Please copy the files for this session

Twin-based Direction of Causation (DOC) Modeling

International Statistical Genetics Workshop

IBG, University of Colorado Boulder

Friday, 8th March 2024

MadhurBain Singh

singhm18@vcu.edu

Virginia Institute for Psychiatric and Behavior Genetics Virginia Commonwealth University, Richmond, VA

Thanks to Nathan Gillespie, Hermine H. M. Maes, and Michael C. Neale.

Twin-based DOC modeling in SEM

- Causal inference in cross-sectional data from twins
- Extension of bivariate/multivariate twin design

*Diagram showing only the within-individual part of the model.

Power based on the information from the **cross-twin cross-trait covariance**.

Causal effect of X on Y within an individual

Note

When we model/estimate an effect of *X* on *Y*, the variable *X* need not have a "direct" effect on *Y*.

There may be a chain of unmeasured variables that partly or fully mediate the effect of *X* on *Y*.

This is true for all models of causal inference.

Assumption: The causal process is identical in both siblings.

Note

Almost all* causal models assume a homogeneous causal process in the population under study.

*unless explicitly specified.

Assumption: There are no within- or cross-trait sibling interactions.

Twin-1's trait X has no causal influence on Twin-2's trait X or trait Y, and vice versa.

(e.g., sibling cooperation or rivalry)

X causes Y

8

DOC depends on the two traits having different twin-pair correlations

- In other words, DOC works if the two traits have different ACE/ADE estimates.
- If the two traits have the same (or very similar*) ACE/ADE estimates, the cross-twin cross-trait covariance is the same (or very similar*) under the two directions of causal effects.
- So, the model has no (or very little*) power to differentiate between the two causal processes.
 - i.e., the model has a similar fit under either direction of causation.

the ACE estimates of X must be different from the ACE estimates of Y.

For the DOC model to work,

Neale and Cardon (1992); Heath et al. (1993); Duffy and Martin (1994).

*If the ACE estimates of X and Y are very similar (but not the same), the DOC model would require extremely large sample sizes to differentiate between the two directions of causation.

Both X and Y have ACE variance decomposition.

Exercise: What is the expected cross-twin cross-trait covariance when

Exercise: What is the expected cross-twin cross-trait covariance when

Exercise: What is the expected cross-twin cross-trait covariance when

Compare the model fit statistics with different directions of causation specified

An applied example of the classic DOC model

between peer group deviance and cannabis use in male twins

Nathan A. Gillespie¹, Michael C. Neale¹, Kristen Jacobson² & Kenneth S. Kendler^{1,3}

Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA¹ Department of Psychiatry, University of Chicago, Chicago, IL, USA² and Department of Human Genetics, Virginia Commonwealth University, Richmond, VA, USA³

	-2LL	df	Δ -2LL	Δdf	Р	BIC
22–25 years						
Cholesky	7725.38	3542				-2805.25
PGD→CU	7744.32	3544	18.94	2.00	< 0.001	-2799.54
CU→PGD	7729.08	3544	3.70	2.00	0.16	-2807.16
PGD↔CU	7728.00	3543	2.62	1.00	0.11	-2805.82

Causal estimates in DOC may be biased by differences in the measurement error of the two traits

- If the two traits have different levels of measurement error (i.e., reliability), the causal estimates in the standard DOC model (applied to observed phenotypes) will be biased.
- Solutions
 - *If* the reliability/measurement error of the phenotype is known, SEM allows for its specification in the model.
 - See the path diagrams and scripts in the MR-DOC session this afternoon.
 - More realistically, use latent "true" phenotypes derived from multiple indicators and fit the DOC model to latent phenotypes.

DOC model between latent phenotypes with multiple indicators

Diagram showing only the within-individual part of the model.

Neale and Cardon (1992); Heath et al. (1993)

DOC model between latent phenotypes with multiple indicators

The DOC model of interest is fitted to latent phenotypes (that have no measurement error).

