
Using GREML to estimate 
SNP- heritability among 
‘unrelated’ individuals

Matthew Keller

University of Colorado at Boulder



 Twin h2

 estimate of the narrow-sense (but in practice, 
broad-sense) h2

 Can be biased if strong assumptions are unmet
 SNP-h2

 Estimate of the narrow-sense h2 captured by 
causal variants tagged by SNPs in your analysis

 GWAS h2

 Sum of r2 from all independent genome-wide 
significant SNPs from a GWAS

Three flavors of h2
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 Almost always Twin h2 > SNP-h2 > GWAS h2

Twin h2

SNP-h2

GWAS h2

Three types of missing h2

Missing 
heritability

Still-missing h2

Hidden h2



• h2
snp should be unbiased by environmental factors that increase 

close relative similarity. In particular, doesn’t rely on rMZ > rDZ
due only to genetic differences (although still assumes no 
relationship between genetic & env. similarity among distant 
relatives)

• Estimating h2
snp from binned SNPs allows for estimates of relative 

importance of different SNP annotations. E.g.,  allows for estimates 
of allelic spectra (distribution of CV MAF)

• Can estimate rg between low prevalence disorders that are 
impractical to estimate using twins/family designs

• As we continue to capture lower MAF SNPs through imputation or 
sequencing, GREML (but not LDSC) estimates of h2

snp approach 
full narrow-sense h2.

Why care about SNP-h2?



 LD-score regression
 Least Squares Regression (Haseman-Elston)
 Mixed effects models (GREML):

 Typical approach (GCTA assumptions)
 Multi-GRM approaches

 Bayesian approaches

Multiple approaches to 
estimating h2

snp



 LD-score regression
 Least Squares Regression (Haseman-Elston)
 Mixed effects models (GREML):

 Typical approach (GCTA assumptions)
 Multi-GRM approaches

 Bayesian approaches

Multiple approaches to 
estimating h2

snp
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H-E REGRESSION



(the slope of the regression is 
an estimate of h2)

Regression estimates of h2

product of centered scores 
(here, z-scores)
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(the slope of the regression is 
an estimate of h2)

2*[COR(MZ)-COR(DZ)]
= h2 = slope

Regression estimates of h2
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(the slope of the regression is 
an estimate of h2

snp)

Regression estimates of h2
snp

snp



GREML
2010



GREML Model 

-.64
-2.58
3.21

=
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* +

design matrix for SNP effects =

SNP 
effects

residuals

y.x



GREML Model 

-.64
-2.58
3.21

= * +

design matrix for SNP effects =

SNP 
effects

residuals

We aren’t interested in estimates of each ui because 
such individual estimates are unreliable when m > n. 
Instead, estimate the variance of ui.

y.x

-.58  1.41  -.93
1.15   .05  2.53
-.58 -1.30   .79



GREML Model 

-.64
-2.58
3.21

= * +

design matrix for SNP effects =

SNP 
effects

residuals

We assume                           and are iid

and therefore  

y.x

-.58  1.41  -.93
1.15   .05  2.53
-.58 -1.30   .79



GREML Model 
(we treat u as random and estimate       and thus       )

=
.99   -.02     -.01
-.02    1.0      .01
-.01    .01      1.02

+
Genomic Relationship Matrix (GRM) 
at measured SNPs. Each element = 

Identity 
matrix

observed n-by-n 
var/covar matrix 
of y

.41  1.65  -2.05
1.65 6.66  -8.28
-2.05 -8.28 10.3
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0     1    0
0     0    1



GREML

=
.41  1.65  -2.05
1.65 6.66  -8.28
-2.05 -8.28 10.3

1 0    0
0     1    0
0     0    1

observed var/covar implied var/covar 

REML find values of      &      that maximizes the likelihood of the 
observed data. Intuitively, this makes the observed and implied 
var-covar matrices be as similar as possible.

