
Vol:.(1234567890)

Behavior Genetics (2021) 51:204–214
https://doi.org/10.1007/s10519-020-10031-x

1 3

ORIGINAL RESEARCH

Best Practices for Binary and Ordinal Data Analyses

Brad Verhulst1  · Michael C. Neale2

Received: 13 June 2020 / Accepted: 31 October 2020 / Published online: 5 January 2021 
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The measurement of many human traits, states, and disorders begins with a set of items on a questionnaire. The response 
format for these questions is often simply binary (e.g., yes/no) or ordered (e.g., high, medium or low). During data analysis, 
these items are frequently summed or used to estimate factor scores. In clinical applications, such assessments are often 
non-normally distributed in the general population because many respondents are unaffected, and therefore asymptomatic. 
As a result, in many cases these measures violate the statistical assumptions required for subsequent analyses. To reduce the 
influence of the non-normality and quasi-continuous assessment, variables are frequently recoded into binary (affected–unaf-
fected) or ordinal (mild–moderate–severe) diagnoses. Ordinal data therefore present challenges at multiple levels of analysis. 
Categorizing continuous variables into ordered categories typically results in a loss of statistical power, which represents 
an incentive to the data analyst to assume that the data are normally distributed, even when they are not. Despite prior zeit-
geists suggesting that, e.g., variables with more than 10 ordered categories may be regarded as continuous and analyzed as 
if they were, we show via simulation studies that this is not generally the case. In particular, using Pearson product-moment 
correlations instead of maximum likelihood estimates of polychoric correlations biases the estimated correlations towards 
zero. This bias is especially severe when a plurality of the observations fall into a single observed category, such as a score 
of zero. By contrast, estimating the ordinal correlation by maximum likelihood yields no estimation bias, although standard 
errors are (appropriately) larger. We also illustrate how odds ratios depend critically on the proportion or prevalence of 
affected individuals in the population, and therefore are sub-optimal for studies where comparisons of association metrics 
are needed. Finally, we extend these analyses to the classical twin model and demonstrate that treating binary data as con-
tinuous will underestimate genetic and common environmental variance components, and overestimate unique environment 
(residual) variance. These biases increase as prevalence declines. While modeling ordinal data appropriately may be more 
computationally intensive and time consuming, failing to do so will likely yield biased correlations and biased parameter 
estimates from modeling them.

Keywords Ordinal data · Pearson product-moment correlation · Polychoric correlation · Point biserial correlation · 
Tetrachoric correlation · Odds ratio · Prevalence

Introduction

Measurement instruments are essential for scientific study 
in almost all domains. Many physical traits can be directly 
measured on interval-level or ratio-level scales, (such as 
temperature in Celsius or distance respectively), where the 
interval between values is constant and meaningful. For 
most behavioral and psychological variables, this level of 
precision rarely exists. Psychological and behavioral con-
structs are often assessed with a set of binary (e.g. yes/no) 
or ordinal (e.g. high, medium or low) questions. Quantify-
ing behaviors and mental states with these relatively crude 
instruments has obviously yielded many insights into the 
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etiology and epidemiology of human traits, but this does not 
mean that current practices cannot be improved. Ordinal-
level measures require different analytical strategies from 
those used for continuous, normally distributed traits (Flora 
and Curran 2004). Unfortunately, although there are well-
established methods for analyzing such data, they seem fre-
quently ignored because their use takes more human and 
computer time, which results in delays in manuscript prepa-
ration, submission, and publication. This excuse has worn 
thin over the last several decades, as innovations in computer 
hardware and software have enormously improved the effi-
ciency and simplicity of statistical analysis. The applica-
tion of suboptimal statistical approaches for the purposes 
of speed is now unjustified in many (but not all) cases. It is 
especially important to use optimal methods in the analysis 
of behavioral and psychological data, because the measures 
of interest are frequently ordinal and the effect sizes may 
be small. The mis-application of methods for continuous 
data may result in biased estimates with incorrect standard 
errors resulting in dubious inferences about the observed 
phenomena. Ideally, the methods used should yield effect 
size estimates that are unbiased and which have the smallest 
standard errors (a.k.a. minimum variance). Much has been 
written about the bias-variance trade-off, which we won’t 
reiterate here. We focus on the precision-laziness trade-off 
in the application of methods to assess associations.

In the following sections, we present simulation stud-
ies which show that treating ordinal variables as continu-
ous biases correlations between them towards zero. This 
problem applies to correlations between different variables, 
repeated measures over time, and those from relatives. The 
direction of the bias is towards a higher Type II error rate, 
i.e., accepting the null hypothesis of zero correlation when 
the alternative hypothesis is correct. In a genome-wide asso-
ciation study (GWAS) loci may be thought irrelevant when 
they are not. In a classical twin study, estimates of additive 
genetic and common environment variation will be biased 
towards zero (Smith 1970; Curnow 1972). As will be shown, 
these problems are exacerbated when binary outcomes of 
interest (or particular item responses) are rare in the popula-
tion. Appropriate methods, by contrast, eliminate this issue.