Multiple indicators/items of a phenotype

For example, X_1 , X_2 , and X_3 may be

- Symptoms of depression (e.g., CIDI-SF)
- Symptoms of alcohol use disorder (e.g., AUDIT)
- Externalizing behaviors in children/adolescents (e.g., the Child Behavior Checklist)
- Measures of cognitive functions in older populations (e.g., the Mini-Mental Status Examination)

Common latent factor: "True phenotype" from multiple indicators/items

The common latent factor reflects the shared variance between the different items/indicators.

Saturated means model

ACE variance decomposition of the latent phenotype (no measurement error)

Measurement error is captured by the indicator-specific variance not explained by the common factor (true phenotype).

To improve figure readability, the means are not shown.

Plus, ACE decomposition of indicator-specific (residual) variances

Measurement error is captured by the Es_{X1} , Es_{X2} , and Es_{X3} variance components (of the indicatorspecific variances).

Two latent phenotypes (X and Y)

Direction-of-causation modeling with two latent phenotypes

Five possible sources of covariance in the model

The model, as shown, is not identified.

We cannot estimate all five sources of covariance at the same time in this model.

ACE ["confounding-only"] model with two latent phenotypes

Null hypothesis for DOC

The observed associations between the indicators of X and Y are due to

- Background confounding due to unmeasured genetic and/or environmental factors
- No causation between X and Y

DOC model: X causes Y

Alternative hypothesis 1

- X causes Y
- No background confounding due to unmeasured variables

DOC model: Y causes X

Alternative hypothesis 2

- Y causes X
- No background confounding due to unmeasured variables

DOC model: Reciprocal causation between X and Y

Alternative hypothesis 3

- Reciprocal causation between X and Y
- No background confounding due to unmeasured variables

Hybrid DOC model: Causation + Confounding

We may estimate any <u>three</u> sources of covariance between X and Y.

For example,

- X causes Y
- Background confounding due to unmeasured additive genetic factors
- Background confounding due to unmeasured shared/familial environmental factors

Script Walk-through

Start with the ACE ["confounding-only"] model

ACE variance-covariance components of the latent factors

ACE variance-covariance components of the latent factors

ACE variance-covariance components of the latent factors

Causal Paths – Fixed at zero in the ACE confounding-only model

Causal Paths – Fixed at zero in the ACE confounding-only model

Causal Paths – Fixed at zero in the ACE confounding-only model

> B FullMatrix 'B' \$labels Fx Fy "bxy" Fx NA Fy "byx" NA \$values Fx Fy 0 0 Fx 00 Fy \$free: No free parameters. \$lbound: No lower bounds assigned. \$ubound: No upper bounds assigned.

Factor loadings

Factor loadings

Factor loadings

> Fl FullMatrix 'Fl'
<pre>\$labels Fx Fy X1 "f_x1Fx" NA X2 "f_x2Fx" NA X3 "f_x3Fx" NA Y1 NA "f_y1Fy" Y2 NA "f_y2Fy" Y3 NA "f_y3Fy"</pre>
\$values Fx Fy X1 0.8 0.0 X2 0.8 0.0 X3 0.8 0.0 Y1 0.0 0.8 Y2 0.0 0.8 Y3 0.0 0.8
\$free Fx Fy X1 TRUE FALSE X2 TRUE FALSE X3 TRUE FALSE Y1 FALSE TRUE Y2 FALSE TRUE Y3 FALSE TRUE
\$lbound: No lower bounds assigned.
subound, no upper bounds assigned.

