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Procedures are given, using sib pairs, for estimating linkage between a known 
m-allele locus and a hypothesized two-allele locus that governs a quantitative 
trait. Random mating and linkage equilibrium are assumed. Also given are 
parametric and nonparametric methods for detecting linkage when the trait 
in question is governed by several two-allele loci, provided there is no epistasis. 

INTRODUCTION 

It is not an easy matter in man to demonstrate unequivocally that a genetic 
component is involved in the determination of a behavioral trait. Twin 
studies can provide a certain amount of evidence, but since the methods of 
analysis are based upon assumptions that cannot be verified, such studies 
are often liable to overestimate the genetic component (Haseman and Elston, 
1970). Classical segregation analysis can be tried for qualitative traits but 
cannot be used for quantitative traits. One method of demonstrating the 
existence of genetic control for a quantitative trait would be to determine 
a linkage relationship between that trait and a marker locus (i.e., a genetically 
defined polymorphic system), for it is difficult to see how environmental 
influences can simulate the effects of genetic linkage. In view of the increasing 
number of marker loci that are becoming available in man, this technique 
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will undoubtedly become of greater usefulness in human behavior-genetic 
studies. It may well be a useful technique for animal studies also, but the 
particular method we consider here is proposed specifically for studies in 
man, in which it is not possible to set up matings according to an experi- 
mental plan. 

So far as the quantitative trait is concerned, we restrict our attention to 
data gathered on sib pairs. This eliminates the large biases, due to secular or 
age effects, that could occur if an attempt were made to utilize data on two 
or more generations simultaneously. The problem of detecting linkage 
between a quantitative trait and a marker locus from sib pair data was first 
considered by Penrose (1938). In the present paper, however, we allow for the 
incorporation of data on the sibs' parents with regard to the marker locus, 
for the phenotypic classification of an individual with respect to a marker 
locus does not usually depend upon the date or age at which it is determined. 
In addition, we consider the problem of estimating the recombination fraction 
between a major gene for the trait in question and the marker locus; we 
allow for multiple allelism at the marker locus but, in view of the numerical 
difficulties that would be involved in practice, not at the trait locus. 

Letting xl j  and x 2 j  be the observed trait values for the first and second 
sibs, respectively, in the j th  sib pair, we assume the general model 

X l j  = # + g ~ j + e l j  ~ 

x 2 j  # + g 2 j + e 2 j j  (1) 

where # is the overall mean and gij and eij are the genetic and environmental 
effects, respectively. However, it will be convenient, to begin with, to assume 
that only one locus determines g,j; the generalization to the case where many 
loci are involved will be shown later to be a simple step if there is no epistasis. 
Suppose that just two alleles are involved, B and b, with gene frequencies 
p and q, respectively. Then we can define the genotypie values 

g~j = a for a B B  individual " ]  
= d for a B b  individual ~ (2) 
= - a  for a bb  individual 

The genetic variance at this locus, ao z, is composed of an additive component, 
2 and a dominance component, a z, and it is well known (see, for instance, O'a, 

Li, 1955) that under random mating these are given by 

2 a a = 2 p q [ a  - d ( p -  q)]2 (3) 
and 

a 2 = 4pZqZd 2 (4) 

2 Thus z We shall let ej = e l j - e 2 j  , and for convenience denote E(~) by a e. a e 

is a function of the environmental variance, the environmental covariance 



Linkage Between Quantitative Trait and Marker Locus 5 

between sibs, and any order effect. Random mating will be assumed through- 
out. 

In Section 1, we derive the expectation of the squared sib pair differences 
and show how this expectation, conditional on the proportion of genes the 
sibs have identical by descent (i.b.d.) at the trait locus, is a function of a 2, 

2 and a~. It follows as a direct consequence of this result that a simple O'a~ 

2 if this proportion were regression procedure could be used to estimate % 
known for each sib pair. In Section 2, a procedure is given for estimating, 
for each sib pair, the proportion of genes i.b.d, at the marker locus. Then, in 
Section 3, it is shown that if this estimate replaces the proportion of genes 
i.b.d, at the trait locus in the regression procedure of Section 1, linkage can 
be detected. In Section 4, nonparametric methods for detecting linkage, 
based on the same general principle, are discussed. Finally, in Section 5, 
a maximum likelihood procedure is derived that under certain conditions 
permits estimation of both the genetic effect of a major trait locus and the 
recombination fraction between it and a marker locus. 