The Liability‑Threshold Model

Statistical analyses usually begin by considering the level 
of measurement of the variables being analyzed: continu-
ous (ratio and interval), ordinal, binary, or nominal. Sta-
tistical inferences are predicated on the valid and accurate 
estimation of the correlations between these variables. In 
selecting an analytical strategy, the analyst is faced with 
competing motivations. One motivation is to get the most 
accurate estimates of model parameters. The other is to 
get estimates as quickly as possible. Because continuous 

analytical methods are typically faster, there is a natural 
temptation to treat ordinal data as if they were continu-
ous. Doing so, however, involves hoping that continuous 
analytical techniques are robust to the ordinal variables’ 
violations of the distributional assumptions. While it is 
generally understood that such violations can bias the esti-
mates of the associations between variables, exactly how 
much it does is often unknown. An aim of this article is 
to quantify this bias for some representative situations.

Before it is possible to discuss the correlations between 
ordinal variables, or between ordinal and continuous vari-
ables, it is necessary to establish how the variables were 
collected, and what mechanisms gave rise to their dis-
tribution. As it is often impossible to directly measure a 
psychological trait, researchers typically ask respondents 
simple questions and provide a set of ordinal response 
options to simplify and standardize these answers across 
individuals. For data analysis, the observed binary or ordi-
nal responses are assumed to be imperfect ordered clas-
sifications of an underlying (but unmeasurable) normally 
distributed liability. This assumption is the basis for the 
Liability Threshold Model (Gottesman and Shields 1967).

The basis for assuming that the liability is normally dis-
tributed is that most human traits are very complex, arising 
from exposure to an almost infinite number of independent 
increasing and decreasing causal factors, including single 
nucleotide polymorphisms (SNPs), personal experiences, 
dietary intake, interpersonal interactions, life events and 
exposures to pathogens. This assumption is consistent 
with results from GWAS, which have consistently shown 
that most complex traits are highly polygenic (Boyle et al. 
2017). The Central Limit Theorem states that the aggre-
gation of an infinite number of effects of equal size will 
generate a normal distribution. Further developments of 
the theorem suggest that it holds even when the effects 
vary in size (Lehmann 1998), which the results of GWAS 
to date suggest is the case for almost all human traits.

We present schematic depictions of the Liability 
Threshold Model in Fig. 1. Figure 1a shows the density 
of the normal distribution of the liability with two thresh-
olds placed at tertiles, and Fig. 1b illustrates a similar but 
asymmetric case. Scores of 0, 1 and 2 may be assigned 
to the ordered categories in both cases, but they differ in 
several important respects. In Fig. 1a phenotypic variation 
is spread equally across each category, whereas in Fig. 1b 
half of the variation is in the lowest category, and the rest 
of the variation is equally split between the remaining two 
categories. As the proportion of the distribution that is 
captured by a specific response category increases, less is 
known about individuals with that value. This increase in 
uncertainty, decreases statistical power. While the number 
and distribution of ordinal categories may vary, the size 
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of the largest subcategory is usually a good predictor of 
statistical power, as we show below.

Using the Liability Threshold Model to deal with ordinal 
variables has several advantages. Primarily, the univariate 
normal distribution directly generalizes to the multivariate 
case, whereas many categorical distributions do not (Teugels 
1990). Therefore, by assuming that the liabilities for all the 
variables in the model are normally distributed, it is possi-
ble to assume multivariate normality as is required for most 
analyses. By utilizing the liability threshold model, binary 
and ordinal variables, or other items with different levels of 
measurement, may be analyzed jointly (Pritikin Brick and 
Neale 2018).

Once assumptions have been made about the univariate 
distributions of the constituent variables, it is possible to 
discuss the correlations between the variables. There are 
many different ways to measure correlation, so it is essential 
to select one that matches the variables’ levels of measure-
ment. In practice, good matching does not always occur. 
Instead, the pressures for rapid analyses takes precedence 
over statistical accuracy. The Pearson product-moment cor-
relation is very rapid to calculate, but is only well-suited for 
continuous, normally distributed data. With ordinal data, 
other types of correlation (such as biserial, point-biserial, 
polychoric, tetrachoric, and others) may be more appropri-
ate. Specifically, when both variables are ordinal, numerical 
integration can be used to estimate the expected proportion 

of observations in each cell of the multivariate contingency 
table, and can be directly extended to cases involving both 
continuous and ordinal measures (Pritikin Brick and Neale 
2018). With a limited number of ordinal variables, numeri-
cal integration is fairly rapid, but as the number of variables 
increases, computer time increases exponentially, making 
it impractical to analyze more than a dozen or so ordinal 
measures (e.g. 6 ordinal phenotypes per twin in a classical 
twin study or 3 ordinal phenotypes per family member in a 
nuclear family design).

