Introduction to GWAS
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George Box

“Remember that all models are
wrong, the practical question is
how wrong do they have to be to
not be useful.”

Box, G.E.P. and Draper, N.R. (1987) Empirical model-building
and response surfaces. New York: Wiley. p424




SAFETY REMINDER
USE THE RIGHT TOOL

FOR THE RIGHT JOB
IN THE RIGHT WAV




Whatis GWAS

- Ahypothesis free study of genetic variation across the
entire human genome

- Tests for genetic associations with continuous traits or
with the presence / absence of disease

- With a focus on common loci

- Can detect with direct and indirect signals
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Direct association Incirect association

Hirschhorn & Daly. Nat Rev Genet (2014)



Why do it?

SAFETY REMINDER

e e , USE THE RIGHT TOOL
Identification of susceptibility variants FORTHE RI \GHT JOB
j \ IN THE RIGHT WAY

Novel biological insights Improved measures of individual
aetiological processes

Clinical advan a
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targets ' - [optimization

McCarthy et al. Nat Rev Genet (2008)



Association with unrelated individuals



Quantitative Trait

Linear Regression

Phenotvpic score

Y=a+BX+¢

n

Y = score on phenotype

X =0, 1or2copies of allele (*G")

3 =0 no association
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3>0 G allele associated with higher score on trait
3 <0 G allele associated with lower score on trait

Balding. Nat Rev Genet (2006)
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(Genetic associlation tests

To identify genetic variants that are associated with a complex trait
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Assumptions of Linear Regression

1. Linearity
(Linear relationship between ¥ and each X)

e .

4. Independence
{of observations. Includes "no autocorrelation™)

o .

2. Homoscedasticity

(Equal variance)

(] .

5. Lack of Multicollinearity

(Predictors are not correlated

with each other)

X1+ X2

X1~ X2

SAFETY REMINDER
USE THE RIGHT TOOL

——

FOR THE RIGHT JOB
IN THE RIGHT WAY

3. Multivariate Normality
(Marmality of error distribution)

6. Absence of endogeneity
(Mo correlation between predictors and errors. )
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Using linear regression for binary phenotypes
(coded as 0 and 1) can lead to inflated type | errors

True mean-variance relationshi
0.25 P
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Probability of
digease 1.0 =

Case-Control

0.8 4

0.6 -

Logistic Regression

0.4 -

Controls O Cases : -

‘ ‘ G/A In(P/1-P) = o + BX + ¢
O @™ E

‘ ‘ G/A B = difference in log odds

- for cases vs. controls

‘ ‘ AL
O () ()
Allelic effect is an OR:

The G allele is associated with disease OR > 1 increased risk
OR < 1 decreased risk

= difference in odds
A/A = Odd Ratio (OR)
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(Genetic associlation tests

To identify genetic variants that are associated with a complex trait

SNP 1
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Linear regression: Y =Xa + Gf + €
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X: covariates, e.g. age, sex, ancestry, batch...
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(GGenetic assoclation tests

To identify genetic variants that are associated with a complex disease/disorder

BT Yes SNP 1 SNP 1
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(GGenetic assoclation tests

To identify genetic variants that are associated with a complex disease/disorder
@ 'I' No
B0 ves SNP 1
Frequency of C
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.ACCTAGCTATCCT... 1t: probability of being a case given X and G
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Looking at results



QQ (quantile-quantile) plot

* Checks the overall distribution of test statistics or —log10 p-values
of our results with the expectation under the null hypothesis of no

association (the diagonal line shows where the points should fall
under the null).

* Evaluates systematic bias and inflation (undetected sample
duplications, unknown familial relationships, gross population
stratification, problems in QC...).