One assumption that will be made is that of linkage equilibrium. The 
consequences of linkage disequilibrium will of course depend upon the cause 
of that disequilibrium, whether it is selection, assortative mating, or simply 
that equilibrium has not yet been reached. These possibilities will be investi- 
gated at a future date, with a view to obtaining the appropriate analysis in 
each case. 

1. CONDITIONAL EXPECTATION OF THE SQUARED 
PAIR DIFFERENCES 

Let Yj = (x~j.-x2j) 2 be the squared pair difference for sib pairj .  Then, 
for fixed e j, Yj can take on one of seven values depending upon the genotypes 
of the first and second sibs. These values, obtained from (1) and (2), are shown 

Table I. Conditional Distribution of Yj 

Conditional probability 
Sibpair Y~ n j=O x j =  �89 7r j =  1 

BB-BB "] (" p,~ pa p2 
q4 q3 q2 bb-bb e j 2 

Bb-Bb 4p2q 2 pq 2pq 
BB-Bb (a - d+ e j) 2 2p3q p Zq 0 
Bb-BB (_a+d+e~)2 2p3q pZq 0 
Bb-bb (a + d+ e~) 2 2pq 3 pqZ 0 
bb-Bb ( - a -  d+ e j) 2 2pq 3 pq2 0 
BB-bb (2a+ej) 2 pZq2 0 0 
bb-BB (_2a+e~)2 p2q2 0 0 
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in the second column of Table I. For example, for the sib pair BB-Bb  we 
have from (1) and (2) 

X l j = 1 ~ + a + e l j ,  x2~-- p + d + e 2 i  
and hence 

Y~ = (a + el j - d - e 2 j )  2 -~ ( a - d + @  z 

In order to obtain the expectation of Yj conditional on the proportion 
of genes i.b.d., we need to know the distribution of Yj conditional on this 
proportion. Any particular sib pair must have zero, one, or two genes 
i.b.d, at the trait locus, and so the proportion of genes i.b.d, must be 0, 
�89 or 1. Let the proportion be 7cj for the j th  sib pair. Then the conditional 
distribution of the sib pairs given 7c s is shown in Table I. 

When 7cj -- 0, the sibs are "unrelated" at the trait locus, and so the 
distribution of sib pairs is simply the same as the well-known distribution 
of matings in a random mating population. When rcj -= 1, both sibs have the 
same genotype, and in that case the probability of  the sib pair is simply the 
probability in the population of one of them. To obtain the distribution for 
nj = �89 we argue as follows: It  is obvious that the pair BB-bb  is impossible 
if the sibs are to have one gene i.b.d. The probability of the pair BB-BB,  
given one gene i.b.d., is simply the probability of three B genes occurring 
together, or p3. For the case BB-Bb,  the B gene in the second sib must be 
i.b.d, with a B gene in the first sib, and so the desired probability is simply 
that of BB and b, or p2q. In the sib pair Bb-Bb,  either B is the gene i.b.d., 
in which case the sib pair has probability pq2, or b is, in which case the 
probability is p2q; adding these two probabilities, we obtain pq. All the other 
probabilities are obtained analogously. 

We can now use Table I to calculate the expected value of Y~ conditional 
on rcj. We have 

2 E(YjIrcj = 1) = E{e2[p 2 + q2 + 2pq]} = E(e}) = 0-e (5) 

E( Yilrcj =- �89 = E{e}[p s + qS + pq-] + [(a - d + ej.) 2 + ( -  a + d + ej)2]p2q 
+ [(a + d + e j) 2 + ( -  a - d + e~)ZJpq 2 } 

= 0-2 e + (a 2 + d2)[2p2q + 2pq2] + 4ad[pq2_  p2q] 

= 0-2 + 2pq [a z + d 2 -  2ad(p - q)] 
= 0-2 + 2pq[a - ( p -  q)d] 2 + 2pqd2[1 - (p - q)2-] 
= 0-2+0-]+2pqd2[4pq-I using (3) 

0.2@ 2 2 -- 0-a+20-d using (4) (6) 

and similarly it can be shown that 

E(Y I  j - -  0 )  2 2 2 = 0-e+20-.+20- a (7) 

It  is clear from (5)-(7) that if there is no dominance (d -- O, or equival- 
ently 0-2 = 0), we can write 
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E(rjl j) = 2 2 (ae+2ao)-2agTcj, 7ci = 0,�89 (8) 

This can be written in the form 

E(rj[ j) = + (9)  

where ~ = a,2+2% 2 and fi = - 2 a  2. Thus if nj were known and we fitted 
the simple linear regression model (9), then -�89 would be an unbiased 
estimator of %2, where/~ is the usual least squares estimator of ft. This same 
result will hold asymptotically even when dominance is present. It is shown 
in Appendix I that in this more general case 

E(Yjl=j) = (a 2 + 2a 2) - na.{2a2g + 2n~(n2 - no)a2/[4non2 + non, + nln2]} (10) 

where n i (i = 0, 1, 2) is the number of sib pairs in the sample that have 
the proportion i/2 genes i.b.d, at the trait gene locus. As the sample size 
increases, n2 and no tend to equality, and so the term in a 2 vanishes asymp- 
totically. 

