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Three flavors of h?

m Twin h?

m cstimate of the narrow-sense (but 1n practice,
broad-sense) h?

m  Can be biased 1if strong assumptions are unmet
m SNP-h’

m Estimate of the narrow-sense h? captured by
causal variants tagged by SNPs 1n your analysis

m GWAS h?

m  Sum of r’ from all independent genome-wide
significant SNPs from a GWAS



Three types of missing h?
m  Almost always Twin h? > SNP-h? > GWAS h?
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Three types of missing h?
m  Almost always Twin h? > SNP-h? > GWAS h?

— Twin h? —

_ Still-missing h?

Missing __ INP-h2 —
heritabllity R

—  Hidden h?

— GWAS h°—



Why care about SNP-h2?

h?,,, should be unbiased by environmental factors that increase
close relative similarity. In particular, doesn’t rely on tMZ > rDZ
due only to genetic differences (although still assumes no
relationship between genetic & env. similarity among distant

relatives)

Estimating h; | from binned SNPs allows for estimates of relative
importance of different SNP annotations. E.g., allows for estimates
of allelic spectra (distribution of CV MAF)

Can estimate r, between low prevalence disorders that are
impractical to estimate using twins/family designs

As we continue to capture lower MAF SNPs through imputation or
sequencing, GREML (but not LDSC) estimates of h?__ approach
full narrow-sense h?.

snp



Multiple approaches to
estimating h%g,,

LD-score regression

Least Squares Regression (Haseman-Elston)

Mixed effects models (GREML):
« Typical approach (GCTA assumptions)
= Multi-GRM approaches

Bayesian approaches



Multiple approaches to
estimating h%g,,

+ LD-score regression YESTERDAY |

= Least Squares Regression (Haseman-Elston)

= Mixed effects models (GREML):
« Typical approach (GCTA assumptions)

= Multi-GRM approaches TODAY

= Bayesian approaches



pihat



N

7 = E(IBD), usually genome-wide

m 77 among close relatives captures long stretches of
1dentical chromosomes, and estimate IBS at both
common and rare alleles. Traditionally with close
relatives, we know the expectation of this and use
this (without variance) for modeling.

m 7 among unrelateds (distant relatives) assumes base
population 1s the current sample, and thus its
expectation 1s 0. It 1s typically measured with SNPs,
and so only captures IBS at measured SNPs and
unmeasured SNPs in LD with measured SNPs. It
can go negative (less related than average).




7. = genome-wide mean correlation of SNP
values between a pair of individuals j,k
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Regression estimates of h?

@{'f =L,L <

E[6,1=COT(Z,,7 )

E[Q‘; 77;;] — ﬂ{j} T /31775;'
B =

(the slope of the regression is
an estimate of h?)

product of centered scores
(here, z-scores)



Regression estimates of h?
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Regression estimates of h?
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Regression estimates of h?
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Regression estimates of h?
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Regression estimates of h?
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GREML

nature |
genetics 2010

Common SNPs explain a large proportion of the heritability
for human height

Jian Yang!, Beben Benyamin!, Brian P McEvoy!, Scott Gordon!, Anjali K Henders!, Dale R Nyholt!,
Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery!, Michael E Goddard? &
Peter M Visscher!



GREML Model

y =Zu+e

Pl B
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design matrix for SNP effects =
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GREML Model

y =Zu+e
-.64 -58 1.41 -93 | |4, | |¢
298 | = 1115 .05 2.53 7 + y
3.21 -58-1.30 .79 | | 2| |2
Yx design matrix for SNP effects = H’S €3
Xij— 2p, SNP residuals
J2p,(1-p,) effects

We aren’t interested in estimates of each u; because
such individual estimates are unreliable when m > n.
Instead, estimate the variance of u..