In an ideal situation, Full Information Maximum likeli-
hood (FIML) is usually the best (i.e. minimum variance of 
the estimates), unbiased estimation method, as it conveni-
ently handles many patterns of missing data, and can do so 
very robustly. ML estimation of correlations for continuous 
variables is, however, much slower than using the product-
moment correlation formula. Modern computers are so fast 
that the difference is almost imperceptible for most practi-
cal purposes except in very large scale applications, such as 
neuroimaging or simulation studies. For some models, short-
cuts such as the Bock-Aiken marginal maximum likelihood 
(Bock and Aitkin 1981) can be used—as is the practice with 
many item response theory applications (Chalmers 2012), 
but there is no general solution, especially for non-recursive 
models (i.e. models with feedback loops). Weighted least 
squares (WLS; Browne (1984)) is a practical and high-speed 
alternative, available in most software packages, and one 

Fig. 1  Threshold models illus-
trating (upper row) symmetric 
and asymmetric threshold 
placements which divide the 
distribution into equal thirds 
(left panel) or one-half and two 
fourths (right panel). The lower 
two figures show threshold 
placements for a symmetric (left 
panel), and asymmetric (right 
panel) seven-category ordinal 
variable (left panel). In the 
symmetric case, the same pro-
portion of individuals fall into 
each category. For the asym-
metric liability, one-half of the 
distribution falls below the first 
threshold, and the remainder are 
divided into six equiprobable 
ranges. Digits below the x-axis 
indicate the ordered category 
number or “score” for that 
region of the distribution. Note 
�
1
 and �

2
 denote the two thresh-

olds in the trinary case, and �
1

–�
6
 the first and last threshold in 

the 7-ordered-category case
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that can handle combinations of ordinal and continuous 
data. Unfortunately, WLS requires very large sample sizes 
to accurately estimate the weight matrix when the number of 
variables is large, and is biased when data are missing at ran-
dom (as is common in data collection with skip out patterns 
or conditional branching; Pritikin Brick and Neale (2018)). 
The aim here is not to provide a comprehensive review or 
a comparison between the types correlations, which can be 
found elsewhere (see Agresti (1990) or Long (1997)), but to 
directly examine the impact of using the product-moment 
method when at least one of the variables in the analysis is 
not continuous.

Methods

When learning about ordinal data, students in methodology 
classes may ask, “how many categories are enough to treat a 
variable as continuous?” Instructors typically avoid answer-
ing this question directly, or use some esoteric or personal 
rule of thumb to provide a less-than-satisfying answer. In 
part, this is because the number of categories per se may 
have little effect on bias: more important is the placement of 
the thresholds along the liability distribution. We therefore 
compare use of the product-moment correlation to maxi-
mum likelihood estimates, when either one or both vari-
ables is ordinal. To allow the reader to explore correlations 
and threshold placements other than those considered in this 
article, we provide a general R function on GitHub (https ://
githu b.com/bradv erhul st/Ordin alDat a).

Product‑Moment Correlations Between Ordinal 
Variables

For the first study, we simulate data with 1000 rows of 
two continuous variables that correlate r = .70 . Both vari-
ables are then re-coded into ordinal variables, according 
to whether the continuous values are above and below the 
specified thresholds (see Fig. 1). Those below the lowest 
threshold score zero, and those above the highest threshold 
score t in there are t thresholds. Polychoric correlations are 
then estimated using the polycor function in R (Fox 2019; 
R Core Team 2014), and product-moment correlation are 
calculated using the standard formula:

where x̄ denotes the mean of x, and subscript i represents 
the data from observation i in the sample of i = 1… n pairs 
of observations.

rxy =

∑n

i=1
(xi − x̄)(yi − ȳ)

�

∑n

i=1
(xi − x̄)2

�

∑n

i=1
(yi − ȳ)2

Two scenarios are considered: symmetric (equiprob-
able) and asymmetric (skewed). The symmetric scenario 
minimizes the proportion of the data in the most frequent 
category for a given number of thresholds, corresponding 
to Fig. 1a and c. Thus, for the three-category case, 1

3
 of the 

observations are expected to fall into each category. In the 
asymmetric scenario, the first threshold is set to zero, and 
the remaining thresholds divide the upper half of the distri-
bution into equal categories. For example, in the three-cat-
egory case, the probability of falling into the first category 
is 0.5, whereas the second and third categories it is 0.25 
(see Fig. 1b). For each simulated dataset, we estimate the 
polychoric and the Pearson product-moment correlations. 
The simulations are repeated 1000 times to approximate the 
distributions of the correlations.