+
.99   -.02     -.01
-.02    1.0      .01
-.01    .01      1.02



 If close relatives included (e.g., sibs), h2
snp ≅ h2 estimated 

from a family-based method, because great influence of 
extreme pihats. Interpret h2

snp as from these designs.
 If use ‘unrelateds’ (e.g., pihat < .05):
 h2 estimate 'uncontaminated' by shared environment and 

non-additive genetic effects
 Does not rely on family/twin study assumptions 
 Evidence for h2

snp to degree similarity at SNPs 
corresponds to phenotypic similarity. Thus, h2

snp = 
proportion of VP due to CVs tagged by (in LD with) 
SNPs used in the GRM. 

 Typically, h2
snp < h2. It is the max r2 possible from a PRS 

using those SNPs.

Interpreting h2 estimated from SNPs (h2
snp)



LD



 Statistical association (e.g., r2) between two SNPs
 Typically arises from a mutation that occurs on a 

haplotype. It will co-segregate with nearby SNPs. 
As it rises in frequency, so too will nearby SNPs.

 It decays as a function of number of recombination 
events that break the two SNPs apart, which is itself 
a function of:
 Time (# generations) since the mutational event
 Distance (cM) between the two SNPs

 SNPs can only predict SNPs that are similar in MAF. Rare-
rare or common-common. Rare-common is not possible.

Linkage disequilibrium (LD)



How LD arises & decays

Bush & Moore, PLoS Comp Bio, 2012



SNPs can tag other nearby SNPs…

Bush & Moore, PLoS Comp Bio, 2012



LD drops as a function of distance

Dawson et al, Nature, 2002



…and high LD possible only if the two 
alleles are of similar frequencies…

.2

.5
.8

.5
.2

Wray, TRHG, 2006

Possible range of allele frequencies given LD (r2) between 2 SNPs
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Possible range of allele frequencies given LD (r2) between 2 SNPs



…AND where the rare allele at SNP 1 is in 
PHASE with the rare allele at SNP 2

In Phase Out of Phase

Very high LD Very low LD



 Because we only estimate genetic variance from CVs in 
LD with the SNPs used in the analysis. Common CVs are 
in high LD with array/imputed SNPs, but this is less the 
case with rare CVs.

 In particular:

Why h2
snp < h2 (almost always)

where
is the average LD r2 between CVs and SNPs

is the average LD r2 between SNPs and SNPs



THE END 
(extra slides after)



RUNNING GCTA



SNP QC
• Poor SNP calls can inflate SE and cause 

downward bias in h2
snp

• Clean data for
– SNPs missing > ~.05
– HWE p < 10e-6 
– MAF < ~.01
– Plate effects:

• Remove plates with extreme average inbreeding 
coefficients or high average missingness



• Remove individuals missing > ~.02
• Remove close relatives (e.g., --grm-cutoff 0.05)

– Correlation between pi-hats and shared 
environment can inflate h2

snp estimates
• Control for stratification (usually 5 to 20 PCs)

– Different prevalence rates (or ascertainments) 
between populations can show up as h2

snp

• Control for plates and other technical artifacts
– Be careful if cases & controls are not randomly 

placed on plates (can create upward bias in h2
snp)

Individual QC



COMMAND: 
gcta 
--grm-bin <path>/SNPs.rel05 

--pheno <path>/test.phen 

--covar <path>/test.covar

--qcovar <path>/test.qcovar

--reml --out SNPgrm.randomCV

GCTA command & input
gcta --bfile SNPs --make-
grm-bin --out SNPs.rel05 



COMMAND: 
gcta --grm-bin <path>/SNPs.rel05 --pheno <path>/pheno.txt --covar 
<path>/cov.txt --reml --out SNPgrm.randomCV

OUTPUT: cat SNPgrm.randomCV.hsq

Source Variance SE
V(G) 0.300098 0.275857
V(e) 1.730548 0.279257
Vp 2.030646 0.049529
V(G)/Vp 0.147785 0.135820
logL -2876.706
logL0 -2877.338
LRT 1.264
Df 1
Pval 0.1305
N 3363

