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Utility of Structural Equation Modeling

• Flexible framework to estimate a 
variety of causal and correlational 
models:
• Confirmatory Factor Analysis
• Path Analysis (mediation, feedback loops)
• Regression (linear, logistic, ordinal)

Three major advantages of SEM over 
traditional multivariate techniques:
1. Explicit focus on measurement (error)

2. Estimate latent variables

3. Test complex theoretical structures

Structural Equation Modeling attempts to explain the covariance matrix of 
all the variables in the analysis rather than the variation in a single 
dependent variable

If there is only one dependent variable and one independent variable, 
SEM reduces to regression



Factor Analysis

Factor analysis is a way to explain the covariance 
between a set of observed and latent variables

• Observed variables are concepts that can be directly 
measured (e.g., Items from questionnaires)

• Latent variables are concepts that must be inferred (through 
a mathematical model) from observed variables



Confirmatory Factor Analysis (CFA)

• CFA
• Theory driven model
• Must specify which variables are related in advance

• Both latent and manifest

Caution: It is possible to write/draw unidentified models

1) Depressed mood 
2) Anhedonia
3) Changes in weight

4) Insomnia or hypersomnia 
5) Psychomotor agitation or 
retardation
6) Fatigue 

7) Feelings of worthlessness or guilt 
8) Diminished ability to think or 
concentrate
9) Suicidal ideation

Example: Depression is the cause of the DSM Depression Symptoms:
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Interpreting a CFA

Measurement Model
• Factor Loadings (Regression of the item on the latent factor)

• A 1 unit increase in the latent factor is associated with a 
lambda increase in the observed variable

The larger the magnitude of the factor loading, the 
more central the item is to the interpretation of the 
latent factor

Residuals Model
• Variance in the observed variables not explained 

by the latent factor
• Some items may have large residuals, or 

variance that cannot be explained by covariation 
with the other items in the model

Means Model
• The expected means of the observed variables
• If we include covariates (e.g., age, sex), the 

means are intercepts from a regression model
• This means model is saturated and will fit almost 

perfectly (but it doesn’t have to be)



Latent Variables and Identification

• Identification of the Scale of the Latent Factor: Two 
Approaches

• Constrain the variance of the latent factor to 1
• This standardizes the latent factor to have a unit variance
• We typically assume that the mean is zero

• Under these circumstances, distribution of the latent factor is assumed to 
be standard normal

• Constrain one of the factor loadings
• This fixes the scale of the latent factor to equal that of the variable with 

the fixed factor loading
• A unit increase in xi corresponds to a unit increase in the latent factor
• The latent factor is assumed to be normally distributed (but is longer follows 

a standard normal distribution)
• This is the default in many SEM programs (e.g., Mplus)



Identification of CFA Models

• The t-Rule: t ≤ ½ q(q+1)
• The number of free parameters t in the model must be equal to or less than the number of unique elements in the 

covariance matrix, q(q+1)/2. 
• ‘Unique’ means different expectations

• The t-Rule is necessary but not sufficient

• The 3 Indicator Rule: 
• A 1 Factor model is identified if there are three indicators with non-zero loadings and a diagonal residual matrix.
• With more than three indicators of a factor the model may be over-identified.
• Multifactor models are identified if:

1. Each factor has 3 indicators
2. Each row has one and only one nonzero (free) element (This implies simple structure)
3. The residual matrix is diagonal

These are sufficient conditions, but they are not necessary:
Exceptions can be made (i.e., Correlated Residuals, Cross-loadings)

• The Two-Indicator Rule:
• The residual matrix is diagonal
• One loading (for each factor) is fixed (probably to 1).



Phenotypic Common Factor Model
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Latent Variable Models in Twins
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Common Pathway Model
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Common Pathway Model Algebra

Ψ = ℎ ⊗ 𝑉𝑉𝑎𝑎 + 𝑠𝑠 ⊗ 𝑉𝑉𝑐𝑐 + 𝑑𝑑 ⊗ 𝑉𝑉𝑒𝑒

ℎ𝑀𝑀𝑀𝑀 = 1 1
1 1

ℎ𝐷𝐷𝑀𝑀 = 1 .5
.5 1Δ = ℎ ⊗ 𝑆𝑆𝑎𝑎 + 𝑠𝑠 ⊗ 𝑆𝑆𝑐𝑐 +  𝑑𝑑 ⊗ 𝑆𝑆𝑒𝑒

𝑠𝑠 = 1 1
1 1

𝑑𝑑 = 1 0
0 1

Σ𝜃𝜃 =  ΛΨΛ′ +  Δ



Common Pathway Model Algebra
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Common Pathway Model in Action