2. E S T I M A T I N G  :rj F O R  A M A R K E R  L O C U S  

Let f j i  be the probability that the j th  sib pair should have i genes i.b.d. 
at a marker locus, conditional on Ira, the information available on the sib 
pair and parental phenotypes at the marker locus. Then the estimator we 
shall use for rcj, the proportion of genes i.b.d, at the marker locus, is 

r = f j2 +�89 j~ (11) 

As defined by (11), ~. is the Bayes estimate of ~j when a squared error 
loss function is used. It also has the property of having maximum possible 
correlation with re j, when ~ is considered as a random variable taking on 
values 0, �89 and 1. For a proof  of both of these results, see Haseman (1970). 

When sib and parental genotypes are both known, ~j can easily be 
calculated for every conceivable mating and sib pair. For the general multi- 
allele system, there are seven mating types, and similarly seven sib pair types. 
We are here using the term mating type, and analogously the term sib pair 
type, in the same broad sense as does Kempthorne (1957). Thus A 1A, • A 1A 1 
and A 2 A 2 • A 2A 2 are two genotypically different matings of the same mating 
type, since they both involve identical homozygotes. All the possibilities, 
together with their probabilities and the appropriate values of ~j, are given 
in Table II, in which it is assumed that the gene frequency of the allele A 
is p ~. Each number in parentheses in Table II is the number of genotypically 
different sib pairs of the indicated type that could result from the indicated 
mating. For example, a type IV mating may produce a type V sib pair that 
is either AiAj-A~A j or AzAk-A~Ak. These are both equally likely type V 
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Table II. 5j When Both Parental and Sib Genotypes Are Known 

Mating type Sib pair type Probability ~o  f ~  f jz  ~ 

I: A~A~• I: AIA~-AIAi pff  t- �89 } �89 
II:  A~A~• V: A~Aj-A~A~ 2pi2pj 2 ~: �89 �88 �89 

III: A~A~• I: AIAi-A~A~ PiaPj 0 �89 �89 
2 3 III: AMI-AIAj 1)~ Pj �89 �89 0 �88 

V: A~Aj-A~Aj Pi3ffj 0 �89 �89 
IV: A~A~• V: (2) p~2'pjpk 0 �89 �89 

VI: AiAj-A~A1, 2pflpjpk �89 �89 0 �88 
V: A~Aj• I: (2) p~2pj2/4 0 0 1 1 

II: AzAi-AjAj p~2pj2/2 1 0 0 0 
/ II :  (2) p 2p j2 0 1 0 �89 
V: A~Ai-AIAj p Zpj2 �89 0 �89 �89 

VI: AiAj• I:  A~A~-A~A~ p~2p.~p~/2 0 0 1 1 
III: (2) 2 0 1 0 �89 p~ ~vj-p~ 
IV: A~Az-AjAk PflPjPk 1 0 0 0 
V: (3) p~Zpjpg/2 0 0 1 1 

VI: A~Aj-A~Ak p~p~p~ 1 0 0 0 
VI: AzAj-AjA~, ; 2 
VI: AiAg-A#A~, 3 Pz P#P~ 0 1 0 �89 

VII: AiA~• V: (4) pip.ip~pt/2 0 0 I 1 
VI: (4) p~pjp~p~ 0 1 0 �89 

VII: (2) p~p~p~p~ 1 0 0 0 

sib pairs, with identical fji  values. Table II also gives the probability of each 
combination of mating and sib pair type; these probabilities are easily 
verifiable. 

When some of the genotypes are unknown, the calculation offj ~ becomes 
more difficult. An algorithm that can be used for this purpose will now be 
given. The procedure is very general and can be used when no information is 
available as to the parental genotypes, or when there is dominance (i.e., we 
know phenotypes but not the genotypes). 