GCTA command & output



COMMAND: 
gcta --grm-bin <path>/SNPs.rel05 --pheno <path>/pheno.txt --covar 
<path>/cov.txt --reml --out SNPgrm.randomCV

OUTPUT: cat SNPgrm.randomCV.hsq

Source Variance SE
V(G) 0.300098 0.275857
V(e) 1.730548 0.279257
Vp 2.030646 0.049529
V(G)/Vp 0.147785 0.135820
logL -2876.706
logL0 -2877.338
LRT 1.264
Df 1
Pval 0.1305
N 3363

GCTA command & output

h2
snp & SE

95% CI:  
0.147-1.96*0.134 = -0.12
0.147-1.96*0.134 = 0.41



COMMAND: 
gcta --grm-bin <path>/SNPs.rel05 --pheno <path>/pheno.txt --covar 
<path>/cov.txt --reml --out SNPgrm.randomCV

OUTPUT: cat SNPgrm.randomCV.hsq

Source Variance SE
V(G) 0.300098 0.275857
V(e) 1.730548 0.279257
Vp 2.030646 0.049529
V(G)/Vp 0.147785 0.135820
logL -2876.706
logL0 -2877.338
LRT 1.264
Df 1
Pval 0.1305
N 3363

GCTA command & output



LDAK

2017

2012



 A more general form of this formula is:

 Which reduces to the typical formulation above when:
&

 The choice of Wi and α are arbitrary and depend on 
implicit assumptions about which types of SNPs tag CVs 
& CV effect sizes. If we heavily weight a certain type of 
SNP (e.g., those in genes), we assume such SNPs better 
tag CVs.



SNPs have equal weight, even if they are poorly 
imputed and redundantly tag the same CV 

Assumptions Consequences

Rarer SNPs (which tag rarer CVs) receive more 
weight, ostensibly due to NS. This means the variance 
explained per SNP is invariant across MAF:



Where ri is the imputation INFO score and wi is the 
LD score. High LD SNPs receive less weight, and 
poorly imputed SNPs receive less weight.

Assumptions Consequences

Lower MAF SNPs (which tag rarer CVs) receive less 
(vs. GCTA) weight. This means the variance 
explained per SNP increases with MAF:



 Common sense: Redundantly tagged CVs should not have 
higher effect sizes. Poorly imputed SNPs must tag CVs 
worse.

 Model Fit: log-likelihood from LDAK models was 
typically higher than log-likelihood from “GCTA” models

• Moreover, h2
snp 25-43% higher than GCTA models

Speed & Balding argued that 
LDAK weights are superior



 Single GRM models depend heavily on assumptions and 
CV MAF matching the SNP MAF distribution

 Nothing about maximizing likelihoods ensures 
unbiasedness

Problems with LDAK approach

 LD and imputation r2 are highly 
positively related, but LDAK weights 
them oppositely. This gives extreme 
weight to a small number of unusual 
(well imputed, low LD, high MAF 
SNPs)



GREML-LDMS-I & -R
2018

2015

LDMS-I

LDMS-R



The LDMS Approach
 Single-GRM models are highly sensitive to assumptions 

about CV-SNP LD (e.g., that SNPs have same distribution 
as CVs) and CV effect size-MAF relationships. We don’t 
want our estimates of genetic architecture to depend on our 
assumptions of genetic architecture.

 Moreover, even if we were to guess at these relationships 
perfectly for a trait, they are unlikely to hold across all 
traits.