Observed -log10 (p)

Expected -log10 (p)



Multiple testing

p < 5 X 1 0‘8 Genetic Epidemiology 32: 227-234 (2008)

Estimation of Significance Thresholds for Genomewide
Association Scans

Frank Dudbridge® and Arief Gusnanto
MRC Biostatistics Unit, Institute for Public Health, Cambridge, United Kingdom

Genetic Epidemiology 32: 381385 (2008)

Brief Report

Estimation of the Multiple Testing Burden for Genomewide
Association Studies of Nearly All Common Variants

Itsik Pe’er,' Roman Yelerlsky,z“1 David Altshuler,>*>7 and Mark J. Dalyz's‘s"

% Journal of Serendipitous and Unexpected Results

Neural Correlates of Interspecies Perspective Taking in
the Post-Mortem Atlantic Salmon: An Argument For

Proper Multiple Comparisons Correction

Craig M. Bennett '+, Abigail A. Baird 2, Michael B. Miller' and George L.
Wolford *
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~log1dip]

Manhattan plot

* Plots the -log10 of the association p-value for each SNP
against the genomic coordinates.

* The strongest associations will have the smallest p-
21 values and the -log10 of these p-values will have the
highest height in the plot.
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—log1o(P)
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And these? What are these telling us?

-log10 (p) [obs]
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-log10(p) [exp]
0.912189387705185



There be dragons...




Confounders

- Population Stratification Cai -

0000...0000
Mean trait or case frequency 0000 ' 0000

differences between populations 0000 o000
0000, . .0000
+ 0000 0000

Alleles with frequency differences
between populations

.

False positive / negative associations

Balding. Nat Rev Genet (2006)



More to come later (Medland)

Analyzing X Chromosome

» Often overlooked, but important to analyze, too

autosomes

* Imputation can be done and servers understand the different
chromosomes and regions on them

 Dosage differences between sexes, dosage compensation and
X inactivation are all important features

« X inactivation varies for different tissues

Briefings in Bioinformatics, 2022, 23(5), 1-9
https://doi.org/10.1093/bib/bbac287
OXFORD Review

A systematic review of analytical methods used in
genetic association analysis of the X-chromosome

Nick Keur, Isis Ricano-Ponce, Vinod Kumar and Vasiliki Matzaraki

Corresponding author. Vasiliki Matzaraki, E-mail: Vasiliki. Matzaraki@radboudumc.nl
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Sample Size & Power

Schizophrenia Working Group of the Psychiatric Genomics Consortium.

. 2011 a 2014
1 1
3 l g i . 3 ' M i nﬁhﬁ&d i 3 _

9,394 cases 36,989 cases

12,462 controls 113,075 controls



Power Calculation Tools

Consider: Effect size, Sample size, Prevalence, MAF

Purcell, Cherny, & Sham. Bioinformatics, 2003
http://zzz.bwh.harvard.edu/gpc/

Johnson & Abecasis. bioRxiv, 2017

https://csqg.sph.umich.edu/abecasis/gas power calculator/i
ndex.html



http://zzz.bwh.harvard.edu/gpc/
https://csg.sph.umich.edu/abecasis/gas_power_calculator/index.html

Replication

1. Significance
2. Size
3. Direction

Meta-analysis has
mostly replaced
replication...
More on this this
afternoon

Replications: Study 1

i
. . ’ : . b

Replications: Study 2
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Replications: Study 3
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Meta-anal lysis

A

-Log,q P Value

Manolio. N Engl J Med, 2010



There are many tools for GWAS

* The most appropriate method depends on the structure of your
data: stratification, relatedness Sample size Etc...

* We’re going to use plink2 for today’s practical: fast, simple
command line program that is a general workhorse software for
managing data and running analyses.

* Original plink ped/map format
* Binary plink format (plink1.9): bed/bim/fam

* Fast, very useful

SAFETY REMINDER

USE THE RIGHT TOOL

* Plink2 format: pgen/psam/pvar FOR THE RIGHT JOB

INTHE RIGHT WAY

* Very fast
* Saves space compared to others
* Caninclude dosage, phase, INFO (similar to VCF format)






Today’s practical is on qualtrics:

https://gimr.az1.qualtrics.com/jfe/form/SV_8IWskkB41ezAMIg

Link is in Qualtrics.txt


https://qimr.az1.qualtrics.com/jfe/form/SV_8IWskkB41ezAMlg




Association with family data



Punnett square

Two genes A and B. Parents

are both heterozygotes
(AaBb).

