛽𝛽𝑗𝑗 𝐷𝐷 ~𝑁𝑁(0,𝜙𝜙𝜓𝜓𝑗𝑗)
𝜓𝜓𝑗𝑗~𝑁𝑁 𝑉𝑉, 𝛿𝛿𝑗𝑗
𝛿𝛿𝑗𝑗~ 𝑁𝑁(𝑏𝑏, 1)

Parameters 𝑉𝑉 and 𝑏𝑏 determine how aggressively to shrink 
small estimates and how much you don’t shrink large ones

SBayesR:  flexible finite mixture of normal 
distributions, sparsity allowed 

𝛽𝛽𝑗𝑗 𝐷𝐷 ~

0,  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑉𝑉𝐶𝐶𝑏𝑏𝑉𝑉𝑏𝑏𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 𝜋𝜋1
𝑁𝑁 0, 𝛾𝛾2𝜎𝜎𝑏𝑏2 ,  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑉𝑉𝐶𝐶𝑏𝑏𝑉𝑉𝑏𝑏𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 𝜋𝜋2

…

𝑁𝑁(0, 𝛾𝛾𝐶𝐶𝜎𝜎𝑏𝑏2) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑉𝑉𝐶𝐶𝑏𝑏𝑉𝑉𝑏𝑏𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 1 −�
𝑐𝑐=1

𝐶𝐶−1

𝜋𝜋𝑐𝑐



Practical considerations – LD reference data
How to choose LD reference data?
• Some software tools (e.g. SBayesR, PRS-CS) make available previously calculated LD 

estimates
• These are usually limited to a set of good quality SNPs (e.g. HapMap3) to reduce 

errors in LD estimation and computational burden while ensuring sufficient 
coverage

• But you can also estimate your own! Why would you?
• You may want to include more SNPs
• The available LD reference data may not be a good match for the ancestry of 

your GWAS
•  If you decide to obtain your own LD estimates, you should make sure that the 

quality of your data is good. Bayesian approaches are very sensitive to errors in LD 
estimates!



Practical considerations – LD reference data
Points to consider when estimating LD
• The sample is large and representative of the GWAS sample
• Sequenced genotypes are best. Imputation inaccuracy introduces noise into LD 

estimates. If you’re using imputed data, apply a strict imputation accuracy filter
• Data are cleaned

• sample-level filters: related individuals, ancestry outliers, individuals with low 
genotyping rate

• SNP-level filters: low SNP call rate, MAF, HWE P-value (genotyped SNPs), 
imputation accuracy (imputed SNPs)

• There are no genotyping or imputation batch effects.
• May lead to errors in LD estimation if genotyping is done with multiple arrays 

or imputation in multiple batches.



Practical considerations - GWAS
Restricting set of SNPs
• The SNPs included in the PGI will be limited to the intersection of GWAS, LD 

reference sample and validation data.
• It is a good idea to limit the SNPs in the GWAS to those available in the validation 

data prior to adjusting for LD, especially if the overlap is rather poor (e.g. if you 
only have array SNPs in the validation data)

• The Bayesian software will assume all SNPs in the GWAS will be included in the PGI 
and make LD adjustments to maximize prediction accuracy. If some SNPs cannot 
be included because they are not in the validation data, the adjustments will be 
suboptimal.

• As an additional QC step, you can exclude SNPs whose MAF is very different from 
the LD reference data



Practical considerations – Validation data

• Applying some QC to validation data to minimize noise and genotyping errors is 
recommended:
• sample-level filters: limit to a single genetic ancestry, drop individuals with low 

genotyping rate
• SNP-level filters: drop SNPs with low call rate, MAF, HWE P-value (genotyped 

SNPs), imputation accuracy (imputed SNPs)
• Restrict the GWAS to SNPs available in the validation data after the above QC steps 

are applied
• If you are using imputed data, use dosages rather than hard calls. Hard calls don’t 

account for imputation uncertainty!