 Akin to multiple regression, an alternative (LDMS) is to let 
the data tell us by fitting multiple GRMs, each with SNPs 
binned according to different MAF levels and LD levels

 Estimates associated with each GRM are free to soak up 
whatever variance is explained by those MAF/LD SNPs



LDMS justification

 Note that

 The range of MAF and range of LD will be smaller within 
a particular MAF/LD bin. As the MAF & LD range shrink 
for a given MAF/LD bin k of SNPs (Mk) and CVs (Qk), 

and thus 



LDMS-R vs. LDMS-I
 LDMS-R: Create 20 GRMs across 5 MAF bins (< .001, 

.001-.01, .05-.1, .1-.25,.25-.5) and 4 quartiles of LD scores 
within each bin, where SNPs take the average LD of SNPs 
in the surrounding ~ 200kb region.

 However, SNPs with individually low LD that exist in 
regions of high LD explain more variation (Gazal et al, Nature Genetics, 2017)

 Thus, LDMS-I (unlike LDMS-R) uses each individual 
SNP’s LD score for binning

 Because SEs tend to be ~2.5x larger than single-GRM 
estimates, both require large sample sizes (e.g., N > 30k) 
and therefore large amounts of RAM (e.g., >100 Gb)



RUNNING LDMS-I



GCTA LD command: 
gcta  --bfile <path>/test 
--ld-score-region 200
--out LD.txt

Create LD quartiles in R: 
LD <- read.table(“LD.txt”,header=T)
quants <- quantile(LD$ldscore_SNP)
LD1 <- LD$SNP[LD$ldscore_SNP <= quants[2]]
write.table(LD1,”snp_group1.txt”,row.names=F,col.names=F,quote=F)
<etc…>

Create GRMs in GCTA:
gcta --bfile <path>/test
--extract snps_group1.txt
--make-grm-bin
--out GRM.1

Create LD quartiles
test.bed, test.bim, test.fam



COMMAND: 
gcta 
--mgrm-bin <path>/multi_GRMs.txt

--pheno <path>/test.phen 
--covar <path>/test.covar
--qcovar <path>/test.qcovar
--reml --out Multi.SNPgrm
--thread-num 20

Run LDMS-I using GCTA
<path>/GRM.1
<path>/GRM.2
…
<path>/GRM.last

Text file

As before

You can use multiple cores; 
make this as many cores as you 
can spare



TYPE: cat mgrm.randomCV.hsq

Source Variance SE
V(G1) 0.303900 0.184182
V(G2) 0.127654 0.309142
V(G3) 0.653199 0.328909
V(e) 0.926493 0.435653
Vp 2.011246 0.049641
V(G1)/Vp 0.151100 0.091277
V(G2)/Vp 0.063470 0.153765
V(G3)/Vp 0.324773 0.164408
logL -2872.894
N 3363

h2SNP = 0.15+0.06+0.32 = 0.5391

LDMS-I Output (3 GRM example)



GREML vs. LDAK vs. LDMS-I



•We hope it’s useful as a guide for best practices and proper 
interpretation of ĥ2

SNP. 
•We simulated 16 genetic architectures, 3 levels of 
stratification, and 3 SNP types (array, imputed, WGS) in order 
to compare ĥ2

SNP across 12 estimation methods (1728 different 
combos)
•Here I highlight just a few of what I think are the most 
important points 



Overview of Simulation Approach
 Genotypes from real WGS data (n=8k). Choose 1K 

rare (MAF < .0025) or common (MAF > .05) CVs.
 Pull out SNPs on UKB array & impute 
 Vary 2 CV effect size dimensions (λi=ui[2pq]α/2):

• λ-LD (via ui)
• λ-MAF (via α)

 Compare ĥ2
SNP to true h2 (=.50) across 3 methods 

on imputed data 
 Repeat this 100 times for different sets of CVs; 

look at mean (to get bias) and SD (to get SE) ĥ2
SNP



Simulation of phenotypes
 CV effect size = λi= ui[2pq]α/2

λ-LD relationship 
ui~N(0,1)         or         ui~N(0,wi)

λ-
M

A
F

α=
-.2

5 
or

 α
=-

1

 Breeding values = 

 Phenotype values = 



3 Estimation Methods Compared
 GREML-SC: predictor is a single GRM (aka, “GCTA 

approach”). GRM built as usual from all imputed SNPs 
with MAC > 5 & imputation r2 > .3

 LDAK: predictor is a single GRM from imputed SNPs and 
weighted by LD and imputation r2. 