GREML Model

y =Zi+e
-.64 -58 1.41 -93 | |4, | |¢
258 | = 11.15 .05 2.53 7 + 7,
3.21 -58-1.30 .79 | | 2| |2
Yx design matrix for SNP effects = H’S €3
X;—2p, SNP residuals

V2p,(-p) effects
We assume u ~ N(0,07) and are iid

m

and therefore Jﬁ = 10'5 =m0'§

=



GREML Model

(we treat u as random and estimate O'_f and thus Oji )
var(y )=ZZ'c. + 10
=7Z'(o; /m)+ 1o’

= GO’ + IrJ

41 1.65 -2.05 99 -.02 -.01 ﬁz 1 0 O A1
1.65 6.66 -8.28 —-_ -02 1.0 .01 A + O 1 O O'E
-2.05-8.28 10.3 -.01 .01 1.02 O 0 1
observed n-by-n Genomic Relationship Matrix (GRM) Identity

var/covar matrix at measured SNPs. Each element = matrix

f

Rp=—2,

2p5(1_p5)



41 1.65 -2.05
1.65 6.66 -8.28
-2.05-8.28 10.3

}

!

observed var/covar

REML find values of 6;& G that maximizes the likelihood of the
observed data. Intuitively, this makes the observed and implied

var-covar matrices be as similar as possible.

var(y )=ZZ'c’ +1o:
=7Z'(o; I m)+ 10’
= GO’ + Ir.:r
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Interpreting h? estimated from SNPs (h?

snp)

If close relatives included (e.g., sibs), h; S = h* estimated

from a family-based method, because great influence of
extreme pihats. Interpret h*, ) as from these designs.

If use ‘unrelateds’ (e.g., pihat < .05):

m h? estimate 'uncontaminated' by shared environment and
non-additive genetic effects

m Does not rely on family/twin study assumptions

m Evidence for h® | to degree similarity at SNPs

corresponds to phenotypic similarity. Thus, h2Snp =

proportion of V, due to CVs tagged by (in LD with)
SNPs used in the GRM.

m Typically, h*, <h? It is the max r* possible from a PRS
using those SNPs.




LD



Linkage disequilibrium (LD)

m Statistical association (e.g., r’) between two SNPs

m Typically arises from a mutation that occurs on a
haplotype. It will co-segregate with nearby SNPs.
As 1t rises 1n frequency, so too will nearby SNPs.

m It decays as a function of number of recombination
events that break the two SNPs apart, which 1s itself
a function of:

m Time (# generations) since the mutational event
m Distance (cM) between the two SNPs

m SNPs can only predict SNPs that are similar in MAF. Rare-
rare or common-common. Rare-common i1s not possible.



How LD arises & decays
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Equilibrium over time

Bush & Moore, PLoS Comp Bio, 2012



SNPs can tag other nearby SNPs...

I

] [l ]  Chromosome

Region of High Linkage
Disequilibrium

& -
Disease Risk Genotyped SNP
SNP

Bush & Moore, PLoS Comp Bio, 2012



LD drops as a function of distance

d 0.50- 0.60 -

0.40

0 200 400 600 800 1,000
Physical distance (kb)

Dawson et al, Nature, 2002



...and high LD possible only if the two

alleles are of similar frequencies...
Possible range of allele frequencies given LD (r?) between 2 SNPs

1

0.9 -

0.8 1
0.7 -
0.6 -
0.5 1
0.4 -

0.3 1
0.2 -

0.1 A

D - T T T T
0 0.2 0.4 0.6 0.8 1

Allele frequency locus 2 (ps)

Allele frequency atlocus 1 (pa) Wray, TRHG, 2006



...and high LD possible only if the two

alleles are of similar frequencies...
Possible range of allele frequencies given LD (r?) between 2 SNPs

1

0.9 -

0.8 1
0.7 -
0.6 -
0.5 1
0.4 -

0.3 1
0.2 -

0.1 A

D = T T T T
0 0.2 0.4 0.6 0.8 1

Allele frequency locus 2 (ps)

Allele frequency atlocus 1 (pa) Wray, TRHG, 2006



...and high LD possible only if the two

alleles are of similar frequencies...
Possible range of allele frequencies given LD (r?) between 2 SNPs

1

0.9 -

0.8 1
0.7 -
0.6 -
0.5 1
0.4 -

0.3 1
0.2 -

0.1 A

D - T T T T
0 0.2 0.4 0.6 0.8 1

Allele frequency locus 2 (ps)

Allele frequency atlocus 1 (pa) Wray, TRHG, 2006



..AND where the rare allele at SNP 1 is In
PHASE with the rare allele at SNP 2

In Phase Out of Phase
A a A a
B 0.99 ol 0.99 0.98| 0.01| 0.99
b o/ 0.01] o0.01 0.01 0| 0.01
0.99 0.01 0.99 0.01

/

Very high LD

Very low LD

\



Why h? < h?(almost always)

Because we only estimate genetic variance from CVs in
LD with the SNPs used 1n the analysis. Common CVs are
in high LD with array/imputed SNPs, but this 1s less the
case with rare CVs.