Their offspring may have
different genotypes.

K Mather, Biometrical
Genetics, Dover Publ, 1949



In the population traits of e.g. ab/ab
individuals differ from the
phenotypes of AB/AB individuals.

Do we see the same differences if
these two individuals are siblings?

l.e., is variation within families equal
to variation between families?

If yes: “true” genetic association

If no: ? (confounding)




Lindon Eaves
(e.g. Inferring the Causes of Human Variation, 1977)

The genetic and environmental variation
is partitioned into within and between
family components.

Gl=within - family genetic component
G2=between - family genetic component

El=within-family environment (“E”)
E2=between-family environment (“C”)

In the absence of GE interaction or GE
correlation total variance is partitioned
into: 02t = 2w + 62b, and familial
resemblance is: ICC = 02b / (02w + 02b)




AJHG o

CellPress

Volume 64, Issue 1, January 1999, Pages 259-267

Combined Linkage and Association Sib-Pair
Analysis for Quantitative Traits

DW. Fulker!?, 5.S. Cherny*? & &, P.C. Sham 2, ].K. Hewitt *

Summary

An extension to current maximume-likelihood variance-components procedures for
mapping quantitative-trait loci in sib pairs that allows a simultaneous test of allelic
association is proposed. The method involves modeling of the allelic means for a test of
association, with simultaneous modeling of the sib-pair covariance structure for a test of
linkage. By partitioning of the mean effect of a locus into between- and within-sibship
components, the method controls for spurious associations due to population
stratification and admixture. The power and efficacy of the method are illustrated
through simulation of various models of both real and spurious association.
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Figure 1
Graphical illustration of the genotypic values for a diallelic locus.

Table 1
Summary of Genotypic Values, Frequencies, and Dominance Deviation for Three Genotypes A1A1, A1A2, and A2AZ2

Genotype ATAT AlA2 AZAZ
Genotypic value a d —a
Frequency fig 2pq id
Frequency x value ap 2dpg —-ag
Deviation from the population mean 2q(a —dp) afg—pl)+di1-2pg) —2p(a + dg)

Dominance deviation =2°d Zdpg =2p°d




Table 1. Expected Sib-Pair Means and Differences and Their Frequencies for a Single Additive
Two-Allele Locus

Genotype Additive effects
Sib 1 Sib 2 Sib 1 Sib 2 Mean Difference/2 Frequency
AA, AjA; a a a 0 pt+pg + (p’H4)
AA AA, a 0 al2 a2 Plq + (P*q*2)
AA, AxA, a —a 0 a p2q2/4
AA; AA, 0 a al2 -al2 pq + (P’q*2)
AA; AjA; 0 0 0 0 p’q + 3p%°¢* + pg’
AA, AA; 0 —a ~af2 al2 (p*¢*2) + pg’
AsA, AJA; —a a 0 —a p’q*/4
AA, AA, -a 0 —al2 —al2 (P*¢2) + pg

A, AzA; —a —a —a 0 (p*q%4) + pg* + ¢*
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Within-sibship genome-wide association analyses Population stratfication
decrease bias in estimates of direct genetic effects A

Laurence J. Howe B, Michel G. Nivard, Tim T. Morris, Ailin F. Hansen, Humaira Rasheed, Yoonsu Cho

Geetha Chittoor, Rafael Ahlskog, Penelope A. Lind, Teemu Palviainen, Matthijs D. van der Zee, Rosa

G * X

Cheesman, Massimo Mangino, Yunzhang Wang, Shuai Li, Lucija Klaric, Scott M. Ratliff, Lawrence F. Bielak,

Marianne Nygaard, Alexandros Giannelis, Emily A. Willoughby, Chandra A. Reynolds, Jared V. Balbona, Ole A, ancestry, G, genotype, X, phenotype