 GREML-LDMS-I: predictors are k = 8 GRMs created by 
binning imputed SNPs into 2 individual LD by 4 MAF 
categories. Within each bin, GRMs built as usual. ĥ2

SNP = 
Σ(ĥ2

SNP_k)



GREML-SC results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:
LD-λ
MAF-λ

0         - 0        - 0        +       0       +  
- - ~0     ~0               +        +     ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.
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GCTA 
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LDAK
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MQ > r2

MM
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GREML-SC results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:

r2
MQ < r2

MM

LD-λ
MAF-λ

0         - 0        - 0         - 0       -
- - ~0     ~0               - - ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.



GREML-SC results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:

ĥ2
SNP = h2 (r2

MQ/r2
MM)

LD-λ
MAF-λ

0         - 0        - 0         - 0       -
- - ~0     ~0               - - ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.



LDAK results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:
LD-λ
MAF-λ

0         - 0        - 0        +       0       +  
- - ~0     ~0               +        +     ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.



LDAK results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:
LD-λ
MAF-λ

0         - 0        - 0        +       0       +  
- - ~0     ~0               +        +     ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.

upweights low LD 
SNPs but this is 
partially offset by 
downweighting 
poorly imputed ones



LDAK results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:
LD-λ
MAF-λ

0         - 0        - 0         - 0       -
- - ~0     ~0               - - ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.



LDAK results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:

Again, 
r2

MQ < r2
MM

LD-λ
MAF-λ

0         - 0        - 0         - 0       -
- - ~0     ~0               - - ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.



GREML-LDMS-I results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:
LD-λ
MAF-λ

0         - 0        - 0        +       0       +  
- - ~0     ~0               +        +     ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.



GREML-LDMS-I results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:
LD-λ
MAF-λ

0         - 0        - 0         - 0       -
- - ~0     ~0               - - ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.



GREML-LDMS-I results
ĥ2 SN

P

CV MAF > .05 CV MAF < .0025

CVs:

Within a given MAF/LD bin, r2
MQ ≅ r2

MM

Thus, ĥ2
SNP = h2 (r2

MQ/r2
MM) = h2

LD-λ
MAF-λ

0         - 0        - 0         - 0       -
- - ~0     ~0               - - ~0     ~0  

GCTA 
assumps.

LDAK
assumps.

GCTA 
assumps.

LDAK
assumps.



Absolute Bias Across 4 Methods and 
hundreds of genetic architectures



Regarding LD-Score regression

 LD-score regression is robust to stratification and 
sample overlap. However:
 it cannot estimate h2 due to rare CVs, even when 

using imputed/WGS data
 it is sensitive to assumptions about LD-λ 
 should provide a lower-bound of ĥ2

SNP from other 
methods

 So long as genetic covariance is affected in the 
same way as genetic variances, estimates of genetic 
correlations should be OK.



Summary
 With datasets imputed to large WGS reference panels, ĥ2

SNP
can estimate full h2. It’s important that we have unbiased 
estimators to know the true h2 and for comparison to 
twin/family estimates (o/w things will get really 
confusing).