Independent Pathway Model
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Independent Pathway Model Algebra

Δ = ℎ ⊗ 𝑆𝑆𝑎𝑎 + 𝑠𝑠 ⊗ 𝑆𝑆𝑐𝑐 +  𝑑𝑑 ⊗ 𝑆𝑆𝑒𝑒

Σ𝜃𝜃 =  ΛΨΛ′ +  Δ
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Independent Pathway Model in Action
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• In multivariate twin analyses, saturated models are 
essential comparison models to gauge the fit of 
hypothesis driven models (i.e. Common and 
Independent pathway models).

• Saturated models freely estimate all possible 
covariances and therefore should fit the data as 
accurately as possible.

• Therefore, comparing hypothesis driven models to the 
saturate model allows us to test how much worse the 
hypothesis driven models fits the observed data.

Saturated Multivariate Twin Models



Saturated Multivariate Twin Models
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Saturated Multivariate Twin Models
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• The Cholesky Decomposition implicitly constrains 
all variance parameters to be positive 

• (Seems sensible)

• This constraint truncates the distribution of the 
variance parameters under the null distribution 

• (Meaning the p-values are wrong)

• Under the null, the test statistics is distributed as a 
mixture distribution of 0, 𝟀𝟀2(1), … 𝟀𝟀2(k).

Cholesky Problems



Intuition behind the Problem

If rMZ is .50 and rDZ is .25: 
Va = 0.5 
Vc = 0
Ve = 0.5

In repeated sampling, sometimes 
rMZ will be slightly overestimated 
and rDZ will be slightly 
underestimated.

If so, C will be negative

Other times, rMZ will be slightly 
underestimated and rDZ will be 
slightly overestimated.

If so, C will be positive

rMZ = .50 rDZ = .25



Model Evaluation

Requirements for the Likelihood Ratio Test (LRT) :
• estimated from the same data (preferably using ML)
• a restricted model is nested in a more saturated model 
• restricted must have fewer fitted parameters (more df) than the saturated 

model 

𝐿𝐿𝐿𝐿𝐿𝐿 = −2𝑙𝑙𝑙𝑙
𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒(�̂�𝜃)
𝐿𝐿𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐(�̂�𝜃)

Nesting: A reduced model is nested in a saturated model if the reduced model is a 
special case of the saturated model.

• A parameter is set to 0 (or some other value)
• Two parameters are equated

It is possible to have a complex nesting structure 
• A is nested in B which is nested in C



Assumption Testing and Model Fitting

• Completely Saturated Model
• All possible variances, covariances and means are freely estimated

• Saturated Model
• Equating cross-twin cross trait covariances within zygosity (e.g. rt1v1-

t2v2 = rt1v2-t2v1)

• Equal means and variances across twin order

• Equal means and variances across Zygosity

More 
Saturated

Less 
Saturated

Under certain regularity conditions, the twice the 
negative log of the likelihoods between the saturated 
and restricted model will be distributed as a 𝟀𝟀2 with 
the degrees of freedom equal to the difference in the 
number of parameters estimated in each model



Model Fitting in MV Twin Studies
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Order Dependent Results

Caution: The interpretation of your “Best” model may 
depend on the order that you conducted your model 
comparisons.

After fitting my full 
CPM, I dropped the 
specific Cs in my model

Then I couldn’t drop 
the latent C!

Therefore, shared 
environmental factors 
affect the latent factor

After fitting my full 
CPM I dropped the 
latent C in my model

Then I couldn’t drop 
the specific C!

Therefore, shared 
environmental factors 
affect the item 
residuals



Related Examples from the Literature

GenomicSEM 



Related Examples from the Literature

GRM-SEM



Multivariate Twin Practical

• Qualitrics Link:
https://qimr.az1.qualtrics.com/jfe/form/SV_0dmHAEyYb4bPbIG

• Read in data
• There are two sets of datasets - only select one

• Run the assumption testing models
• There are 4 sequentially more restricted models

• Run the CPM 

• Run the IPM

https://qimr.az1.qualtrics.com/jfe/form/SV_0dmHAEyYb4bPbIG


Dataset 1: Common Pathway Model
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Independent Pathway Model
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