In particular:
—2
h2 = p2 MO
snp 2
MM

where

Fﬁf@ is the average LD r? between CVs and SNPs

Fﬁ, v is the average LD r? between SNPs and SNPs



THE END
(extra slides after)



RUNNING GCTA



SNP QC

 Poor SNP calls can inflate SE and cause
downward bias in h%g |

» Clean data for
— SNPs missing > ~.05
— HWE p < 10e-6
— MAF < ~.01

— Plate effects:

 Remove plates with extreme average inbreeding
coefficients or high average missingness



Individual QC

Remove individuals missing > ~.02

Remove close relatives (e.g., --grm-cutoff 0.05)

— Correlation between pi-hats and shared
environment can inflate h% S estimates

Control for stratification (usually 5 to 20 PCs)

— Different prevalence rates (or ascertainments)
between populations can show up as hzsnp

Control for plates and other technical artifacts

— Be careful if cases & controls are not randomly
placed on plates (can create upward bias in hzsnp)




GCTA command & input

COMMAND: gcta --bfile SNPs —-make-
gcta ___— grm-bin —-out SNPs.rel05

--grm-bin <path>/SNPs.rel05

test.phen (no header line; columns are family ID, individual ID and phenotypes)

011 0101  0.98
--pheno <path>/test.phen/ 012 0102  -0.76

013 0103 -0.06

test.covar (no header line; columns are family ID, individual ID and discrete covariates)

--covar <path>/test.covar «—

01 9101 F Adult L}
02 0203 M Adult 0
03 @305 F Adolescent 1
--qcovar <path>/test.qcovar
\ test.qgcovar (no header line; columns are family ID, individual ID and quantitative covariates)
01 0101 -0.024 0.012
02 0203 0.032 0.106
reml --out SNPgrm.randomCV ” 093 s 008



GCTA command & output

COMMAND:

gcta --grm-bin <path>/SNPs.rel05 --pheno <path>/pheno.txt --covar
<path>/cov.txt --reml --out SNPgrm.randomCV

OUTPUT:

cat SNPgrm.randomCV.hsq

Source Variance SE
V(G) 0.300098  0.275857
V(e) 1.730548  0.279257
Vp 2.030646  0.049529
V(G)/Vp 0.147785 0.135820
logl -2876.706

loglO -2877.338

LRT 1.264

Df 1

Pval 0.1305

N 3363



GCTA command & output

COMMAND:

gcta --grm-bin <path>/SNPs.rel05 --pheno <path>/pheno.txt --covar
<path>/cov.txt --reml --out SNPgrm.randomCV

OUTPUT:

Source
V(G)
V(e)
Vp
V(G)/Vp
logl
loglO
LRT

Df

Pval

N

Variance
0.300098
1.730548
2.030646
0.147785
-2876.706
-2877.338
1.264

1

0.1305
3363

SE

0.275857
0.279257
0.049529
0.135820

cat SNPgrm.randomCV.hsq

— 2
h snp & SE
95% CI:

0.147-1.9670.134 = -0.12
0.147-1.9670.134 = 0.41



GCTA command & output

COMMAND:

gcta --grm-bin <path>/SNPs.rel05 --pheno <path>/pheno.txt --covar
<path>/cov.txt --reml --out SNPgrm.randomCV

OUTPUT:

cat SNPgrm.randomCV.hsq

Source
V(G)
V(e)
Vp
V(G)/Vp
logl
loglO
LRT

Df

Pval

N

Variance
0.300098
1.730548
2.030646
0.147785
-2876.706
-2877.338
1.264

1

0.1305
3363

SE

0.275857
0.279257
0.049529
0.135820

Likelihood Ratio Test

Testing if V(G) > 0

-2*(-2877.338 - -2876.706) = 1.26
y?test, 1 df

—



LDAK

ARTICLES

nature |
genetlcs

Reevaluation of SNP heritability in complex human traits

Doug Speed!®, Na Cai?>©, the UCLEB Consortium#, Michael R Johnson?, Sergey Nejentsev® & David ] Balding!>

ARTICLE

Improved Heritability Estimation from Genome-wide SNPs

Doug Speed,.* Gibran Hemani,2 Michael R. Johnson,?> and David ]. Balding!