 



C+T vs Bayesian approaches

Bayesian approaches
• utilize information from all SNPs by 

adjusting SNP weights for LD, but
• if the reference panel is not a 

good match for the population 
from which summary statistics 
were obtained, prediction 
accuracy might be compromised

• the assumed prior distribution 
might not accurately model the 
true genetic architecture

Clumping and thresholding
Faster and easier, but too black & 
white
• If clumping 𝑉𝑉2 or P-value 

cutoffs too strict, it drops 
potentially causal SNPs.

• If clumping 𝑉𝑉2 and P-value 
cutoffs too relaxed, there is a 
lot of double-counting and 
noise 



Source: Privé, Arbel, Vilhjálmsson (2020) 

Source: Lloyd-Jones et al (2019)

If the purpose is to maximize predictive 
power, then Bayesian approaches clearly 
do better

There may still be uses for C+T, 
for example when you want to 
include SNPs most likely to be 
associated (e.g. in mendelian 
randomization)
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Major advantage of PGI over 
specific genetic variants: can 
have much greater predictive 
power

e.g., if 𝑅𝑅𝑆𝑆𝑃𝑃𝑃𝑃2 = 0.07, then 80% 
to detect its effect in a sample 
of size ~110 individuals. If 
𝑅𝑅𝑆𝑆𝑃𝑃𝑃𝑃2 = 0.09, then ~85 
individuals.

 Can study PGI in datasets 
containing high quality 
measures of outcomes, 
mediators, and covariates.

Applications Identify correlates of genetic factors
e.g. Educational attainment PGI predicts early speech acquisition and is 
mediated by cognitive ability (Belsky et al., 2016).

Identify causal effects of genetic factors
Sibling data and family fixed effects → causal effect of PGI

Study GxE
e.g. Increase of compulsory schooling age in U.K. reduces BMI only 
among those with a high-BMI PGI (Barcellos, Carvalho, and Turley 2016)

Use as control variable
To control for confounding genetic factors or to increase statistical 
power for estimating the effect of a randomized treatment. If 
incremental 𝑅𝑅𝑆𝑆𝑃𝑃𝑃𝑃2  is 15%, then power increase is equivalent to 17% 
increase in sample size (Rietveld, 2013)

Identify at-risk individuals

⋮
Personalized treatment 



Individual-level prediction is not 
accurate enough for most complex 
phenotypes!

Source: Okbay et al. (2022)



Prediction with related samples

If you are interested in incremental-𝑅𝑅2, no need to do anything special, 
𝑅𝑅2 is still valid, but
• the standard error for the coefficient of the PGI is going to be wrong!

What to do?
• If you have family IDs, cluster standard errors at the family level
• Otherwise, can control for the relatedness using the GRM and a linear mixed 

model
• Possible to do in GCTA



Outline

• A literal history of PGIs
• What is a polygenic index?
• Predictive power of polygenic indices
• Constructing polygenic indices
• Applications
• Limitations and pitfalls



LIMITATIONS & PITFALLS
Mechanisms are poorly understood.
• Including many genetic variants

• increases predictive power
• requires including genetic variants with unknown function 

makes it hard to specify what is captured by PGI.



LIMITATIONS & PITFALLS
The predictive power of the PGI may 
not be solely due to the causal effect of 
genetic variants included in the PGI!
• Gene-environment correlation

• Population stratification
• Indirect genetic effects

• Assortative mating

Solutions:
• Within-family prediction
• PGIs based on within-family GWAS 

Source: Okbay et al. (2022)



LIMITATIONS & PITFALLS
• Current polygenic indices far 

less predictive in non-
European-descent samples.

• For example, for the EA4 PGI: 
• 𝑅𝑅2 ≈ 17% for European-

ancestry individuals in Add 
Health, 13% in HRS.

• 𝑅𝑅2 ≈ 2.3% for African-
ancestry individuals in Add 
Health, 1.3% in HRS.

• Methodologies are being 
developed to improve cross-
ancestry predictive power 
(e.g. PRS-CSx)

• PGIs incorporating functional 
annotation (Mega-PRS, 
SBayesRC) do better

Source: Wang et al.  (2020)



𝑦𝑦𝑖𝑖 = ̂𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖  𝛽𝛽 + 𝒛𝒛𝑖𝑖𝜻𝜻 + 𝒘𝒘𝑖𝑖  𝜹𝜹 + 𝜖𝜖𝑖𝑖

�̂�𝛽 is the expected increase in 𝑦𝑦 corresponding to 1 SD increase in the PGI. Two issues with this:
1. �̂�𝛽 will be attenuated due to classical measurement error
2. The SD of the PGI depends on the amount of measurement error in it – how to compare 

results from different studies using differently constructed PGIs?