Product‑Moment Correlations Between Binary 
and Continuous Variables

A different, lesser degree of bias is expected when one vari-
able is binary ordinal and the other is continuous. By binary 
ordinal we mean that the categories assess a continuum such 
as drug use liability (e.g. low vs high), as opposed to unor-
dered categories, (e.g. male vs. female). We examine the 
Pearson product-moment correlation between continuous 
and binary variables as a function of the binary variable’s 
prevalence. To do so, we simulate data for two continuous 
variables with correlations ranging from .05 to .95, and 
recode one of the continuous variables into binary variables, 
using the aforementioned threshold model, with prevalences 
ranging from .01 to point five. To obtain accurate point esti-
mates, we used a large sample size of 100,000 and repeated 
every simulation 1,000 times.

Prevalence Effects on Odds Ratios Vs. Correlations

Odds ratios are favored statistics in many clinical situations. 
They provide physicians, genetic counselors and others a 
readily-communicated expression of conditional probability 
for a patient’s baseline risks, and alterations in their risk 
due to specific information, such as disease occurence in a 
relative. While odds ratios have great practical utility in this 
context, they do a poor job of measuring the degree to which 
variables are associated or correlated at the liability level. 
Absent information on base rates, odds ratios may represent 
widely different degrees of correlation between variables. 
Here we simply illustrate, using the binary-continuous simu-
lation from the previous section to illustrate how dramatic 
the divergence between correlation can be as the base rate 
threshold of the binary variable changes. Two variables are 
simulated with correlations ranging from .05 to .95, and one 
is re-coded into an ordered binary variable via the liability 
threshold model. We vary the position of the threshold, and 

https://github.com/bradverhulst/OrdinalData
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therefore the ‘base rate’ of the binary variable from .01 to 
.5. The simulation study was repeated 1000 times and the 
results averaged to increase the estimates’ precision.

Implications for Twin Models

Correlations play an integral role in twin and family models. 
As such, biases in the correlations can have profound effects 
on the estimation of variance components. To examine the 
effect of treating binary variables as continuous, we simu-
lated a scenario where A, C, and E accounted for 50%, 20%, 
and 30% of the variance in a phenotype, respectively. This 
would produce an expected MZ correlation of rMZ = 0.70 , 
and an expected DZ correlation of rDZ = 0.45 . We used these 
values to simulate continuous data for each twin, and then 
recode the continuous variables into binary variables, for 
prevalences ranging from .01 to .50. In this scenario, the MZ 
correlations are equivalent with the the binary associations 
presented in the first simulation study, while the DZ cor-
relations are analogous, albeit at a lower magnitude of asso-
ciation. To calculate the variance components, we use the 
Holzinger (Falconer) formulas (Newman et al. 1937), which 
are equivalent to the direct symmetric matrix approach (Ver-
hulst et al. 2019) in this example. The simulation study was 
repeated 1000 times and the results averaged to increase the 
estimates’ precision.

Results

Product‑Moment Correlations Between Ordinal 
Variables

Figure 2 shows how the Pearson correlations change depend-
ing on the number of ordinal categories. The red line (at 
r = 0.70 ) plots the value of the simulated correlation. As 
can be seen in the light red and blue densities, the estimated 
polychoric correlations closely correspond to the simulated 
value because the model is correct for these data, regardless 
of the number of categories. Furthermore, when compar-
ing the symmetric and asymmetric polychoric correlations, 
as shown in the light blue and red densities respectively, 
the variance of the polychoric correlations decreases as the 
number of categories increases. This change is a function of 
the additional categories providing more precise measures of 
the underlying liability of the trait. In the asymmetric data 
scenario, shown in the light red density plots of Fig. 2, the 
polychoric correlations show greater variance than in the 
symmetric case, depicted by the light blue densities. The 
slower decline in the variance of polychoric correlations 
for the asymmetric thresholds is a function of the impre-
cise information about individuals in the most frequently 
endorsed category.

In contrast to the polychoric correlations, the means of 
the distribution of product-moment correlations increase 
as the number of categories increases, but the distribution 
of these correlations seem to asymptote at a value that is 
lower than the simulated association, even for as many as 15 
thresholds. The effect is much more pronounced for asym-
metric than symmetric threshold placement.