2017

2012



Changing GREML assumptions by weighting 7

A 1 (-x;;' _2p;;)(x;j _2p;;)
'n-jk :;zi : k

2p;‘(1 - pf)
m A more general form of this formula 1s:

T

ﬂf:Z

Which reduces to the typical formulation above when:

1
7 2. Wil = 2p) (e = 200 2201 = p)I)

W,=1vi=1.m & a=-1

m  The choice of W, and a are arbitrary and depend on
implicit assumptions about which types of SNPs tag CVs
& CV effect sizes. If we heavily weight a certain type of
SNP (e.g., those in genes), we assume such SNPs better

tag CVs.



Typical (GCTA) assumptions implicit in 7@

1
Tj = SW, Z Wi (x;; — 2p;) (X — 2p0;) [2p;(1 — p;)]%)
Assumptions Consequences

Wo=1vi=1_m OSNPshaveequal weight, even if they are poorly
l imputed and redundantly tag the same CV

Rarer SNPs (which tag rarer CVs) receive more
weight, ostensibly due to NS. This means the variance
explained per SNP 1s invariant across MAF:

G; = (X; — 2p)[2p;(1 — p;)]*/?
G;] = [2p;(1 — p)]*V[(X; — 2p;)]
i = [2p:(1 = p)]*2p:(1 — p;)

] = [2p;(1 — p)]**™*

a=—1

< <
QD
I ||

<
N
|



LDAK assumptions implicit in 7

R 1
e =57 Z Wi(xi; — 2pi) (X — 2p0) [2pi(1 — py)]%)
Assumptions Consequences
W, = rw, Where 7, 1s the imputation INFO score and w; 1s the
. LD score. High LD SNPs receive less weight, and
w; = AT57) poorly imputed SNPs receive less weight.
a4 = — 25 Lower MAF SNPs (which tag rarer CVs) receive less

(vs. GCTA) weight. This means the variance
explained per SNP increases with MAF:

VIG] = [2p;(1 — p)]***



Speed & Balding argued that
LDAK weights are superior

Common sense: Redundantly tagged CVs should not have
higher effect sizes. Poorly imputed SNPs must tag CVs
WOrSe.

Model Fit: log-likelihood from LDAK models was
typically higher than log-likelihood from “GCTA” models

- Moreover, h* | 25-43% higher than GCTA models



Problems with LDAK approach

Single GRM models depend heavily on assumptions and

CV MAF matching the SNP MAF distribution

Nothing about maximizing likelihoods ensures

unbiasedness

LD and imputation r? are highly
positively related, but LDAK weights
them oppositely. This gives extreme
weight to a small number of unusual
(well imputed, low LD, high MAF
SNPs)

Imputed Variants
Chromosome 20

00 01 02 03 04 05

MAF




GREML-LDMS-| & -R

ANALYSIS [EPYPS

Inttps_dodior g 1RADSE,

Comparison of methods that use whole genome

" » 1 L . LDMS-I
data to estimate the heritability and genetic
architecture of complex traits

Luke M. Evans 0™, Rasool Tahmasbi ", Scott I. Vrieze®, Goncalo R. Abecasis’, Sayantan Das(©3,
Steven Gazal 0%, Douglas W. Bjelland', Teresa R. de Candia’, Haplotype Reference Consortiumé,
Michael E. Goddard™, Benjamin M. Neale "%, Jian Yang " ?, Peter M. Visscher® and

Matthew C. Keller'™

nature

genetics 2015

Genetic variance estimation with imputed variants finds
negligible missing heritability for human height and body
mass index

LDMS-R
Jian Yang!-2?4, Andrew Bakshi!, Zhihong Zhu!, Gibran Hemani'?, Anna A E Vinkhuyzen!, Sang Hong Leel4,

Matthew R Robinson?, John R B Perry?, Ilja M NolteS, Jana V van Vliet-Ostaptchouk®’, Harold Snieder®,

The LifeLines Cohort Study®, Tonu Esko®-12, Lili Milani®, Reedik Migi®, Andres Metspalu®!3, Anders Hamsten!4,

Patrik K E Magnusson!?, Nancy L Pedersen!>, Erik Ingelsson'®17, Nicole Soranzo!®1°, Matthew C Keller?%:21,

Naomi R Wray!, Michael E Goddard?>23 & Peter M Visscher!-2:24



The LDMS Approach

Single-GRM models are highly sensitive to assumptions
about CV-SNP LD (e.g., that SNPs have same distribution
as CVs) and CV effect size-MAF relationships. We don’t
want our estimates of genetic architecture to depend on our
assumptions of genetic architecture.

