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UKBB: UK Biobank

Established 2007 in the 
United Kingdom

N=500,000
Nwhite British= 408,961

Bycroft et al, Nature, 2018
Sudlow et al, PLoS Med, 2015Data collected from 2006 – 2010

28 million genetic variants 

>1,000 phenotypes curated from ICD codes



Optimization strategies

Large scale data 

Sample 
relatedness 1 in 3 has at least one relative up 

to the 3rd degree in UK Biobank
- Inflated type I errors
- Biased effect estimates

Linear model:  
𝒀𝒀𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷+ 𝝐𝝐𝒊𝒊

Logistic model:  
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝝅𝝅𝒊𝒊)  = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷

𝝐𝝐 ~ 𝑁𝑁 0,𝜎𝜎2𝐼𝐼
Assumes independent 
observations

Challenges in genetic association studies



GWAS results based on linear or logistic regression can be 
biased when the independence assumption between samples 
is violated

• Familial or cryptic sample relatedness
• Population stratification

Linear model:  
𝒀𝒀𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷+ 𝝐𝝐𝒊𝒊

Logistic model:  
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝝅𝝅𝒊𝒊)  = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷

Assumes independent observations

Spurious associations, Inflated type I 
errors
Biased effect estimates



Optimization strategies

Large scale data 

Sample 
relatedness 1 in 3 has at least one relative up 

to the 3rd degree in UK Biobank
- Inflated type I errors
- Biased effect estimates

Linear model:  
𝒀𝒀𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷+ 𝝐𝝐𝒊𝒊

Logistic model:  
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝝅𝝅𝒊𝒊)  = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷

𝝐𝝐 ~ 𝑁𝑁 0,𝜎𝜎2𝐼𝐼
Assumes independent 
observations

Challenges in genetic association studies

By excluding up to 3rd degree relatives in samples with EUR ancestry, we 
will lose ~10% of samples (out of 400k) 



Linear mixed model for GWAS  
𝒀𝒀𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷 + 𝒃𝒃𝒊𝒊 + 𝝐𝝐𝒊𝒊

Accounting for sample relatedness

• 𝑏𝑏: random genetic effect, 𝑏𝑏 ~ 𝑁𝑁(0, 𝜏𝜏 𝜓𝜓), 𝝍𝝍 is genetic 
relationship matrix (GRM)



Genetic relationship matrix
- Standardized Genotype Approach (commonly used in 

GWAS)

𝜓𝜓𝑖𝑖𝑖𝑖  =
1
𝑀𝑀
�
𝑚𝑚=1

𝑀𝑀
(𝑔𝑔𝑖𝑖𝑖𝑖−2𝑝𝑝𝑚𝑚)(𝑔𝑔𝑗𝑗𝑚𝑚−2𝑝𝑝𝑚𝑚)

2𝑝𝑝𝑚𝑚(1 − 𝑝𝑝𝑚𝑚)

- 𝑔𝑔𝑖𝑖𝑖𝑖 is the genotype (0, 1, or 2) for individual 𝑖𝑖 at SNP 𝑚𝑚 
- 𝑝𝑝𝑚𝑚 is the allele frequency of SNP 𝑚𝑚 
- 𝑀𝑀 is the total number of SNPs

Square, symmetric matrix
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Linear mixed model methods for GWAS



Binary trait in UKBB N Case N Control

Colorectal cancer 4,562 382,756 



Binary Traits N Case N Control

Colorectal cancer 4,562 382,756 

Inflated type I error rates were observed after 
using BOLT-LMM for binary phenotypes

Loh et al., 2015



Linear mixed 
model

Sample 
relatedness

Challenges in biobank-based GWASs

Linear mixed model:  
𝒀𝒀𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷 + 𝒃𝒃𝒊𝒊 + 𝝐𝝐𝒊𝒊

?



Linear Mixed Model for Binary Phenotypes?
• Assumes homoscedasticity (constant residual variance)

• Violated by binary traits

No disease,  0

With disease, 1

Dosages of the tested SNP
0 1 2

Inflated type I error rates



Linear mixed model for binary phenotypes (0 and 1)?

adapted from Chen, H., Wang, C., et. al. (2016)

Linear model assumed 
mean-variance relationship 

True mean-variance relationship 



Linear 
Logistic mixed 

model

Sample 
relatedness

Use logistic mixed model for binary phenotypes

Logistic mixed model:  
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝝅𝝅𝒊𝒊)  = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷 + 𝒃𝒃𝒊𝒊

Linear mixed model:  
𝒀𝒀𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜶𝜶 + 𝑮𝑮𝒊𝒊𝜷𝜷 + 𝒃𝒃𝒊𝒊 + 𝝐𝝐𝒊𝒊

GMMAT: Chen, H., Wang, C., et. al. (2016)
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GMMAT: Logistic Mixed Model Association Test  
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H Chen et al. 