ACE components of the indicator-specific variances (= residuals)

ACE components of the indicator-specific variances (= residuals)

ACE components of the indicator-specific variances (= residuals)

Δε									
> AS DiscNetnix !Ac!									
DiagMatrix As									
\$Labels									
X1	X2	X3	Y1	Y2	Y3				
X1 "As_X1"	NA	NA	NA	NA	NA				
X2 NA	"As_X2"	NA	NA	NA	NA				
X3 NA	NA	"As_X3"	NA	NA	NA				
Y1 NA	NA	NA	"As_Y1"	NA	NA				
Y2 NA	NA	NA	NA	"As_Y2"	NA				
Y3 NA	NA	NA	NA	NA	"As_Y3"				
\$values									
X1	X2 X3	Y1 Y2	2 Y3						
X1 0.05 0.	00 0 00	0.00 0.0	0 0 00						
15 0.00 0.	00 0.00	0.00 0.00	0 0.05						
<i>t</i> .c									
\$free									
X1	X2	X3 Y1	Y2	Y3					
X1 TRUE F	ALSE FAL	SE FALSE	FALSE F	ALSE					
X2 FALSE	TRUE FAL	SE FALSE	FALSE F	ALSE					
X3 FALSE F	ALSE TR	UE FALSE	FALSE F	ALSE					
Y1 FALSE F	ALSE FAL	SE TRUE	FALSE F	ALSE					
Y2 FALSE F	ALSE FAL	SE FALSE	TRUE F	ALSE					
Y3 FALSE F	ALSE FAL	SE FALSE	FALSE	TRUE					

Specify the means

Specify the means

Specify the means

Tutorial

Please copy the scripts for this session

mkdir ~/doc
cp -r /home/madhur/2024/Day-5/DOC/* ~/doc/.

Qualtrics link

This link is also on top of the R script: **DOC_multiple_indicator.R**

https://qimr.az1.qualtrics.com/jfe/form/SV_eW1CeUT3ZibFMzQ

Tutorial: DOC modeling with multiple indicators

- 1. Fit the **ACE "confounding-only" model** = *Null hypothesis for DOC*.
- 2. Run the **Direction of Causation models** (alternative causal hypotheses):
 - *a)* X causes Y (no background ACE covariance)
 - *b) Y* causes *X* (no background ACE covariance)
 - c) Reciprocal causation between *X* and *Y* (no background ACE covariance)

Infer the mechanism of covariance between X and Y based on the best-fitting model.

3. Bonus: Fit a **hybrid model with three sources of covariance** (causation + confounding).

The "true" model – as simulated

Data simulated using the script *xtra_Data_Simulation_DoC_Multiple_Indicator.R*

Further Readings

 Maes, H. H. M., Neale, M. C., Kirkpatrick, R. M., & Kendler, K. S. (2021). Using Multimodel Inference/Model Averaging to Model Causes of Covariation Between Variables in Twins. Behavior Genetics, 51(1), 82-96. <u>https://doi.org/10.1007/s10519-020-10026-8</u>

Fit all possible bivariate twin models

Obtain a weighted average of the parameter estimates across models

Models are weighted by their goodness of fit

 Neale, M. C., & Kendler, K. S. (1995). Models of comorbidity for multifactorial disorders. American Journal of Human Genetics, 57(4), 935–953. <u>https://pubmed.ncbi.nlm.nih.gov/7573055/</u>

Theoretical and methodological exposition of different causes of covariation between traits

References

- Neale, M. C., & Cardon, L. R. (1992). Direction of Causation. In M. C. Neale & L. R. Cardon (Eds.), *Methodology for Genetic Studies of Twins and Families* (pp. 261-287). Springer Netherlands. <u>https://doi.org/10.1007/978-94-015-8018-2_13</u>
- Heath, A. C., Kessler, R. C., Neale, M. C., Hewitt, J. K., Eaves, L. J., & Kendler, K. S. (1993). Testing hypotheses about direction of causation using cross-sectional family data. *Behavior Genetics*, 23(1), 29-50. <u>https://doi.org/10.1007/BF01067552</u>
- Duffy, D. L., & Martin, N. G. (1994). Inferring the direction of causation in cross-sectional twin data: Theoretical and empirical considerations. *Genetic Epidemiology*, 11(6), 483-502. <u>https://doi.org/10.1002/gepi.1370110606</u>