Product‑Moment Correlations Between Continuous 
and Binary Variables

The left part of Fig. 3 shows the results of the product-
moment correlations for continuous-binary data simula-
tion. Consistent with the first study, the estimated Pearson 
product-moment correlations are consistently lower than the 
simulated values and decline as the prevalence of the binary 
variable approaches 1%, while the point-biserial correlations 
stays constant at the simulated value across the range of 
prevalences of the binary variable. For each simulated cor-
relation, there is approximately 20% bias towards zero of 
the product moment correlation, even in the best case sce-
nario where the prevalence is 1

2
 . This bias slowly increases 

as the prevalence moves from .5 to .2, and increases rapidly 
at lower prevalences. For example, where the correlation 
was simulated at .7, the Pearson product-moment correlation 
decreases from r ≈ .55 to r ≈ .5 as the prevalence decreases 
from .5 to .2, and then down to r ≈ .2 as the prevalence 
goes from .2 to .01. The prevalence of most psychiatric 

Fig. 2  Violin plots of the distributions of estimated polychoric and 
Pearson product-moment correlations as a function of the number 
and patterning of ordinal categories. Light blue and light red densi-
ties present the estimated polychoric correlations and the dark blue 
and dark red densities depict the Pearson product-moment correla-
tions for the evenly-spaced and skewed ordinal categories, respec-
tively. The red line at r = .7 represents the simulated correlation. For 
the skewed categories, the first threshold was set at the median, and 
the subsequent categories were evenly spaced along the remainder of 
the distribution. In the two group condition, the threshold was set at a 
prevalence of .25
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and substance use disorders is in the .2 to .01 range, where 
the bias in the product-moment correlation is particularly 
severe. Thus, if we simulate two continuous variables with 
correlation r = .7 , and re-coded just one of the variables to 
have a prevalence of 1%, a threshold model maximum like-
lihood estimate of the correlation would accurately recover 
r = .7 , whereas the product-moment correlation of r = .19 
would be a terrible underestimate.

Prevalence Effects on Odds Ratios vs. Correlations

The right panel of Fig. 3 plots, on a log scale, the odds ratio 
of binary data for the simulated correlations ranging from 
.05 to .95 in the left panel of the figure. Conversely to what 
was observed with the product-moment correlations, in 
the same data, as the prevalence decreases, the odds ratio 
increases. Specifically, for a simulated correlation of r = .3 , 
when the prevalence is .5, the odds ratio is approximately 
1.65, but as the prevalence decreases to .01 (holding the 
point-biserial correlation constant), the odds ratio increases 
to 2.28. The fact that the odds ratio can represent a broad 
range of point-biserial correlations depending on the preva-
lence of the ordinal trait can be directly observed in Fig. 3. 
For example, an odds ratio of 2 describes a point-biserial 
correlation of r ≈ 0.20 with the prevalence is approximately 
1%, a point-biserial correlation of r ≈ 0.25 with the preva-
lence is approximately 4%, a point-biserial correlation of 
r ≈ 0.30 with the prevalence is approximately 10-15%, and 
a point-biserial correlation of r ≈ 0.35 with the prevalence is 
greater than approximately 35%. These results are consistent 
with those of Table 2 in Smith (Smith 1974). Accordingly, 

relying solely on the odds ratio without information regard-
ing the prevalence of the outcome could lead to very differ-
ent conclusions about the degree of association, even when 
the underlying correlation between two variables is constant.

Implications for Twin Models

Figure 4 presents the biasing impact of treating binary vari-
ables as continuous variables on estimated variance com-
ponents from a classical twin model. Consistent with the 
results from the previous simulation studies that focused 
exclusively on estimated correlations, the estimated additive 
genetic (A), common environmental (C), and unique envi-
ronmental (E) variance components deviate from their simu-
lated values when binary variables are erroneously treated 
as continuous. Collapsing across phenotypic prevalence, the 
E variance is overestimated while the A and C variances 
are underestimated. This is what would be expected if the 
correlations between monozygotic (MZ) twins are underes-
timated (as 1 − rMZ is an estimate of E). Interestingly, as the 
prevalence decreases from .50 to .01 the biases in the vari-
ance components are exponentially amplified.

The most pronounced amplification effect occurs for the 
common environmental variance component, which begins 
to decreases exponentially as soon as the phenotypic preva-
lence deviates from .50. Notably, at rare prevalences, the 
estimate of C goes negative suggesting genetic dominance 
would explain a proportion of variance in the phenotype 
under these conditions (see Verhulst et al. (2019) for a dis-
cussion of negative variance components in twin models). 
Similarly, but to a much lesser extent, the proportion additive 

Fig. 3  A graphical presentation of the estimated Pearson product-
moment correlations and odds ratios between continuous and binary 
variables as a function of the prevalence of the binary variables 
decreases. a Downward bias of the mean estimated product-moment 
correlations between a continuous and binary variable for simulated 

correlations ranging from r = 0.05 through r = 0.95 as the prevalence 
of the binary trait increases from 0.01 to 0.50. b Mean estimated 
odds ratio on a log

10
 scale for the same data as the simulated correla-

tions ranging from r = 0.05 through r = 0.95 as the prevalence of the 
binary trait increases from 0.01 to 0.50
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genetic variance stays generally constant between the preva-
lence range of .50 and .05, but at rare prevalences, the addi-
tive genetic variance component also begins to decrease 
exponentially. The (exponential) underestimation of the A 
and C variance components is mirrored and compounded by 
an exponential increase in the unique environmental vari-
ance component.