Let Pap and Pzp denote the phenosets (Cotterman, 1969) for the two 
parents; i.e., Pap is the set of all genotypes that could give rise to the pheno- 
type of one parent, and Pzp is the analogous set for the other parent. If 
there is no information as to the parental phenotypes, then the phenosets 
will consist of all possible genotypes. Let Pp denote the set consisting of all 
possible ordered pairs of genotypes resulting when an element of Pap is 
paired with an element of Pzp" Thus, if there are N1 genotypes in P~p and 
N 2 genotypes in Pap, then there are N~Nz elements in Pp. Similarly, let 
Pls  and Pzs denote the phenosets for the two sibs and P~ the set of all possible 
ordered pairs of genotypes from P~s and P2s. Let v and w be elements of 
Pv and P~, respectively. Then 
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w~ ~ 2i}/~ ~h=owp, w,p,~PIvandwandnj=~} j i =  ~ P v a n d w a n d r c j =  
vePp ePs ( 

i = 0,1,2 (12) 

The numerator of this expression is the joint probability of observing I,, 
and that rcj should equal i/2; the denominator is the sum of the three such 
joint probabilities for i = 0, 1, and 2. 

Each term in the summations in (12) can be obtained from Table II, 
since it is the product of one of the probabilities in the third column and one 
of the corresponding fj~. It is necessary only to specify the genotypes that 
belong to Plp,,P2p, Ply, and P2~, or equivalently the pairs of genotypes that 
belong to Pp and Ps. The elements of Pp are the possible matings that could 
result in the observed sib pair; the elements of Ps are the sib pair genotypes 
that the observed sib pair could assume. The calculation can easily be pro- 
grammed in general for a computer. The special case of no dominance and 
no parental information, which permits an easy algebraic solution, is given 
in Table III. 

3. DERIVING THE EXPECTED VALUE OF THE 
REGRESSION COEFFICIENT 

In Section 1, we showed that if the proportion of genes i.b.d, at the trait 
locus, z 9, is known for each sib pair, then the simple linear regression model 
given by (9) will result in - /?/2 being an unbiased estimate of o-o z when 
a ] = 0. This estimate is also asymptotically unbiased even when dominance 
is present. In the last section, we have derived an estimate, ~j, of the pro- 
portion of genes i.b.d, at a marker locus. In this section, we investigate how 
the regression analysis of Section 1 is affected if we substitute our estimate 
~j for zcj in the regression equation. We shall show that for the special case 
of a two-allele marker locus, no dominance, and complete parental infor- 
mation, 

E(YjI~j) = c~ + fl~j (13) 

where 

fi = -2(1-2c)2a~ (14) 

and c is the recombination fraction between the trait and marker loci. 
We now distinguish between the proportion of genes i.b.d, at the trait and 

marker loci for sib pairj,  denoting these proportions rcjt and Zgm, respectively; 
and we denote by ~j,, the estimate of ~Zjm given by (11). We assume linkage 
equilibrium between the marker and trait loci, so that for fixed nit, Yj and 
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Table IV. Joint Distribution of 7~,,, and 7U~ 

11 

7gjm 

0 �89 1 Total 

~j t  
0 ~2/4 ~(1-RO/2 (1--~)=/4 k 
�89 ~(1-u~)/2 (1-2~+2~I2)/2 ~(1-~)/2 �89 
1 (1-~P)2/4 ~(1-W)/2 ~2/4 �88 

Total ~ �89 ~ 1 

~J'm are independent, and also for fixed gjm, gjt and ~j~ are independent. 
It follows that 

EO)]~jm) = Zg{gjlz~j~)P{~jtl~j~) 
l~jt 

~jt ~jm 

where the summations are over the three values that  njt and njm can assume. 
E(Yj[n~t  ) is given by (5)-(7). The joint  distribution of  7rj~ and zS.,, is 

derived in Appendix I I  and is given in Table IV, in which �9 = c 2 + (1 - c) z. 
The joint  distribution of  nj'm and ~j,,, for  the special case o f  a two-allele 
marker  gene, no dominance,  and complete parental information can be 
derived easily f rom Table II. For  example, we see f rom Table II  that  ~im = 0 
if and only if there is an Aa x Aa  mating and an A A - a a  sib pair, an event 
with probabil i ty p2q2/2. Naturally,  njm = 0 for this sib pair. I f  the sibs had 
been A A - A A  or aa-aa (each with probabil i ty p2q2/4), then ~jm = njm = 1. 
Similarly, the remaining matings and resulting sib pairs can be examined, 
and the joint  probabil i ty is found to be as given in Table V. 