Moreover, even 1f we were to guess at these relationships
perfectly for a trait, they are unlikely to hold across all
traits.

Akin to multiple regression, an alternative (LDMS) 1s to let
the data tell us by fitting multiple GRMs, each with SNPs
binned according to different MAF levels and LD levels

Estimates associated with each GRM are free to soak up
whatever variance 1s explained by those MAF/LD SNPs



LDMS justification

_2
R T
m Note that h2, . =~ p2-2¢

snp = —2
MM

m The range of MAF and range of LD will be smaller within
a particular MAF/LD bin. As the MAF & LD range shrink
for a given MAF/LD bin k£ of SNPs (M,) and CVs (Q,),

—2
"MQx
—2
MMy,

-1

and thus

]2 2
hsn'p,k - hk



LDMS-R vs. LDMS-I

LDMS-R: Create 20 GRMs across 5 MAF bins (< .001,
.001-.01, .05-.1, .1-.25,.25-.5) and 4 quartiles of LD scores
within each bin, where SNPs take the average LD of SNPs
in the surrounding ~ 200kb region.

However, SNPs with individually low LD that exist in
regions of high LD explain more variation i e . vaue Genetics. 2017

Thus, LDMS-I (unlike LDMS-R) uses each individual
SNP’s LD score for binning

Because SEs tend to be ~2.5x larger than single-GRM
estimates, both require large sample sizes (e.g., N > 30k)
and therefore large amounts of RAM (e.g., >100 Gb)



RUNNING LDMS-



Create LD quartiles
GCTA LD Comm% test.bed, test.bim, test.fam

gcta --bfile <path>/test SNP chr bp freq mean_rsq snp_num max_rsq ldscore_SNP ldscore_region
“ld- re-re ion 200 rs4475691 1 836671 0.197698 0.000588093 999 0.216874 1.5875 2.75538

SCO g/ rs28705211 1 890368 0.278112 0.000573876 999 0.216874 1.5733 2.75538
__Out LDtxt rs9777703 1 918699 0.0301614 0.00131291 999 0.854464 2.31159 2.75538

Create LD quartiles in R:

LD <- read.table(“LD.txt",header=T)

quants <- quantile(LD$ldscore_ SNP)

LD1 <- LD$SNP[LD$Idscore  SNP <= quants[2]]
write.table(LD1,’snp_group1.txt”,row.names=F,col.names=F,quote=F)
<etc...>

Create GRMs in GCTA:

gcta --bfile <path>/test
--extract snps_group1.txt
--make-grm-bin

--out GRM.1




Run LDMS-| using GCTA

Text file

COMMAND: <path>/GRM.1

gcta <path>/GRM.2
--mgrm-bin <path>/multi_GRMs.txt /

<path>/GRM.last

--pheno <path>/test.phen
--covar <path>/test.covar
--gcovar <path>/test.qcovar
--reml --out Multi. SNPgrm

— As before

—

--thread-num 20 \

You can use multiple cores;
make this as many cores as you
can spare



LDMS-I| Output (3 GRM example

TYPE: cat mgrm.randomCV.hsq

Source Variance SE

V(G1) 0.303900 0.184182

V(G2) 0.127654 0.309142

V(G3) 0.653199 0.328909

V(e) 0.926493 0.435653

Vp 2.011246 0.049641

V(G1)Vp 0.151100 0.091277

V(G2)Vp 0.063470 153765 — + + —

V(G3)/Vp 0.324773 0.164408 hZSNP 015 006 032 05391
logL -2872.894

N 3363



GREML vs. LDAK vs. LDMS-I



‘ nze i ANALYSIS
Irttpa*tedorg 10V0SE,

Comparison of methods that use whole genome

data to estimate the heritability and genetic
architecture of complex traits

Luke M. Evans 0", Rasool Tahmasbi ™", Scott I. Vrieze®, Goncalo R. Abecasis’, Sayantan Das ™3,
Steven Gazal O, Douglas W. Bjelland", Teresa R. de Candia’, Haplotype Reference Consortium?,
Michael E. Goddard™, Benjamin M. Meale %, Jian Yang°, Peter M. Visscher® and

Matthew C. Keller' ™

*We hope it’s useful as a guide for best practices and proper
interpretation of 42 p.