It is instructive to examine the observed MZ and DZ cor-
relations to illuminate the mathematical mechanisms that 
result in the observed biases in the variance components. For 
both the MZ and DZ correlations, as the prevalence of the 
phenotype decreases, magnitude of the correlation declines. 
Notably, the difference between the correlations remains 
fairly constant if the phenotypic prevalence is greater than 
.05. Accordingly, the additive genetic variance component 
appears correspondingly stable for this prevalence range. 
Because both the MZ and DZ correlations steadily decrease 
with the phenotypic prevalence (even though the ratio of 
the MZ:DZ correlations in constant for more prevalent 
phenotypes), we observe decreases in the shared environ-
mental variance component at comparatively lower levels 
of prevalence.

Discussion

Our primary aim was to explore and quantify some of the 
effects of using the quick-to-calculate Pearson product-
moment correlation when data are binary/ordinal. Across the 
four simulation studies, we found that the product-moment 
correlations were consistently biased towards zero, while 

estimates of the correlations that accounted for the ordinal 
distributions of the variables conformed with the original 
simulated correlations. While the direction of the bias was 
unsurprising, the magnitude of the bias was considerable 
in many cases. If correlations are biased, then the param-
eters, such as variance components or factor loadings, that 
are based on those correlations are very likely to be biased 
as well. As such, any bias in the estimated correlations are 
likely to undermine the parameter estimates from all types 
of covariance modeling (from factor analysis to basic linear 
regression), inflate Type II error rates by underestimating 
associations, and deflating model fit statistics. Moreover, the 
consequences of using product-moment correlations if there 
is a large group of observations with the same ordinal value 
are even more serious (e.g., a preponderance of asympto-
matic persons in the study of a disorder). While there was a 
notable bias in the symmetric ordinal analyses, the bias was 
exaggerated when thresholds were unevenly distributed as is 
the case when the prevalence of a trait is relatively rare. For 
example, if the first threshold on the liability scale captures 
a large proportion of observations, differentiating those who 
score zero from those scoring more may leave a large por-
tion of the distribution completely undifferentiated. In this 
case, the downward bias of the correlation caused by treating 
ordinal variables as continuous is much greater, consistent 
with the prediction that the proportion of individuals in the 
largest category is the primary driver of the phenomenon.

The results of the simulation studies emphasize the neces-
sity of appropriately analyzing ordinal data. Blindly utiliz-
ing analytical techniques designed for continuous variables 
will lead to severe underestimates of correlations and risk 

Fig. 4  Plots of a the simulated and estimated variance components, 
and b the simulated and estimated MZ and DZ correlations, as a 
function of phenotypic prevalence treating the binary phenotypes as 
continuous. In a the dashed red, blue, and green lines represent the 
simulated A, C, and E variance components and the color-matched 
solid lines represent the estimated values of the variance compo-

nents. In b the dashed purple and orange lines represent the simulated 
MZ and DZ correlations and the color-matched solid lines represent 
the estimated correlations. The black line represents the difference 
between the MZ and DZ correlation at the specified phenotypic prev-
alence
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drawing dramatically different conclusions about the mag-
nitudes of their effect sizes, resulting in an inflation of false 
negatives (Type II errors). The problem of underestimation 
is not, of course, new. It has been recognized for years, and 
formulas exist for calculating biserial and point-biserial cor-
relations which temper the bias (Glass and Hopkins 1995). 
While these methods are mainstream, they tend to be applied 
in narrow contexts, where only a few correlation methods 
are used. In multivariate analyses, such as structural equa-
tion or network modeling, their use seems little to none. This 
represents an opportunity to improve methodology.

Results of the final simulation study have direct impli-
cations for twin and family studies. The computational 
demands of structural equation modeling substantially 
increase when analyzing ordinal data. Full information 
maximum likelihood requires integrating over the number 
of variables per person (p), but in family data this number is 
multiplied by the number of relatives in the largest pedigree. 
Therefore this method rapidly becomes intractable. Unfortu-
nately, treating ordinal variables as continuous to make the 
analysis practical in finite time would underestimate the MZ 
and DZ twin correlations. In turn, these lower correlations 
will reduce the estimates of the additive genetic and com-
mon environmental variance components and increase those 
of non-shared environmental variation. Higher correlations 
incur somewhat more bias than lower ones, but this increase 
does not approach the 2:1 expectation of additive genetic 
variation. As a result, the the proportion of variance attrib-
uted to the common environment is heavily biased towards 
zero, especially when the measures are rarely endorsed.