Table V. Joint Distribution of z~j., and njm for a Two-Allele Marker Locus with No 
Dominance and Complete Parental Information 

~jm 

0 �89 1 Total 

~jm 
0 ~p~q2 0 0 ~pZq2 
_} p 3q + pq3 p aq + pq3 0 2(p 3q + pq 3) 
�89 ~(p4+4p2qZ+q4) �89 ~(pg+4p2q2+q4) (p'*+5p2q2§ 4) 

0 paq+pq3 paq+pq3 2(p3q+pqa) 
1 0 0 �89 ~p2q2 

Total k ~ ~- 1 
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From Tables IV and V and from (5)-(7) and (15), we have 

E(YjtI~j,, = 0} = a2e [(1 -- qJ)z(1) + ~(1 -- ~)(0) + q~2(0)] 
+ [Cr 2 + az0] [2~(1 -- R})(1) + (1 -- 2q j + 2~z)(0) + 2~(1 -- q~)(0)] 
+ [0-2 + 2a] ]  [RJ2(1) + ~ ( I  - ~)(0)  + ( i  - ~)2(0) ]  

= 0-2 + a ~ [ 2 ~ _ 2 ~ z  + 2R~2] 2 2 = 6 e + 2 q J f f g  ( 1 6 )  

Also, 

E( Yjt [#jm = 1) = 0,-2[( i  __ LI.t)2(�89 ) Jr_ W(I - W)�89 + W2(O)] 
+ [0-2 + G2] [2V(1 - W)(�89 + (1 - 2R ~ + 2V2)�89 + 2V(1 - RJ)0] 
+ [a 2 + 20-zo][W2(�89 + W(I - W)�89 + ( i  - W)2(O)] 

= a2+(�89 (17) 

Similarly, it can be shown that 

2+a  (18) E ( YXc jm = �89 = ly e 

E ( Y y t l ~ j  m = 3 )  = 2 a 2 o- e --~- ( ~  - tlJ)0- g ( 1 9 )  

= 1) = (20) 

Thus, from (16)-(20), we see that 

= [0-e + 2 Y o g i  + 2(1 -- 

= [ 0 -2+2 (1 -2c+2c2 )0 -2o ] -2 (1 -2c )20 -2~1 .  (21) 

This result is shown by Haseman (1970) to hold also in the case of a 
multiallele marker locus, provided there is no dominance at the trait locus. 
When there is dominance at the trait locus (13), (14) and (21) are approxi- 
mate rather than exact, but the bias is small for large samples. Thus the 
regression analysis described in Section 1 can be used with ~j ,  replacing 
rcj,, and the hypothesis that fl = 0 can be tested approximately by comparing 
the calculated fl to its estimated standard error; a significantly large Ifll 
indicates that e ~  �89 and so linkage is present. Note, however, that it is only 
possible to detect linkage, not to estimate c, using this regression procedure. 

Finally, suppose that there are K trait loci, each linked to the marker 
locus; then (14) will hold for each trait locus separately, and if the trait loci 
are mutually unlinked and there is no epistasis 

K 
EGO) = - 2  Z (1-2c~) 20-2 (22) 

i = 1  

2 is the contribution to the total genetic variance of the ith trait locus where 0- i 
and c~ is the recombination fraction between it and the marker locus. (The 
equality is exact if there is no dominance.) 

An even stronger result holds if linkage equilibrium among the trait 
loci is assumed. At linkage equilibrium, the genetic effects at two loci are 
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independent, which implies that (22) will hold at equilibrium even if the 
traits are linked, as long as the effects at the different loci are additive 
(i.e., there is no epistasis). Thus a significantly large ]/~1 indicates that there 
is a linkage relationship between the marker locus and one or more trait 
loci. 

4. DETECTING LINKAGE BY NONPARAMETRIC METHODS 

If there is a major trait gene located near a marker, then there should be a 
definite (inverse) association between the sib pair difference ]x~j-XEjl and 
~., the proportion of genes i.b.d, at the marker locus. On the other hand, 
if there is no major trait gene near the marker, then [xlj-Xaj] and 7rj should 
be independent. Hence standard rank correlation procedures, such as 
Kendall's z and Spearman's p, can be used as a test of such linkage. In the 
analysis, nj is replaced by its estimate ~j., as defined by (11). 