 Single-GRM approaches (incl. GREML-SC (“GCTA”) and 
LDAK) are extremely sensitive to CV LD being similar to 
SNP LD across genome. 
 This is mostly influence by CV vs. SNP MAF, and also by 

assumptions of LD-λ relationship. MAF-λ less so.
 Binning SNPs by LD & MAF provides ~ unbiased 

estimates for the CVs tagged by SNPs used in analysis. 
 Even on well-imputed data, you’ll still get an underestimate 

due to extremely rare variants



REAL TRAITS



LDMS-I on UKB phenotypes



STRATIFICATION 
& LONG-RANGE LD



Chance allele frequency differences b/w populations can 
induce long-range LD in stratified samples

A a

B .54 .36 .9

b .06 .04 .1

.6 .4

A a

B .03 .27 .3

b .07 .63 .7

.1 .9

Population 1 Population 2

=0 =0



Chance allele frequency differences b/w populations can 
induce long-range LD in stratified samples

A a

B .54 .36 .9

b .06 .04 .1

.6 .4

A a

B .03 .27 .3

b .07 .63 .7

.1 .9

Population 1 Population 2

A a

B .285 .315 .6

b .065 .335 .4

.35 .65

Stratified Population

=0 =0

=.10



However, such “stratification-LD” is typically 
very small for pairs of common SNPs

A a

B .54 .36 .9

b .06 .04 .1

.6 .4

A a

B .44 .36 .8

b .11 .09 .2

.55 .45

Population 1 Population 2

A a

B .490 .360 .85

b .085 .065 .15

.575 .425

Stratified Population

=0 =0

=.00005



But higher b/w rare (often ~ private) SNPs 
and common ancestry-informative SNPs

A a

B .003 .897 .9

b .00 .099 .1

.003 .997

A a

B .04 .76 .8

b .01 .19 .2

.05 .95

Population 1 Population 2

A a

B .021 .829 .85

b .005 .145 .15

.027 .973

Stratified Population

=0 =0

=.0004



Effects of stratification on r2
QM/r2

MM
• In general, stratification inflates long-range r2

between SNPs. However, within a given MAF bin, the 
ratio of r2

QM/r2
MM is ~ 1 because SNP-SNP & SNP-CV 

LDs are inflated similarly.



Effects of stratification on r2
QM/r2

MM
• In general, stratification inflates long-range r2

between SNPs. However, within a given MAF bin, the 
ratio of r2

QM/r2
MM is ~ 1 because SNP-SNP & SNP-CV 

LDs are inflated similarly.
• However, across CVs and SNPs of different MAF, 

stratification induces differences in r2
QM & r2

MM. We 
observed: 

– For rare CVs, r2
QM/r2

MM > 1. Rare (ancestry specific) CVs are tagged 
by every common SNP that differs in allele frequency across 
ancestry (note r2

QM/r2
MM < 1 in unstratified samples).

– For very common CVs, r2
QM/r2

MM ~ 1. Very common CVs tend to 
have smaller MAF differences, and therefore less LD with common 
SNPs than typical between SNPs (note r2

QM/r2
MM > 1 in unstratified 

samples).



Causal Variant Minor Allele Frequency

Single GRM using WGS

This led to an opposite pattern of bias in 
stratified (”structured”) samples when using 

single GRM GREML



Causal Variant Minor Allele Frequency Causal Variant Minor Allele Frequency

Single GRM using WGS MAF-stratified GRMs using WGS

Which once again was corrected by 
using LDMS GREML



ASSORTATIVE MATING



 AM: Assortment between mates leading to a correlation 
between phenotypic (and hence genetic) scores. Often 
conceptualized as mate choice based on similarity. 

 Induces long-range (across chromosome) “directional” 
LD (δ) b/w CVs
 δ = covariance among CV effects; under positive AM,     

E[δ]> 0; allelic effects in the same direction.
 Directional LD increases true VG & h2 in the population. 

 This occurs for same reason the variance of a sum of 
positively correlated Xi > variance of sum of independent Xi

 For polygenic traits, the vast majority (>99%) of this increase 
is due to δ between different CVs, not to δ within CVs 
(homozygosity)

Positive primary phenotypic 
assortative mating (AM)



 Assortment has ~ no influence on
 Recall that
 However, this is much different than the reverse 

conditional*:

where r is the mate correlation and m is the # CVs
 This is because δ between CVs, the major factor 

influencing h2, plays no role in         (or means in general)

AM effects on pihat

*Robinson et al., Nature Human Behavior, 2017
Yengo et al., BioarXiv, 2018



 AM typically leads to upward bias in estimates of 
equilibrium h2

snp

 Occurs because AM creates positive covariances between 
CVs and these are correctly reflected in phenotypic 
covariances between individuals (product of means) but 
poorly reflected in pihat matrix (mean of products). 