While we used a classical twin model to illustrate the 
impact of treating binary data as continuous, these results 
are equally applicable to more complex multivariate genetic 
models such as common and independent pathway models 
(Martin and Eaves 1977). Greater model complexity and 
more variables increase computation time and as a result 
increases the temptation to use analytical “shortcuts”. 
Structural equation modeling software such as OpenMx 
(Boker et al. 2011; Neale et al. 2016) can estimate correla-
tions among ordinal variables by maximum likelihood in a 
pairwise fashion, and compute a weight matrix across all 
variables suitable for WLS or WLSMV analyses, which is 
substantially faster than FIML. Unfortunately, family struc-
tures vary and the number of missing data patterns increases 
exponentially with family size, tempering the attractiveness 
of the faster weighted least squares methods. Further, larger 
pedigree sizes and more variables per individual may gener-
ate unstable weight matrices and inaccurate parameter esti-
mates and standard errors. The problem may be exacerbated 
further if the study involves repeated measures over time, 
which vastly increases the number of observed variables. 
In these circumstances it may be better to use diagonally 
weighted least squares (DWLS), even though this approach 

ignores the fact that the statistics in a covariance or cor-
relation matrix may violate the independent and identically 
distributed (IID) assumptions. In OpenMx, DWLS can be 
based on correlations estimated by maximum likelihood two 
variables at a time, from which the full correlation matrix 
is reconstructed. A disadvantage to this method is that the 
constructed covariance matrix, the weight matrix, or both 
may be non-positive definite.

The downward bias that results from treating ordinal vari-
ables as continuous also has implications for GWAS. Many 
GWAS software packages can handle binary data such as 
those from case-control studies. However, to our knowledge 
GW-SEM (Pritikin, Neale, Prom-Wormley, Clark, & Ver-
hulst, Under Review; Verhulst et al. 2017) is the only soft-
ware package that can conduct GWAS with ordinal depend-
ent variables under the liability threshold model. As many 
psychiatric traits are measured with ordinal scales, research-
ers are often forced to either treat the ordinal variables as 
continuous, which decreases the magnitude of the correla-
tion, or recode the ordinal variables into a binary variables, 
which inflates the standard errors and reduces the power to 
detect significant associations. While treating ordinal data 
properly within a GWAS context may be more computa-
tional demanding, it is a relatively easy way to increase the 
accuracy and power of GWAS signals.

The third simulation study, comparing odds ratios to cor-
relations illustrates that a correlation in liability can cor-
respond to a wide range of odds ratios, depending on the 
population prevalence. This issue is not new (see Smith 
1974), but it bears repeating here in diagram form. That 
odds ratios by themselves tell us little to nothing about cor-
relation is understood, but it is not unusual to see different 
odds ratios compared as if they were on a constant metric. 
The mere presentation of a table of odds ratios (to unfairly 
pick one example see Neuman et al. (2001)) can invite com-
parisons and tempt readers to draw inferences about varying 
degrees of association. However, this clearly must not be 
done when prevalences or base rates differ. In our opinion, 
odds ratios should only be used to communicate risks to 
a patient. Absent information about base rates, odds ratios 
should not be used to measure association, nor be used to 
infer, e.g., genetic or environmental causes of variation. Cor-
relation remains the coin of the realm for non-experimental 
research purposes. While correlation does not necessarily 
imply causation, it is important to understand mechanisms 
that generate correlation.

While it is commonplace to assume that the underlying 
liability of ordinal variables follows a multivariate normal 
distribution, this assumption may be violated in some situ-
ations. Faced with two binary variables, there is no infor-
mation to test whether the resulting contingency table of 
responses is consistent with the assumption that the underly-
ing distribution is bivariate normal. However, for measures 
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with at least three ordered categories, it becomes possible to 
test for non-normality of the underlying distribution by com-
paring the likelihood of the threshold model to that of a satu-
rated multinomial, where each cell’s observed proportion is 
its expected proportion (Jöreskog and Sórbom 1993; Mehta 
et al. 2004). Wherever possible, measurement instruments 
for behavior genetic and other studies should be designed 
with at least three-category response formats.

Finally, in this article we only consider the adverse effects 
of treating ordinal variables as continuous measures on the 
estimated correlations. We did not consider the effects of 
analyzing ordinal variables as if they were continuous on 
the standard errors, likelihood-ratio tests and goodness-of-
fit statistics. Incorrectly treating ordinal data as continuous 
will typically underestimate both the correlations, as we 
show here, and the standard errors of these statistics. Some 
recovery of the standard error estimates may be achieved by 
using robust standard errors (Huber 1967; White 1980), but 
issues of underestimating the correlations remain. Correla-
tions near zero have larger standard errors than those further 
away, so loss of statistical power may also be expected by 
inappropriate use of the data at hand (Fisher 1915, 1921). 
Overestimating the measurement precision (and having it 
vary across the scale) disrupts the likelihood of the data, 
which in turn makes almost all goodness-of-fit statistics 
and inferences invalid. These reasons seem sufficient to rec-
ommend that treating ordinal as continuous data should be 
abandoned.