Solution: Scale everything  to resemble a regression using 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 instead of �̂�𝐴𝑆𝑆𝑆𝑆𝑆𝑆

• Very straightforward in a simple regression with only the PGI (scale by ℎ2

𝑅𝑅2
 where 𝑅𝑅2 is the 

predictive power of the PGI) but not so interesting.
• More interesting but a little more complicated when there are controls or interactions 

correlated with PGI

MEASUREMENT ERROR

Controls

phenotype

Standardized 
PGI

Interaction 
terms



https://github.com/JonJala/pgi_correctPGI-correct Python tool
Papageorge, N. W. & Thom, K. Genes, Education, and Labor Market Outcomes: Evidence from the Health 
and Retirement Study. J. Eur. Econ. Assoc. 18, 1351–1399 (2020).

• For EA in the HRS, �ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 ≈ 0.25 
and �𝑅𝑅2 ≈ 0.10, according to the 
rule of thumb, coefficients should 
be expected to have increased by 
a factor of 1.58 (≈ 0.25/0.10 ). 

• (2)(4) increase is larger due to 
the positive correlations between 
the PGI, the controls, and the 
dependent variable.

 The correction deflates estimates 
of how much covariates mediate the 
effect of the PGI

Panel A. Association Between EA and the PGI, Without and With Controls for 

Parental EA

Original Corrected

(1) (2) (3) (4)

EA PGI 0.844

(0.026)

0.619     

(0.024)

1.318

(0.041)

1.104     

(0.042)

Father’s EA - 0.154

(0.010)

- 0.112     

(0.010)

Mother’s EA - 0.176

(0.011)

- 0.141     

(0.012)

# Obs. 8,537 8,537      8,537 8,537     

× 1.56 × 1.78

× 0.73 × 0.84



PGI Repository
• First release includes 47 

phenotypes in 11 datasets.
• PGIs based on GWAS including 

23andMe for many phenotypes.
• Second release about to come out

• 20 datasets
• 60 phenotypes: anthropometric, 

cognitive, reproductive, 
biomarkers, health, psychiatric, 
substance use

• Parental PGIs based on imputed 
parental genotypes in datasets 
with sib or parent-offspring pairs



QUESTIONS?



Practical

https://qimr.az1.qualtrics.com/jfe/form/SV_7OEO4h4KZgDZMc6

• Five steps:
1. GWAS sumstats
2. Genotype data
3. SBayesR
4. Making PGIs
5. Prediction

• It is ok if you don’t finish it all, feel free to 
work on the remaining parts in your own 
time.



Reading materials
1. Dudbridge, F. Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genet. 9, e1003348 (2013). (Theoretical framework, power)

2. Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–15 (2013). (Complexities of interpretation)

3. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 10, 5086 
(2019). (SBayesR methodology)

4. Ni, G. et al. A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts. Biol. Psychiatry 90, 
611–620 (2021). (Overview of methods)

5. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019). (Poor 
cross-ancestry portability of PGIs and consequences)

6. Wang, Y. et al. Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations. Nat. 
Commun. 11, 1–9 (2020). (Factors contributing to poor cross-ancestry portability of PGIs)

7. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 1–8 (2022). (Methodology to improve cross-
ancestry prediction: PRS-CSx)

8. Becker, J. et al. Resource profile and user guide of the Polygenic Index Repository. Nat. Hum. Behav. (2021) doi:10.1038/s41562-021-
01119-3. (Measurement correction)

9. Zheng, Z. et al. Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits 
within and between ancestries. Nat. Genet. 2024 565 56, 767–777 (2024). (Methodology to incorporate functional annotations into 
PGIs) 

10. Okbay, A. et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 
million individuals. Nat. Genet. 54, 437–449 (2022), Supplementary Note Section 7. (Contribution of confounders to PGI predictive 
power)
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