 Thus, variance of pihats is too small. Underestimated 
variance in a predictor leads to overestimates of the 
coefficients associated with that predictor.

 We derived this bias algebraically in HE regression 
estimates and confirmed it in simulation.

 REML also upwardly biased, but bias depends on ratio N/m.

However, AM does bias h2
snp estimates 



Parameter h2
snp

 Define parameter h2
snp: proportion of phenotypic variance 

tagged by SNPs, accounting for their inter-correlations
 Equilibrium h2

snp: R2 from linear model                                   
for all m SNPs fit simultaneously as 

 The parameter depends on how well CVs are tagged by 
SNPs (e.g., SNP density). Thus, it depends on the SNP 
chip and the population it is estimated in.



HE regression estimate of h2
snp



HE regression estimate of h2
snp



We don’t predict HE estimates to change as a function of 
m or N. GREML estimates are clearly a function of N/m, 
which occurs because when N>>m, the effects of each 
SNP are separable.

98



Predicted h2
snp biases assuming 

SNPs tag 50% of true VA



.12

.20

.29

.52

Predicted h2
snp biases assuming 

SNPs tag 50% of true VA



Potential degree of over-
estimation for various traits

Trait r(spouse) h2
ETFD

from
literature

h2
snp

from 
literature

corrected 
h2

snp

% Over-
estimated

Extraversion .01 .23 .15 .15 0

Neuroticism .08 .24 .16 .155 .03

Height .20 .70 .45 .39 .15

IQ .35 .62 .35 .28 .25

Political Pref. .48 .26 .18 .15 .20



Simulations

• Simulated populations under AM using 
GeneEvolve (Tahmasbi & Keller, 2016).

• CVs: 1000
• Heritability: 0.5
• Relative pruning: >.05
• Spousal phenotypic correlation: .4
• Took mean of 100 iterations

Rasool Tahmasbi



GeneEvolve Simulation Results



GeneEvolve Simulation Results



GeneEvolve Simulation Results



HE vs. GREML estimates

• For most realistic situations, m>>N, and 
thus GREML and HE estimates are 
similar: both over-estimate equilibrium 
h2

snp

• We can vary N (holding m constant) to see 
if AM is biasing estimates in real data



HE (blue) vs. REML (red) h2
snp

estimates of systolic BP - UK Biobank



HE (blue) vs. REML (red) h2
snp

estimates of height - UK Biobank



HE (blue) vs. REML (red) VA 
estimates of fluid IQ - UK Biobank



 AM creates upward biases in HE and REML 
h2

SNP estimates
 We see evidence for this in UK Biobank data for 

height but not for fluid IQ
 Natural selection creates negative LD among 

CVs. The combined effect of AM and NS could 
cancel each other out.

 Remaining issues:
 Unsure how to account for the bias. LDMS 

GREML does not help.
 Need to understand the effects of NS on h2

snp

Summary – bias due to AM



 There has been a great deal of excitement about 
using SNPs to estimate h2

 Large sequence reference panels (TopMed) allow 
SNPs to be imputed down to MAF ~ .0001. 
 h2

snp will approach h2

 Also allows investigation of allelic spectra, and importance 
of biological/evolutionary annotations

 By understanding true h2, can begin understanding 
importance of familial environmental factors

 However, it is crucial to understand the factors that 
can bias these estimates
 LDMS accounts for biases due to MAF & stratification
 But not for biases caused by AM (and probably NS)

Big picture: Using SNPs to estimate h2
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