We will be working in qualtrics: https://qimr.az1.qualtrics.com/jfe/form/SV bjXq3wCxYVR0SEu

We will be using the script TrioGCTA_Practical_2024.R

You will need to copy simulated data into your folder:

```
# Create a directory to hold today's work mkdir day4_triogcta
```

```
# Move into that directory, and then copy over my folder cd day4_triogcta cp -r /home/ziada/2024/day4_triogcta/TrioGCTA_practical* ./
```


A = GRM(dat) #create a genetic relatedness matrix

NB!! this GRM becomes computationally intensive when working with larger data sets < 60,000 trios

in that case we would recommend using the programming language Julia which is known for its speed in high performance computing

Contact Espen Eilertsen e.m.eilertsen@psykologi.uio.no for Julia scripts mid = 1:1000

pid = 1001:2000

oid = 2001:3000

Amm = A[mid, mid]

App = A[pid, pid]

Aoo = A[oid, oid]

Dpm = A[pid, mid] + A[mid, pid]

Dom = A[oid, mid] + A[mid, oid]

Dop = A[oid, pid] + A[pid, oid]

These blocks define the correlation structure of each family members effects i.e., direct indirect covariance

The implied structure of the model can be described by these blocks alone

Here we specify the owner of the phenotype, this will influence how we interpret the parameters

$$\sigma_m^2$$
 σ_p^2 σ_o^2

Bonus script questions?

Table 2 Parameter estimates and standard errors from the fitted models

From: <u>Direct and Indirect Effects of Maternal, Paternal, and Offspring Genotypes: Trio-GCTA</u>

Parameter	
σ_m^2	
$egin{array}{c} \sigma_m^2 \ \sigma_p^2 \ \hline \sigma_o^2 \end{array}$	
σ_o^2	
σ_{om}	
σ_{op}	
σ_{pm}	
$\sigma_{pm} = \sigma_e^2$	

BW offspring birth weight, RS maternal relationship satisfaction six months after birth, BMI paternal body mass index

Model	Variance decomposition
Full	$\sigma_c^2 + \sigma_p^2 + \sigma_m^2 + \sigma_{om} + \sigma_{op} + \sigma_e^2$ $\sigma_c^2 + \sigma_p^2 + \sigma_m^2 + \sigma_e^2$
No Covariance	$\sigma_c^2 + \sigma_p^2 + \sigma_m^2 + \sigma_e^2$
Direct Only	$\sigma_c^2 + \sigma_e^2$
Null	σ_e^2

For a more detailed analysis it would be preferable to fit alternative nested models as seen above and compare whether simpler models are equally supported by the data.