

"Okay yeah, that explains a lot."

Parents and offspring tend to be quite similar.

Shared Genetic Effects

Shared Genetic Effects

Shared Genetic Effects

Vertical Transmission

(aka "Cultural Transmission")

The phenomenon where a parental phenotype directly influences an offspring phenotypes via the familial environment

Parental Phenotype Familial Environment Offspring Phenotype

Genetic Nurture

A type of Passive Gene-Environment Covariance

If unaccounted for, genetic nurture and vertical transmission:

- Will upwardly bias estimates of SNP effects from GWAS
- Will downwardly bias estimates of additive genetic effects (A) in twin ACE models
- Will upwardly bias estimates of additive genetic effects (A) in twin AE and ADE models
- We'll be missing out on stuff that's just like, generally cool to know about

Biological Parents

Genes shared between parents and offspring

Parental

Adoptive Parents

Genes <u>NOT</u>
shared between parents and offspring

- "All models are wrong, some are useful."
 - George E.P. Box
 - Mike Hunter
 - Sarah Medland
 - Ben Neale
 - Matt Keller
 - Jared Balbona

Assumptions

- Child's genotype is uncorrelated with adoptive parents'
 - No selective placement
 - No within-family adoption
- Equivalence of environments provided by biological and adoptive parents
- Random mating between the parents
- Generalizable to all individuals

Limitations

Difficult sample to collect—
 Often small and proprietary

International Journal of Epidemiology, 2018, 1229–1241 doi: 10.1093/jje/dyy015 Advance Access Publication Date: 13 February 2018 Original article SEA

International Journal of Epidemiology, 2019, 861–875 doi: 10.1093/ije/dyz019 Advance Access Publication Date: 27 February 2019

Original article

Methods

Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank

Nicole M Warrington, ¹ Rachel M Freathy, ^{2,3} Michael C Neale ⁴ and David M Evans ^{1,3,5}*

RESEARCH ARTICLE

Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis

Ge Zhang^{1,2}*, Jonas Bacelis³, Candice Lengyel², Kari Teramo⁴, Mikko Hallman⁵, Øyvind Helgeland⁶, Stefan Johansson^{6,7}, Ronny Myhre⁸, Verena Sengpiel³, Pål Rasmus Njølstad^{6,9}, Bo Jacobsson^{8,10}, Louis Muglia²*

Mendelian Randomization

Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization

David M Evans , , , , , , , , Gunn-Helen Moen, , Liang-Dar Hwang, Debbie A Lawlor^{2,3,6} and Nicole M Warrington ,

RESEARCH

HUMAN GENOMICS

The nature of nurture: Effects of parental genotypes

Augustine Kong,^{1,2,3*} Gudmar Thorleifsson,¹ Michael L. Frigge,¹
Bjarni J. Vilhjalmsson,^{4,5} Alexander I. Young,^{1,2,6} Thorgeir E. Thorgeirsson,¹
Stefania Benonisdottir,¹ Asmundur Oddsson,¹ Bjarni V. Halldorsson,¹ Gisli Masson,¹
Daniel F. Gudbjartsson,^{1,3} Agnar Helgason,^{1,7} Gyda Bjornsdottir,¹
Unnur Thorsteinsdottir,^{1,8} Kari Stefansson^{1,8*}

RESEARCH

HUMAN GENOMICS

The nature of nurture: Effects of parental genotypes

Augustine Kong,^{1,2,3*} Gudmar Thorleifsson,¹ Michael L. Frigge,¹
Bjarni J. Vilhjalmsson,^{4,5} Alexander I. Young,^{1,2,6} Thorgeir E. Thorgeirsson,¹
Stefania Benonisdottir,¹ Asmundur Oddsson,¹ Bjarni V. Halldorsson,¹ Gisli Masson,¹
Daniel F. Gudbjartsson,^{1,3} Agnar Helgason,^{1,7} Gyda Bjornsdottir,¹
Unnur Thorsteinsdottir,^{1,8} Kari Stefansson^{1,8*}

Parental alleles transmitted to the offspring

Parental alleles **not** transmitted to the offspring

Kong et al. Model

- Assumes no assortative mating beyond the parental generation
- No estimate of the vertical transmission effect itself.
- Cumbersome math that cannot be extended to other, more common scenarios (e.g., data without trios).

