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Necessary information for this session:

Copy files via SSH
Open the SSH client from the workshop hub or:
https://workshop.colorado.edu/ssh

Make sure you are in your home folder by typing:
pwd

Create a directory to hold today's work by typing:
mkdir TwinFacMod

Change your directory to the TwinFacMod folder:
cd TwinFacMod

Copy over the files/exercises from my directory into yours by typing the
following (please note that there IS a period that must be included at the end of
the second line):

cp /faculty/brad/2024/TwinFacMod/*

Check to make sure you have the following files (with 1s)



Utility of Structural Equation Modeling

Structural Equation Modeling attempts to explain the covariance matrix of
all the variables in the analysis rather than the variation in a single
dependent variable

If there is only one dependent variable and one independent variable,
SEM reduces to regression

* Flexible framework to estimate a Three major advantages of SEM over
variety of causal and correlational traditional multivariate techniques:
models:

1. Explicit focus on measurement (error)
* Confirmatory Factor Analysis

* Path Analysis (mediation, feedback loops)
* Regression (linear, logistic, ordinal)

2. Estimate latent variables

3. Test complex theoretical structures



Factor Analysis

Shicre®uey,

qualtrics:‘m Factor analysis is the practice of condensing many variables into just a few, so
that your research data is easier to work with.

Factor analysis is a powerful tool when you want to simplify complex data, find
hidden patterns, and set the stage for deeper, more focused analysis.

Factor analysis is a way to explain the covariance
between a set of observed and latent variables

* Observed variables are concepts that can be directly
measured (e.g., Iltems from questionnaires)

e Latent variables are concepts that must be inferred (through
a mathematical model) from observed variables



Confirmatory Factor Analysis (CFA)

* CFA

* Theory driven model

* Must specify which variables are related in advance
e Both latent and manifest

Caution: It is possible to write/draw unidentified models

Example: Depression is the cause of the DSM Depression Symptoms:

1) Depressed mood 4) Insomnia or hypersomnia 7) Feelings of worthlessness or guilt
2) Anhedonia 5) Psychomotor agitation or 8) Diminished ability to think or
3) Changes in weight retardation concentrate

6) Fatigue 9) Suicidal ideation



Phenotypic Common Factor Model

- Measurement Model

- Observed Variables

L Residuals Model




Interpreting a CFA

Means Model

The expected means of the observed variables

* If weinclude covariates (e.g., age, sex), the
means are intercepts from a regression model

*  This means model is saturated and will fit almost
perfectly (but it doesn’t have to be)

Measurement Model

* Factor Loadings (Regression of the item on the latent factor)
e A 1lunitincrease in the latent factor is associated with a
lambda increase in the observed variable

The larger the magnitude of the factor loading, the
more central the item is to the interpretation of the
latent factor

Re5|duals Model

Variance in the observed variables not explained
by the latent factor

 Some items may have large residuals, or
variance that cannot be explained by covariation
with the other items in the model



Latent Variables and Identification

e |dentification of the Scale of the Latent Factor: Two
Approaches

e Constrain the variance of the latent factor to 1
* This standardizes the latent factor to have a unit variance
* We typically assume that the mean is zero

* Under these circumstances, distribution of the latent factor is assumed to
be standard normal

e Constrain one of the factor loadings

* This fixes the scale of the latent factor to equal that of the variable with
the fixed factor loading

* Aunit increase in x; corresponds to a unit increase in the latent factor

* The latent factor is assumed to be normally distributed (but is longer follows
a standard normal distribution)

e This is the default in many SEM programs (e.g., Mplus)



ldentification of CFA I\/Iod_els

e /

* The t-Rule:t <% q(g+1)

The number of free parameters t in the model must be equal to or less than the number of unique elements in the
covariance matrix, q(q+1)/2.

‘Unique’ means different expectations
The t-Rule is necessary but not sufficient

* The 3 Indicator Rule:

A 1 Factor model is identified if there are three indicators with non-zero loadings and a diagonal residual matrix.
With more than three indicators of a factor the model may be over-identified.

* Multifactor models are identified if:

1. Each factor has 3 indicators

2. Each row has one and only one nonzero (free) element (This implies simple structure)
3. The residual matrix is diagonal

These are sufficient conditions, but they are not necessary:
Exceptions can be made (i.e., Correlated Residuals, Cross-loadings)

* The Two-Indicator Rule:
* The residual matrix is diagonal
* One loading (for each factor) is fixed (probably to 1).




Phenotypic Common Factor Model
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Familial
Resemblance

We assume that the same
Measurement Models,
Means Models, and
Residuals Models are equal
for everyone
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Common Pathway Model
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Common Pathway I\/IodeI_AIgebra

/

29 = AWYA + 1
1

Y=hQ@V,+sQV.+dQV, 5

“h®S,+sQS.+ dR® S, 1




Common Pathway I\/Iode_

_Algebra

Measurement Model
Variance Decomposition
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Common Pathway Model in Action
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A common pathway model with quan-
titative but not qualitative sex effects fit best with twin
resemblance for the latent liability to externalizing syn-
dromes due to both genetic and shared environmental
factors. Heritability of the liability was higher in females
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Behavior Disorders

this latent liability was most strongly indexed by DA and
least by CB. All three syndromes had specific genetic

influences (especially CB and AUD in males, and CB in
females) and specific shared environmental effects (espe-
cially DA and CB in males, and AUD in females). For DA,
CB and AUD in men, and DA and AUD in women, at least
75 % of the genetic risk arose through the common factor.
The best fit model assumed that genetic and environmental
influences on these externalizing syndromes in males and
females were the same.
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Independent Pathway Model
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dependent Pathway I\/Iodel Algebra
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Independent Pathway I\/Iodehn Action
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* [n multivariate twin analyses, saturated models are
essential comparison models to gauge the fit of
hypothesis driven modelséi.e. Common and

Independent pathway models).

e Saturated models freely estimate all possible
covariances and therefore should fit the data as
accurately as possible.