Broader Implications for the Analysis of Ordinal 
Variables

Several practical issues regarding the analysis of ordinal 
variables beyond the incorrect use of product-moment corre-
lations remain. First, when multiple correlated ordinal items 
are aggregated into a psychological scale, with each item 
corresponding with liability threshold distribution in Fig. 1a, 
we observe a symmetrical distribution, though not necessar-
ily a normal distribution. As the correlation between items 
increases, we begin to see an overabundance of the scores in 
the upper and lower tails. By contrast, if the ordinal catego-
ries are asymmetrical so that they correspond with liability 
threshold distribution in Fig. 1b, we observe a skewed distri-
bution of an aggregate scale. As the correlation between the 
asymmetrical items increases, we observe an overabundance 
of the scores in the upper tail of the distribution produc-
ing the reverse J-shaped distribution that is characteristic 
of many psychiatric disorder sum-scores. As the number of 
categories increase, the distinction between the symmetric 
and asymmetric conditions becomes more striking. Ana-
lyzing non-normally distributed sum scores, or estimated 
factor scores, with product moment correlations (or simi-
lar linear modeling techniques) violates the distributional 

assumptions and therefore is not optimal (van den Oord et al. 
2000), even though it is common practice for many psycho-
logical assessments. While researchers frequently categorize 
sum-scores with a reverse J-shaped distribution into three-
category ordinal variables, this is only a partial solution that 
does not address the underlying data-generating mechanism 
(van den Oord et al. 2000). The problems involved with the 
reverse J-shaped distribution arising from summing difficult 
(unlikely to be endorsed) items can be entirely avoided by 
specifying a structural equation model where the ordinal 
items, treated properly, are indicators of a latent factor.

Second, it is well established that continuous methods 
are more statistically powerful than their ordinal analoges, 
ceteris paribus. The distribution of the parameter estimates 
from ordinal analytical methods have markedly more vari-
ance (and thus larger standard errors) and require larger sam-
ple sizes to achieve the same degree of statistical precision. 
The problem we highlight, however, is that using continuous 
analytical methods with ordinal data will bias the parameter 
estimates towards zero. In the current context, the unbiased 
ordinal data estimates of correlation have larger standard 
errors than the biased Pearson ones. While larger sample 
sizes are required to obtain ordinal correlation estimates that 
are as precise as their continuous counterparts, the trade-off 
of less bias but greater variance seems essential for studying 
resemblance between ordinal measures.

Finally, while we strongly believe that statistical precision 
should be a goal of any empirical analysis, it is necessary to 
admit that it is impractical to use full information maximum 
likelihood with more than about a dozen ordinal variables in 
a single model, even after considering advances in modern 
computing. In this situation, users will often extract one or 
more factor scores for further analysis: two quasi-continuous 
measures on five occasions are much easier to analyze than 
a dozen ordinal items on each occasion, but the issues we 
highlight with the analyses remain. One hopes that the scales 
are tested for measurement invariance across occasions, after 
which analyses of the factor scores may proceed. Unfortu-
nately, factor scores are not ‘born equal’; they may vary in 
their measurement precision across the scale. For example, 
many clinical measures do a good job of distinguishing per-
sons at the clinically relevant end of the scale, but do very 
poorly at the other end of the scale. Worse yet, tests for phe-
nomena such as gene-environment (GxE) interactions may 
result in false positives or false negatives, because variables 
correlate differently across the liability scale (Eaves 2017). 
A potential solution to this problem is to use the correspond-
ing test information scores as a moderator of the residual 
error of each individual’s score. This method can be imple-
mented in open source software such as OpenMx (Boker 
et al. 2011; Neale et al. 2016), and may help to distinguish 
between genuine GxE interactions and methodological arti-
facts (Eaves and Verhulst 2014).
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Conclusion

Most researchers are aware that ordinal and continuous 
data require different statistical methods. However, due 
to computational difficulties involved in applying some 
of these alternative techniques, methods for continuous 
data may be used in an “off-label” fashion. Our simula-
tion studies show that inappropriate application of con-
tinuous data methods to binary and ordinal data can seri-
ously underestimate correlations. This bias towards zero 
can reduce statistical power to detect associations, and can 
lead to errors of inference, primarily Type II, i.e., accept-
ing the null hypothesis when it is false. Modern methods 
for ordinal data—either FIML or WLS—can help avoid 
both biased estimates and errors of inference.

Our simulation studies support our conclusions, but 
they are far from comprehensive. Many other scenarios 
could be simulated, but the main points remain unchanged. 
For those interested in knowing the bias generated by 
treating ordinal variables as continuous for their specific 
application, we provide R (R Core Team 2014) functions 
for this purpose on our GitHub page (https ://githu b.com/
bradv erhul st/Ordin alDat a).
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