First, ~j and [xlj-Xz~ I are separately ranked in order of magnitude, 
tied scores being assigned the average of the tied ranks. The rank correlations 
are then calculated by the standard formulas given, for example, by Siegel 
(1956) and Kendall (1955). Tables of critical values are available (e.g., 
Siegel, 1956), and a significant negative correlation implies that there is 
either a relatively large genetic effect at a moderate distance from the marker 
or that there is a smaller genetic effect close to the marker. 

This test procedure is easy to apply, requiring only the calculation of 
72j and the sib pair differences. Furthermore, it requires no distributional 
assumptions for the trait of interest. The primary disadvantage is that, 
being a nonparametric test with nj estimated by ~j, it is likely to require 
relatively large samples in order to detect anything but fairly close linkage. 

5. MAXIMUM LIKELIHOOD ESTIMATION OF LINKAGE 

One disadvantage of the methods discussed above is that a 2 is confounded 
with the recombination fraction c, and hence although linkage can be 
detected it can not be estimated. In this section, we show how maximum 
likelihood (ML) techniques can be used to overcome this difficulty. 

We assume that there is a two-allele trait locus, with genetic effects 
given by (2), located at a linkage distance c from a multialMe marker locus. 
We denote by rCjm and nit the proportion of genes i.b.d, at marker and 
trait loci, respectively, for sib pairj .  We assume linkage equilibrium for trait 
and marker loci and also that sib pair differences are normally distributed. 
More precisely, we assume that, for each value of r%, x~j-x2j is distributed 
as a mixture of up to seven normal distributions. From the values of Yj 
given in Table I, we see immediately that if E(ej) = 0 the means of these 
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seven distributions are 0, a - d ,  a+d,  - a + d ,  - a - d ,  2a, and - 2 a ,  depend- 
ing upon the sib pair genotypes. We shall assume E(ej) = 0, i.e., that the 
data have been corrected for any sib order effect, and so the variance of each 
distribution is ~ .  

Without loss of generality, we can reduce the number of distributions 
from seven to four by considering only the absolute pair differences; for 
example, no distinction is made between a BB-Bb and a Bb-BB sib pair. 
This is reasonable, since the order of  the sibs' scores is unimportant if  we 
correct for age. Thus henceforth we consider only the absolute differences 

Dj = [Xlj--Xzj  I . 
The distribution of D j, conditional on the sib pair genotypes at the 

trait locus, is simply twice the conditional distribution of x l j - X z j  , but 
limited to the range x~j-x2j>~O. Thus we can write it as 

f~ =f (Dj ls ibsBB-BB,  bb-bb, orBb-Bb)  = (1/~e)(2/rc)~ exp (_ l  Dj/2ae),2 2 

Dj/> 0 (23) 

= 0, otherwise 
t ! 

f2  = f ( D j ] s i b s  B B - B b  or B b - B B )  = (1/,~e)(2/~zp e x p [  - ( D j  - a + d)2/2•2] ,  
Dj ~> 0 (24) 

= O, otherwise 

(1/ae)(2/rc) e x p [ -  (D j -  a f3 = f (  D j[sibs B b-b b or b b-B b ) ~ - d) Z /2cr~], 
D~ ~> 0 (25) 

= 0, otherwise 

f4 = f(Djlsibs BB-bb or b b-BB) = (1/~)(2/7c) ~ e x p [ -  (D j -  2a)2/2~2], 
Dj 1> 0 (26) 

= 0, otherwise 

I f  we knew the sib pair genotypes at locus B for all sib pairs, the like- 
lihood function could be easily constructed. Instead, we have information 
on the sib pair phenotypes at the marker locus and possibly, in addition, 
the phenotypes of  one or both parents at this locus. We now show how 
this information at the marker locus, Ira, can be used to obtain the likelihood 
function for an observed sib pair. 

The likelihood function for sib pa i r . /may  be written 

L = f(Dj[I,,) = f(Dj  and ]m)/P{Im} 

= • f (Dj  and I,,]rcjt)P{rcjt}/P{I,,~} = ~f(Djlzcjt)P{Imlrcj,IP{~cjt}/P{lm} 
~ j t  1~J t 

(because of linkage equilibrium) 
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-- Ef(Da.[rra.,) [ 2 P{Imand%,]~,m}P{rca.,}/P{I,~}] 
~ j t  ~7~jrn l 

= Z Z f(DJlnjt)P(lm[nj,~)P(njt[njm)P(njm)/e(Im) 
~ j t  ~ j m  

(because of linkage equilibrium) 

= 2 2J(D,[Tr,3P(nj, lr%)P(n,,.[l,,) 
7Ejt ~jtrt 

2 2 

= ~ ~, f(Di]nit = h/2)P{njt = h/2[njm = k/2}Pr(njm = k/2[I,,) (27) 
h = 0 k = O  

Apart from a factor of 2 or 4, P{njt = h/2[~im = k/2} is given in 
Table IV, and P{Zjm = k/2]Iz}  can be obtained from Tables II or III 
in simple cases, or found numerically in more complex situations by the 
use of (12). 