* Therefore, comparing hypothesis driven models to the
saturate model allows us to test how much worse the
hypothesis driven models fits the observed data.



Direct 015 0, 0,5 012 022 023
Symmetric 913 023
Matrix 012 022 033 0'22

01,2 0323
013 023 033 2
| ’ 2 01,3 023 03 |
Va1 @12 @3 a7 a1, Qg3 Ve1r €G22 €13 €11 €1z C13] [Ve1 €12 €13 e e, €3]
12 Vau Qy3 Q12 Qzz QA3 Ci2 Veo €33 Ci12 C22 C23 €12 Ves €33 €12 €22 €33
13 Q3 Vgz @13 dz3 A3 + €13 Cp3 Vez C13 C23 €33 + e13 €3 Vez €13 €23 €33
11 A1 13 Vo @2 Qg3 C11 Ci2 C13 Ver €12 €13 11 €12 €3 Ver €12 €13
Q12 Q22 Q23 Q19 Vg ay3 Ci2 C22 C23 €13 Ve €33 €12 €22 €23 €, Ve €33
41,3 d23 A33 a;3 dz3 Vs €13 €23 €33 ¢33 €3 Vi3] €13 €23 €33 e13 ey3 V3]

SatCov=hQ@QV,+sQV.+d K 1,



Saturated I\/Iultlvarlate Twm I\/Iodels
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Cho\esky Prob\ems_

* The Cholesky Decomposition implicitly constrains
all variance parameters to be positive

* (Seems sensible)

* This constraint truncates the distribution of the
variance parameters under the null distribution

* (Meaning the p-values are wrong)

 Under the null, the test statistics is distributed as a
mixture distribution of 0, y?(1), ... x?(k).
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If rMZ is .50 and rDZ is .25:
Va=0.5

Vc=0

Ve =0.5

In repeated sampling, sometimes
rMZ will be slightly overestimated
and rDZ will be slightly
underestimated.

If so, C will be negative

Other times, rMZ will be slightly
underestimated and rDZ will be
slightly overestimated.

If so, C will be positive
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Requirements for the Likelihood Ratio Test (LRT) :
e estimated from the same data (preferably using ML)
* arestricted model is nested in a more saturated model

* restricted must have fewer fitted parameters (more df) than the saturated
model

LRT = —2In =
Lcomplex (0)

Lsimple (é) >

Nesting: A reduced model is nested in a saturated model if the reduced model is a
special case of the saturated model.

* A parameter is set to O (or some other value)

* Two parameters are equated

It is possible to have a complex nesting structure
e Aisnestedin B which is nested in C



Assumptlon Testing and I\/Iodel Fitting
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Completely Saturated Model

More * All possible variances, covariances and means are freely estimated
Saturated
* Saturated Model
* Equating cross-twin cross trait covariances within zygosity (e.g. ry,..
2v2 = Meva-tv1)
* Equal means and variances across twin order
* Equal means and variances across Zygosity
Under certain regularity conditions, the twice the
* negative log of the likelihoods between the saturated

Less and restricted model will be distributed as a y? with

Saturated  the degrees of freedom equal to the difference in the
number of parameters estimated in each model



I\/Iodel Flttlng in MV Twm Studles

Common Pathway Model

Latent ACE
Specific ACE

Latent AE Latent CE
Specific ACE Specific ACE
Latent ACE Latent ACE
Specific AE Specific CE
Latent AE Latent AE

Specific AE Specific CE



depend on the order that you conducted your model
comparisons.

After fitting my full
CPM | dropped the
. latent Cin my model

After fitting my full
CPM, | dropped the | ;
specific Cs in my model _ | ;

Then | couldn’t drop

Then | couldn’t drop the specific C!

the latent C!

Therefore, shared
environmental factors
affect the item
residuals

Therefore, shared
environmental factors
affect the latent factor




Related Examples from the Literature
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Related Examples from the Literature
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I\/Iultlvarlate Twin Practlcal

Qualitrics Link:
https://qgimr.az1.qualtrics.com/jfe/form/SV 0dmHAEyYb4bPblG

Read in data
* There are two sets of datasets - only select one

Run the assumption testing models
* There are 4 sequentially more restricted models

Run the CPM

Run the IPM


https://qimr.az1.qualtrics.com/jfe/form/SV_0dmHAEyYb4bPbIG

Dataset 1: Common Pathway Model

Obs Sim
Va 0.50 0.50
\Vc 0 0
Ve 050 0.50 Obs Sim
7‘1 0.80 0.80
7”2 0.75 0.75
7»3 0.70 0.70
7»4 0.65 0.65
Obs Sim
As Cs Es As Cs Es
X, 0.07 0.11 0.18 X4 .072 .108 .180
X, 0.13 0.09 0.22 X, 131 .088 .219
X5 0.25 0 0.25 X5 .255 0 .255

Xy 0 0.29 0.29 X, 0 .289 .289



Independent Pathway Model

Obs Sim
A C E A C
A, -50 -20 -50 A 50 .20
A -40 -25 -55 A 40 .25
Ay -45 -15 -A45 A 45 .15
A, -30 -20 -60 Ay 30 .20
Obs Sim
As Cs Es As Cs Es
x, 009 014 0.23 x, -092 .138 .230
X, 0.14 0.09 0.24 X, -143 .095 .238
X, 029 0 029 X, 286 0 .286

Xy 0 0.25 0.25 Xy 0 .255 .255
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