ORIGINAL RESEARCH

Estimation of Parental Effects Using Polygenic Scores

Jared V. Balbona^{1,2} · Yongkang Kim¹ · Matthew C. Keller^{1,2}

Received: 7 August 2020 / Accepted: 20 November 2020 / Published online: 2 January 2021

© The Author(s) 2021

Kong et al. Model

- Assumes no assortative mating beyond the parental generation
- No estimate of the vertical transmission effect itself.
- Cumbersome math that cannot be extended to other, more common scenarios (e.g., data without trios).

SEM-PGS Model

- Allows for all types of assortative mating
- Estimates genetic nurture and vertical transmission
- Not biased by missing data
- Allows for extensions to fit whatever trait and data you have
- Easy to use!

Maternal

Paternal Maternal

Offspring

Parental Phenotype Familial Environment Offspring Phenotype

Genetic Nurture

A type of Passive Gene-Environment Covariance

Maternal

Paternal Maternal

Path Tracing Rules

(described in Balbona et al., 2021)

- 1. A chain begins by travelling backwards against the direction of a single or double-headed arrow (from the arrow's head to its tail). However, once a double-headed arrow has been traversed, the direction reverses such that the chain now travels forwards, in the direction of the arrows.
- 2. A chain must include exactly one double-headed arrow (a variance or a covariance term), which is equivalent to stating that a chain must change directions exactly once. This is necessary because double-headed arrows provide the proper scaling for the coefficients in each chain.
- 3. All chains must be counted exactly once and each must be unique. However, the order of the links in the chains matters. For example, despite being algebraically equivalent, the chain $Y_p \to NT_p \to T_p \to Y_p$ is distinct from the chain $Y_p \to T_p \to NT_p \to Y_p$ in Figure 1. Both are unique and both must be counted in determining the variance of Y_p .
- 4. Co-paths may only be traversed once in a given chain, and a chain must be legitimate before traversing the co-path. However, once the co-path is crossed, the first two rules above reset. A chain must therefore contain exactly one double-headed arrow before traversing the co-path, and one double-headed arrow after traversing the co-path. Thus, co-paths connect two legitimate chains to create a single, longer chain.

Model 0:

No Assortment

Offspring's Genome

1 Generation of Assortment

Offspring's Genome

>1 Generation of Assortment

	T _p	NTp	T _m	NT _m
Tp	k	0	0	0
NTp		k	0	0
T _m			k	0
NT _m				k

No Assortment

F_{o} T_{m}

g : Increase in PGS (co)variances due to AM

	T _p	NT _p	T _m	NT _m
Tp	k	0	g	g
NTp		k	g	g
T _m			k	0
NT _m				k

1 Generation of Assortment

k + g NT_{m} NT_p Y_m,

g: Increase in PGS (co)variances due to AM

	T _p	NT _p	T _m	NT _m
Tp	k + g	g	g	${\cal g}$
NTp		k+g	g	${\cal g}$
T _m			k + g	g
NT _m				k + g

>1 Generation of Assortment

Model 1:

- Vertical Transmission
- Assortative Mating

Model 0:

- Vertical Transmission,
- Assortative Mating

Model 1:

- Vertical Transmission,
- Assortative Mating

 $= f\Omega(1 + V_{\nu}\mu) + 2\delta g$

Model 0:

- Vertical Transmission,
- Assortative Mating

Model 1:

- Vertical Transmission,
- Assortative Mating

$$= f\Omega(1 + V_{y}\mu) + 2\delta g$$

Assumptions / Limitations

- Does not look at the full impact of parental influence *
- Requires sufficiently predictive PGS's
- Results can be biased if the discovery GWAS themselves are biased by stratification
- Does not account for horizontal transmission (i.e., sibling effects)

Some other extensions we're working on

Final Note

Overview of the Script

$$x = 2yz$$

$$y = x/z - y$$

$$z = (x + z) / 3y$$

$$x = 2yz$$
 Step 1

$$y = x/z - y$$

$$z = (x + z) / 3y$$

$$x = 2yz$$

$$y = x/z - y$$

$$z = (x + z) / 3y$$

$$x = 2yz$$
 Step 1

$$y = x/z - y$$

$$z = (x + z) / 3y$$