2016



It would take GMMAT ~ 669 Gb of memory and  ~ 184 CPU years to run a 
GWAS for one phenotype

Optimization NEEDED!

GMMAT: Chen, H., Wang, C., et. al. (2016)

Binary Traits N Case N Control

Colorectal cancer 4,562 382,756 



Optimize logistic mixed model method for biobank-
scale data 

Loh et al., 2015

Optimization strategies

Large scale data 

Logistic mixed 
model

Sample 
relatedness



Inflated type I error rates were still observed
after using logistic mixed model for binary phenotypes

Binary Traits N Case N Control

Colorectal cancer 4,562 382,756 



Loh et al., 2015

Optimization strategies

Large scale data 

Logistic mixed 
model

Sample 
relatedness

Challenges in biobank-based GWASs

?



Unbalanced case-control ratios are commonly observed 
for binary phenotypes in biobanks

1,663 Binary Phenotypes in the UK Biobank
20



Test statistics do not converge to Normal 
distribution, leading to inflated type I error rates

Ma, et al. (2013)

Unbalanced 
case-control 

ratio

Optimization strategies

Large scale data 

Logistic mixed 
model

Sample 
relatedness



Saddlepoint approximation (SPA) is used to account 
for unbalanced case-control ratio

Saddlepoint 
approximation

Unbalanced 
case-control 

ratio

Optimization strategies

Large scale data 

Logistic mixed 
model

Sample 
relatedness

SPA uses the entire 
moment generating 
function -> more 
accurate p-values

vs. 
Normal distribution only 
uses the first two 
moments (mean and 
variance)

Daniels, 1954
Dey et al., 2017



SAIGE 
(Scalable and Accurate Implementation of GEneralized mixed model)

was developed to conduct GWAS in large-scale biobanks

Zhou et al. Nat. Genet. 2018 

Saddlepoint 
approximation

Unbalanced 
case-control 

ratio

Optimization strategies

Large scale data 

Mixed models

Sample 
relatedness
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Colorectal cancer  
• 4,562 Cases
• 382,756 Controls
• Case: Control = 1:84

Linear mixed model

Logistic mixed model

Logistic mixed model
+SPA (SAIGE)



25

Thyroid cancer 
• 358 Cases
• 407,399 Controls
• Case: Control = 1:1138
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Thyroid cancer 
• 358 Cases
• 407,399 Controls
• Case: Control = 1:1138

Linear mixed model

Logistic mixed model
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Thyroid cancer 
• 358 Cases
• 407,399 Controls
• Case: Control = 1:1138

Linear mixed model

Logistic mixed model

Logistic mixed model
+SPA
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SAIGE documentation:  https://saigegit.github.io/SAIGE-doc/

https://saigegit.github.io/SAIGE-doc/


SAIGE

Step 1: Fit the null logistic mixed model 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) = 𝑋𝑋𝑖𝑖𝛼𝛼 +  𝑏𝑏𝑖𝑖
𝑏𝑏~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 𝜏𝜏 𝜓𝜓)

Phenotype
Non-genetic covariates

(N individuals)

Genotypes to construct 𝝍𝝍
(M1 genetic variants)

�𝛼𝛼 , �𝑏𝑏 , 𝜏̂𝜏 



SAIGE

Step 1: Fit the null logistic mixed model 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) = 𝑋𝑋𝑖𝑖𝛼𝛼 +  𝑏𝑏𝑖𝑖
𝑏𝑏~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 𝜏𝜏 𝜓𝜓)

Phenotype
Non-genetic covariates

(N individuals)

Genotypes to construct 𝝍𝝍
(M1 genetic variants)

�𝛼𝛼 , �𝑏𝑏 , 𝜏̂𝜏 

Step 2: Perform association test for each genetic marker 
Apply SPA to score tests

Genotypes/Dosages for genetic variants to be tested 
(M genetic variants)

Association Results (p-values…)



Run Time and Memory Usage

Log-log plots of the estimated run time (A) and memory use (B) as a function of sample size (N) for 
testing for testing 71 million markers with info ≥ 0.3 as in UK Biobank. 
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More popular methods developed to improve the computational 
efficiency for running mixed model-based GWAS in large biobanks



Saddlepoint 
approximation

Unbalanced 
case-control 

ratio

Optimization strategies

Large scale data 

Mixed models

Sample 
relatedness

Challenges of GWAS in large-scale cohorts/biobanks



Saddlepoint 
approximation/Fi

rth correction
Unbalanced case-

control ratio

Optimization strategies
Large scale data 

Mixed model
Sample 

relatedness

In today’s practical 

Today’s practical is on Qualtrics:
https://qimr.az1.qualtrics.com/jfe/form/SV_036Ckv3AMwjqewu