A. Andreassen, Social Science Genetic Association Consortium, Within Family Consortium, ... Neil M. Davies

Assortative mating

B+ Show authors

Fig. 1| Demographic and indirect genetic effects. Population stratification: 1 Gon
Nature Genetics 54, 581-592 (2022) population stratification is defined as the distortion of associations X, \A G1,
between a genotype and a phenotype when ancestry A influences both / | G2, \\.‘
genotype G (via differences in allele frequencies) and the phenotype X. e
Principal components and linear mixed model methods control for ancestry
but they may not completely control for fine-scale population structure. | Glez
Assortative mating: assortative mating is a phenomenon where individuals Xz /‘ GZ
select a partner based on phenotypic (dis)similarities. For example, ] G2,
tall individuals may prefer a tall partner. Assortative mating can induce _ _
correlations between causes of an assorted phenotype in subsequent gjf“- FE, L gg:zfypei ?Jrﬁ:;;énamma and offspring for variant 1,
generations. If a phenotype X is influenced by two independent genetic X‘Q"" = GI;EEM:E; )
variants G1 and G2 then assortment on X (represented by effects of X on MT&E&: choice ’

mate choice M) will induce positive correlations between G7in parent 1
and G2 in parent 2 and vice versa. Parental transmission will then induce
correlations between otherwise independent G7and G2 in offspring. These
correlations can distort genetic association estimates. Indirect genetic Ge
effects: indirect genetic effects are effects of relative genotypes (via
relative phenotypes and the shared environment) on the index individual's
phenotype. These indirect effects influence population GWAS estimates
because relative genotypes are also associated with genotypes of the G,
index individual. Indirect genetic effects of parents on offspring are of most
interest because they are likely to be the largest. However, indirect genetic G, parental genotype, G, offspring genotype,
effects of siblings or more distal relatives are also possible. X;, parental phenotype, X;,, offspring phenotype

Indirect genetic effects (parental)
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Population GWAS

Within-sibship genome-wide association analyses
decrease bias in estimates of direct genetic effects

Laurence J. Howe 9, Michel G. Nivard, Tim T. Morris, Ailin F. Hansen, Humaira Rasheed, Yoonsu Cho,

Geetha Chittoor, Rafael Ahlskog, Penelope A. Lind, Teemu Palviainen, Matthijs D. van der Zee, Rosa
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Within-sibship GWAS

Marianne Nygaard, Alexandros Giannelis, Emily A. Willoughby, Chandra A. Reynolds, Jared V. Balbona, Ole

A. Andreassen, Social Science Genetic Association Consortium, Within Family Consortium, ... Neil M. Davies

B + Show authors

Nature Genetics 54, 581-592 (2022) | Cite this article

As outlined in Fig. 1, estimates from population GWAS may not fully control for demography
(population stratification and assortative mating) and may also capture indirect genetic effects of
relatives. For simplicity we use N'to represent all sources of associations between G and X that do not
relate to direct effects of G. Circles indicate unmeasured variables and squares indicate measured
variables. If parental genotypes are known, G can be separated into nonrandom (determined by
parental genotypes) and random (relating to segregation at meiosis) components. Within-sibship
GWAS include the mean genotype across a sibship (GF) (a proxy for the mean of the paternal and
maternal genotypes G™M) as a covariate to capture associations between G and X relating to parents.
The within-sibship estimate is defined as the effect of the random component: that is, the association
between family-mean-centered genotype G© (that is, G - G') and X. Demography and indirect genetic
effects of parents (N) will be captured by GF. The association between G and X will not be influenced
by these sources of association but could be affected by indirect effects of the siblings themselves,
which are not controlled for.
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A Follow this preprint
Family-GWAS reveals effects of environment and mating on genetic associations

