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Twin and family studies
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Meta-analysis of the heritability of human traits based on
fifty years of twin studies
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Average estimate of heritability 49%

69% of twin studies support a purely additive genetic model




GREML/GCTA

600 - -
& e Use estimated genetic
0 4 | . . .
L similarity
E 40% - REPORT
= GCTA: A Tool for Genome-wide Complex Trait Analysis
9 300
c'c 0 Jian ‘r'ang,l-‘ 5. Hong Lee! Michael E. Goddard 23 and Peter M. Visscher!
=
= 20% - — ANALKYSIS
b g
< 10% -
Common SNPs explain a large proportion of the heritability
0% - T T T T T for human height
& > & Q Q 9 e L e o
&\Qo ,%@ &QJQ @’Q ?’QQ‘ ?,% Peter M Visscher!
oS ARTICLE
%59 Estimating Missing Heritability for Disease

from Genome-wide Association Studies

Sang Hong Lee,! Naomi R. Wray,! Michael E. Goddard,2* and Peter M. Visscher!.*



LD Score regression
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How does LD shape association?

| Lonely SNPs [no LD] o ooy geromo s st
L.D blocks
% Causal variants
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Association

All markers correlated with a causal variant show association



How does LD shape association?

| Lonely SNPs [no LD] o ooy geromo s st
L.D blocks
% Causal variants
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Association

Lonely SNPs only show association if they are causal



What happens under polygenicity?

| Lonely SNPs [no LD] o ooy geromo s st
|:| L.D blocks
% Causal variants

Assuming a uniform prior, we see SNPs with more LD friends
showing more association

The more you tag, the more likely you are to tag a causal variant




Simulated polygenic architecture

Lambda = 1.30 LD score intercept = 1.02
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What happens under stratification?

| Lonely SNPs [no LD] o ooy geromo s st
|:| L.D blocks
% Causal variants

Under pure drift we expect LD to have no relationship to
differences in allele frequencies between populations




UK controls versus Sweden controls

Lambda = 1.30 LD score intercept = 1.32
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PGC Schizophrenia

Lambda = 1.48
Intercept = 1.06
Slope p-value < 10-300

Overwhelming majority of =
inflation is consistent with
polygenic architecture

0
LD Score Bin



LD Score regression
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Draw polygenic effects from
N (0, n/m?), var =
AR

What is the E[x?] for variant j?

hﬁ[Y New estimator of heritability
L
M ]
where N=sample size, M=# of SNPs, a=inflation due to confounding,
h2g is heritability (total obs.) and /; is the LD Score

Bulik-Sullivan et al. Nature Genetics 2015 j = z 7}% E
k#j

Yang et al. EJHG 2011

E[x?] =1+ Na+









Analysis of shared heritability in common disorders of the brain
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Univariate heritability from common

variation

Disease group
[11d

GGE = Generalized Epilepsy

SCZ = Schizophrenia

OCD = Obsessive Compulsive Disorder
AUT = Autism

TSY = Tourette’s Syndrome

ICH = Intracerebral Hemorrhage

BPD = Bipolar Disorder

MDD = Major Depressive Disorder
ANO Anorexia Nervosa

MSC = Multiple Sclerosis

MWO = Migraine without Aura

MIG = Migraine

MWA = Migraine with Aura

EOS = Early Onset Stroke

AZD = Alzheimer’s Disease

ADD = Attention Deficit/Hyperactivity
EPI = Epilepsy (all)

ISS  =Ischemic Stroke

NFE = Non-acquired focal epilepsy
PKD = Parkinson’s Disease



Genetic Correlation genetics
Method 1n:

An atlas of genetic correlations across human diseases
and traits



Potential sources of genetic correlation

Trait 1 Trait 2

Trait 1 exerts causal effect on Trait 2 Genetic effects influence
Trait 1 and Trait 2



LD Score regression

Genetic correlation

Slope estimates heritability

Chi square
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LD Score regression

Genetic correlation

Chi square

T T T T T
0 20 40 60 80 100
LD Score

We can a second trait and
obtain two heritability
estimates

| Trait 1
| Trait 2



LD Score regression

Genetic correlation

| Trait 1
| Trait 2

7*7 = XZ
S0 we can estimate genetic

covariance from the product of
the Z-scores

Chi square
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LD Score regression

Genetic correlation

Chi square

T T T T T
0 20 40 60 80 100

LD Score

Trait 1
Trait 2
Rg

7*7 = XZ
S0 we can estimate genetic

covariance from the product of
the Z-scores for the two traits

RG - O-5



LD Score regression

Genetic correlation

Chi square
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Here R;=0

This approach is robust to
sample overlap as all variants
are equally inflated
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