Link is in Qualtrics.txt

https://qimr.az1.qualtrics.com/jfe/form/SV_036Ckv3AMwjqewu


Testing common variants
Binary traits 

Related samples

YES NO

NO
YES

Case: control < 1:10

SAIGE
fastGWA-GLMM
Regenie

SPAtest (fast)
PLINK –glm 
(Firth test, relatively slower)

GMMAT (slow but good for 
small sample sizes)
SAIGE
fastGWA-GLMM
Regenie

NO

Case: control < 1:10

YES
PLINK –glm



Testing common variants
Binary traits 

Related samples

YES NO

NO
YES

Case: control < 1:10

SAIGE
fastGWA-GLMM
Regenie

SPAtest (fast)
PLINK –glm firth (slow)

GMMAT (slow but good for 
small sample sizes)
SAIGE
fastGWA-GLMM
Regenie

NO

Case: control < 1:10

YES
PLINK –glm
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Different types of phenotypes require different 
statistical models for association tests

• Quantitative
• eg. LDL cholesterol level, height
• Linear regression

• Binary
• eg. Schizophrenia, Type 2 Diabetes
• Logistic regression

• Ordinal/categorical
• eg. On a scale of 1-10 how much do you like smoking
• Proportional odds logistic regression, Multinomial regression 

• Time-to-event (TTE)
• eg. Age at skin cancer onset, Time of death after diagnosis of lung 

cancer
• Survival analysis model



Mixed model method for other types of phenotypes

• Ordinal phenotypes
• Common variants: 

• POLMM: Proportional Odds Logistic Mixed Model
• Bi et al., AJHG 2021

•  Rare variants: 
• POLMM-GENE
• Bi* and Zhou* et al., AJHG 2023

• Time-to-event phenotypes 
• Common variants: 

• GATE: Genetic Analysis of Time-to-Event phenotypes
• R library: https://github.com/weizhou0/GATE
• Recently merged to SAIGE v1.4.4
• Dey* and Zhou* et al., Nature Comm  2022: 5437.

https://github.com/weizhou0/GATE


Phenome-wide GWAS resources for large biobanks
• UK Biobank

• HRC imputed and TopMed imputed
• https://pheweb.sph.umich.edu/
• 1403 binary phenotypes based on Phecodes in White British samples 
• PheWeb:  Taliun et al., Nat Genet. 2020. https://github.com/statgen/pheweb

https://pheweb.sph.umich.edu/
https://github.com/statgen/pheweb


Interactive views of genetic associations in 
the UK Biobank instance of PheWeb

Figure 1 from Taliun et al., Nat 
Genet. 2020 

Manhattan Plot - GWAS

LocusZoom Plot 
(Pruim et al., 2010)



Phenome-wide GWAS resources for large biobanks
• UK Biobank

• HRC imputed and TopMed imputed
• https://pheweb.sph.umich.edu/
• 1403 binary phenotypes based on Phecodes in White British samples 
• PheWeb:  Taliun et al., Nat Genet. 2020. https://github.com/statgen/pheweb

• Neale lab – round 1 and 2
• https://www.nealelab.is/uk-biobank
• Sex stratified PheGWAS

• Pan-UKBB: 
• https://pan.ukbb.broadinstitute.org/
• 7,228 quantitative and binary phenotypes, across 6 continental ancestry groups, for a 

total of 16,131 GWAS
• All variants with INFO > 0.8, and MAC > 20 in that population (up to 28 million variants)

• Genebass: 
• https://app.genebass.org/
• 4,529 quantitative and binary phenotypes on 394,841 exomes
• 57,650 group tests per phenotype (pLoF, missense, synonymous for each gene)

https://pheweb.sph.umich.edu/
https://github.com/statgen/pheweb
https://www.nealelab.is/uk-biobank
https://pan.ukbb.broadinstitute.org/
https://app.genebass.org/


Phenome-wide GWAS resources for large biobanks

• FinnGen project (412,181 individuals, 2,408 endpoints): https://r10.finngen.fi/

• Michigan Genomic Initiative (80,381 individuals, 1,728 endpoints): 
https://pheweb.org/MGI/

• Biobank Japan: https://pheweb.jp/

• Taiwan Biobank: https://taiwanview.twbiobank.org.tw/pheweb.php

• Million Veteran Program (MVP): 
• Verma et al.,Science, 2024 

https://r10.finngen.fi/
https://pheweb.org/MGI/
https://pheweb.jp/
https://taiwanview.twbiobank.org.tw/pheweb.php


Biobank meta-analysis results

• Global Biobank Meta-analysis Flagship project (24 biobanks with up 
to 2.2 million individuals for 14 exemplary disease endpoints)

• http://results.globalbiobankmeta.org/

• FinnGen + UKBB + MVP (1.5 million individuals for ~300 binary 
phenotypes)

• https://mvp-ukbb.finngen.fi/

http://results.globalbiobankmeta.org/
https://mvp-ukbb.finngen.fi/


Zhou et al., 2018
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