We now findf(Dj ]~jt = hi2). Note that Di, conditional on nit, is distri- 
buted as a mixture of the four distributions given by (23)-(26), i.e., letting 

mhi = P(Dj has density function flirt jr = hi2) 

(h = 0, 1,2 and i = 1,2,3,4) 
we have 

f(Pjln;,  = h/2) = mhlfl  +mh2f2+mh3fa+mhj4 ,  h = 0,1,2 (28) 

The coefficients mhl can be calculated from Table I and are given in Table 
VI. Thus 

mo 1 = Pr(sibs BB-BB,  bb-bb, or Bb-Bblnjt  = O) = p4 + q,~ + 4pZq2 

too2 = Pr(sibs BB-Bb or Bb-BB]rcjt = O) = 4p3q, etc. 

Thus f(DjlTCj, = k/2) can be obtained using (23)-(26), (28), and Table 
VI, and hence all elements in the likelihood (27) can be calculated. There are 
five parameters in the likelihood function: c, p, a~, a, and d. (If the gene 
frequencies at the marker locus are unknown, they too can be appropriately 
estimated.) After ML estimates of these five parameters have been obtained, 
the estimated additive and dominance variance can be calculated by sub- 
stituting the parameter estimates for the true values in (3) and (4). 

Table VL Values of the Coefficient mh~ 

1 2 3 4 

0 p4+4pZq2+q4 4p3q 4pq 3 2p2q2 
1 1 - 2pq 2p 2q 2pq 2 0 
2 1 0 0 0 
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Because of the complexity of the likelihood function, computer methods 
must be used in order to find the ML estimates. Note, however, that little 
information is needed beyond that already supplied for the computer 
calculation of ~im" The only additional information required in order to 
evaluate the likelihood function (27) are Tables IV and VI and the density 
functions (23)-(26). In fact, note that these additional quantities, P(~i, l rcJm) 
andf(Dj  I roy, ), do not in any way depend upon what is observed at the marker 
locus and hence are constant for all sib pairs. Thus the only probabilities 
in the likelihood function that vary from sib pair to sib pair are those given 
by (12). Once the likelihood has been programmed, various methods are 
available for calculating the ML estimates; the simplest is to search the 
likelihood surface directly, as explained elsewhere (Kaplan and Elston, 1972). 

Finally, it might be noted that if we make the simplifying assumption 
that a 2 = 0, then the number of distributions involved is reduced from four 
to three, and the number of parameters to be estimated is reduced from five 
to four. The ML procedure described above can be modified accordingly 

2 and a. to permit estimation of e, p, ae, 

A P P E N D I X  A 

Consider the simple linear regression model (9) in which we regress the 
squared pair differences Yj on 7rj, which is assumed to be known. Suppose 
that of the n sib pairs used in the analysis, n ~ (i -- 0, 1, 2) have i/2 of their 
genes i.b.d, at the trait locus. Then in matrix notation we can write 

E(y) = A 

where y is a column vector whose n elements are Yj; A is a n x 2 matrix 
whose first n 2 rows are (1,1), whose next nl rows are (1,�89 and whose last 
no rows are (1,0); and y is a column vector whose two elements are a and ft. 
It is well known (e.g., Graybill, 1961) that ~, the least squares estimator of 
Y, can be obtained by solving the system of equations 

A'A~ = A'y 
so that 

A'AE($) = E(A'y) 

In this particular case, we have 

A'A = [ n nl n2 + n l ]  ~-L1 

1"/2+- ~ - rt2 +-~-- 
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+ (n, + 2,,o)O. + 20,,  + 
E(A 'y )  = \ (n2 + n1/2)0.~ z + (ni/2)0.J + n,0. 2 ] = 

(n2 + n,/2)0. 2 + (n,/2)0 .2 + (n,/2)0.2 ] 

Thus to find E(fl), we solve 

hE(a) + (nz + na/2)E(~) = n0.~ + (n, + 2no)0. 2 + n,0. 2 

(n2 + n,/2)E(a) + (n 2 + n,/4)E(fi) = (n2 + n,/2)0.z~ + (n,/2)(0. 2 + a~) 