Tammy Tan, Hariharan Jayashankar, Junming Guan, Seyed Moeen Nehzati, Mahdi Mir, Michael Bennett,
Esben Agerbo, Rafael Ahlskog, Ville Pinto de Andrade Anapaz, Bjern Olav Asvold, Stefania Benonisdottir,
Laxmi Bhatta, *=' Dorret |. Boomsma, Ben Brumpton, Archie Campbell, Christopher F. Chabris, Rosa Cheesman,
Zhengming Chen, China Kadoorie Biobank Collaborative Group, Eco de Geus, Erik A. Ehl,
Abdelrahman G. Elnahas, Estonian Biobank Research Team, Finngen, Andrea Ganna, Alexandros Giannelis,
Liisa Hakaste, Ailin Falkmo Hansen, Alexandra Havdahl, Caroline Hayward, Jouke-Jan Hottenga,
Mikkel Aagaard Houmark, Kristian Hveem, "= Jaakko Kaprio, Arnulf Langhammer, Antti Latvala, James |. Lee,
Mikko Lehtovirta, Liming Li, LifeLines Cohort Study, Kuang Lin, Richard Karlsson Linnér, Stefano Lombardi,
MNicholas G. Martin, Matt McGue, Sarah E. Medland, Andres Metspalu, Brittany L. Mitchell, Guiyan Mi,
llja M. Molte, Matthew T. Oetjens, Sven Oskarsson, Teemu Palviainen, Rashmi B. Prasad, Anu Reigo,
Kadri Reis, Julia Sidorenko, Karri Silventoinen, Harold Snieder, Tiinamaija Tuomi, Bjarni J. Vilhjdlmsson,

Robin G. Walters, Emily A. Willoughby, Bendik S. Winsvold, Eivind Ystrom, Jonathan Fint, Loic Yengo,
Peter M. Visscher, Augustine Kong, Elliot M. Tucker-Drob, ©' Richard Border, David Cesarini, Patrick Turley,
Aysu Olkbay, Daniel |. Benjamin, "= Alexander Strudwick Young

doi: https:fdoi.org/10.1101/2024.10.01.243 14703

Genome-wide association studies (GWAS) have discovered thousands of replicable genetic associations. guiding
drug target discovery and powering genetic prediction of human phenotypes and diseases. However, genetic
associations can be affected by gene-environment correlations and non-random mating. which can lead to biased
inferences in downstream analyses. Family-based GWAS (FGWAS) uses the natural experiment of random
assignment of genotype within families to separate out the contribution of direct genetic effects (DGEs) — causal
effects of alleles in an individual on an individual — from other factors contributing to genetic associations. Here.
we report results from an FGWAS meta-analysis of 34 phenotypes from 17 cohorts. We found evidence that factors
uncorrelated with DGEs make substantial contributions to genetic associations for 27 phenotypes, with population
stratification confounding — a form of gene-environment correlation — likely the major cause. By estimating SNP
heritability and genetic correlations using DGEs, we found evidence that assortative mating has led to
overestimation of SNP heritability for 5 phenotypes and overestimation of the degree of shared genetic effects
(pleiotropy) between 22 pairs of phenotypes. Polygenic predictors constructed from DGEs are particularly useful for
studying natural selection. assortative mating. and indirect genetic effects (effects of relatives’ genes mediated
through the family environment). We validate our meta-analysis results by predicting phenotypes in hold-out
samples using polygenic predictors constructed from DGEs, achieving statistically significant out-of-sample
prediction for 24 phenotypes with little attenuation of predictive power within-families. We provide FGWAS
summary statistics for 34 phenotypes that can be used for downstream analyses. Our study provides both a template
for performing FGWAS and an argument for its value for debiasing inferences and understanding the impact of
environment and mating patterns.
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Figure 3. Comparison of SNP heritability estimates from direct genetic effects and population effects. The x-axis is the SNP
heritability estimate from applying LDSC* to genome-wide summary statistics on population effects. The y-axis is the SNP
heritability estimate from applying LDSC fo direct genetic effects (DGEs) (Methods). Vertical and horizontal ervor bars give the
95% confidence intervals. The diagonal line is the identity. We label the phenotypes with statistically detectable differences
(FDR< 0.05, two-sided test): Age at first birth (women); EA, educational attainment, Ever-smoker, whether an individual has
ever smoked; Depression; and Height.
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George Box

“Remember that all models are

wrong, the practical question is

how wrong do they have to be to
not be useful.”

Box, G.E.P. and Draper, N.R. (1987) Empirical model-building
and response surfaces. New York: Wiley. p424
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