Eliminating E(~), we see that 

E(f l){(n2 + n, /2)  2 - (n2 + n , /4)n}  = 0 .2 [ (n ,  + 2no)(n2 + n , / 2 ) -  n, n/Z] 

+ 0.2 {n, (n2 + n,/2) - n,n/2} 
which reduces to 

- [E(fi)/4][4n2n o + nl n2 + ntno] = 

= (0.2/2)[4n2no + nin2 + hint ]  + [ -  n,no/2 + nln2/210, z 
o r  

E(]~) = - 20.~ -2n l (n2  - no)0.~/(4nzno + lhnz + hint) 

APPENDIX B 

Consider a general mating that at two loci A and B is 

A1B1 AaB3 
- - •  
A2B2 A4B4 

Let e be the recombination fraction (assumed the same for both sexes) 
between these two loci. Then the gametic frequencies are 

Parent I Parent II 
Gamete frequency Gamete frequency 
A 1B1 (1 - c)/2 A 3B3 (1 - c)/2 
A2Ba (1 -c ) /2  A4B 4 (1 -c ) /2  
A 1B2 c/2 A 3B 4 c/2 
A z B  1 c/2 A4B3 c/2 

Suppose that two sibs result from the above mating and we wish to 
find P{rCjm =rci t  = 1} in these sibs, where rgm and rcjt are the proportions 
of genes these sibs have i.b.d, at the A and B loci, respectively. This probability 
can be found by summing the squares of  all 16 zygote frequencies formed 
when a gamete frequency from parent I is multiplied by a gamete frequency 
from parent II. For  example, one way that rcj,. = rcjt = 1 is for both sibs 
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to be A IB1/A 3Ba, and  this probabi l i ty  is [(1 - c ) /212[ (1  - c ) / 2 ]  2 = (1 - c)4/16. 
The remain ing  15 probabil i t ies  are calculated similarly, and  so 

P{rrjm = ha. t = 1} = 4(c4/16) + 8[cZ(1 - c)2/16] + 4[(1 - c)4/16 ] 

= [c  4 + 2c2(1 - c) 2 + (1 - c)4]/4 

= [c  2 + (1 - c)212/4 = vP;/4 

where 
t i t  = C 2 + ( 1 _ _ C ) 2  

By symmet ry  we have  

P{nj~ = rcjt = 0} = P{Tcjm = nj. t = 1} = T 2 / 4  

which can also be establ ished by s u m m i n g  the appropr i a t e  c ross -p roduc t  
frequencies.  

We  now find P{njm = 1 and  rgt = 0}. N o t e  tha t  rgm = 1 and  rcjt = 0 
if, for  example,  the first sib is A1B1/A3B 3, the second A1Bz/A3B,,. The 
probabi l i ty  o f  this sib pair  is 

[(1 - c)/2] [(1 - e)/2-J[e/2][c/2] = c2(1 - c)2/'16 

There  are 15 o ther  sib pairs tha t  could  result  in rCjm = 1 and  nj,  = 0, and  all 
15 have the same probabi l i ty  c2(1 -c)2/16. Hence  

P{~zj,, = 1 and  ~zjt = 0} = 1 6 [ c 2 ( 1 - c ) 2 / 1 6 ]  

= c2(1 - c) 2 

= -  (1 - ~')2/4 
By s y m m e t r y  we have 

Pr0zj.,, = 0 and  rcjt = 1) = Pr(r~j,, = 1 and  rgt = 0) = (1 - ~ ) 2 / 4  

Since we k n o w  that  the marg ina l  d is t r ibut ion o f  rgm (and rcjt ) is given by  

I 1/4 if rcj,, = 0 

P{~zj~} = j l / 2  if  7"Cjm = 1 

/ 
L1/4 if ~Cjm = 1 

the remain ing  probabil i t ies  in the jo in t  d is t r ibut ion o f  7cj,, and  nit can  be 
ob ta ined  by  subtract ion.  F o r  example,  

P{rCjm = 1 and  7cj~ = 1/2} = P{rCjm = 1}--P{TCjm = 1 and  7cjt -- O} 

--P{rgm = 1 and  rcit = 1} 

= � 8 8  w z / 4 - - ( 1  - -  W ) 2 / 4  = �88 - i t ' 2 - 1  d - 2 W - - W  2) 

= V ( 1  - ~ ) / 2  

The  o ther  probabil i t ies  in Table  IV can  be ob ta ined  likewise. 
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