We simulated 16 genetic architectures, 3 levels of
stratification, and 3 SNP types (array, imputed, WGS) 1n order
to compare /42, across 12 estimation methods (1728 different
combos)

*Here I highlight just a few of what I think are the most
important points



Overview of Stmulation Approach

m Genotypes from real WGS data (n=8k). Choose 1K
rare (MAF <.0025) or common (MAF > .05) CVs.

m Pull out SNPs on UKB array & impute

m Vary 2 CV effect size dimensions (A.=u[2pq]*?):
- A-LD (via u))
- A-MAF (via )

m Compare /g, to true A2 (=.50) across 3 methods
on imputed data

m Repeat this 100 times for different sets of CVs;
look at mean (to get bias) and SD (to get SE) A,



Simulation of phenotypes
m CV effect size = A= u,[2pq]*?

A-LD relationship
u~N(0,1) or u~N(0,w))

none (0) negative (-)
(L. gs | Typf;l}?ﬁgi;j:mp " | V(Gi) decreases w/ LD
<| . |negative (-)
2 f; Typical LDAK assump.
<2 CT] V(Gi) increases w/ MAF | V(Gi) increases w/ MAF
3 weak (~0) V(Gi) decreases w/ LD

m Breeding values = 4; = Z AiXij
i

m Phenotype values = P; = 4; + E;



3 Estimation Methods Compared

m GREML-SC: predictor 1s a single GRM (aka, “GCTA
approach’). GRM built as usual from all imputed SNPs

with MAC > 5 & imputation r? > .3

m LDAK: predictor is a single GRM from imputed SNPs and
weighted by LD and imputation r?.

m GREML-LDMS-I: predictors are £k = 8 GRMs created by
binning imputed SNPs into 2 individual LD by 4 MAF
categories. Within each bin, GRMs built as usual. 42, =

Z(hsnp 1)




GREML-SC results

CV MAF > .05
r{-"__ _
A,
5 8-
(\] "
Ny
N I
CVs: |
LD-A 0 - 0 -
MAF-A - - ~ ~
GCTA LDAK

assumps. assumps.



GREML-SC results

CVMAF>.05
M“pma = M v
I'L'?-_ _
A,
5 Q-
(\] .
<
o _
CVs: |
LD-A 0 - 0 -
MAF-A - - ~0 ~0

GCTA LDAK
assumps. assumps.



GREML-SC results

CVMAF>.05
M“ma < Mum
I'L-?-_ _
A,
5 Q-
(\] .
-
Q _
CVs: |
LD-A 0 - 0 -
MAF-A - - ~0 ~0

GCTA LDAK
assumps. assumps.



GREML-SC results

CV MAF > .05 CV MAF < .0025
0
R
5 Q-
o )
&
MQ
N I
Cvs: l . I
LD-\
MAF-A - - ~0 2 .- ~0 2
GCTA LDAK GCTA LDAK

assumps. assumps. assumps. assumps.



GREML-SC results

CV MAF > .05 CV MAF < .0025
0 _
o W gpp = 12 (FPya/m%am)
-
o )
NNy
N I
Cvs: l . I
LD-A 0 - 0 - 0 - 0 -
MAF-A - - ~0 ~0 - - ~0 ~0

GCTA LDAK GCTA LDAK
assumps. assumps. assumps. assumps.



[LDAK results

CV MAF > .05
2 _
Q,
5 Q-
(\] P
NNy
N I I
CVs: _
LD-A 0 - 0 -
MAF-A - - ~0 ~0
GCTA LDAK

assumps. assumps.



[LDAK results

CV MAF > .05
upweights low LD
g SNPs but this is
partially offset by
Q. N
= S _ downweighting
< poorly imputed ones
3 -
CVs:
LD-A 0 - 0 -
MAEF-A - - ~ ~0

GCTA LDAK
assumps. assumps.



[LDAK results

CV MAF > .05 CV MAF < .0025
0
Q.
5 Q-
(\] i
NNy
N I
CVs: i O --
LD-A 0 - 0 - 0 - 0 -
MAF-A - - ~ ~0 - - ~ ~0

GCTA LDAK GCTA LDAK
assumps. assumps. assumps. assumps.



SNP
75

90

25

CVs:
LD-A
MAF-A

[LDAK results

CV MAF > .05

GCTA
assumps.

0 -0 -

~0

~0
LDAK
assumps.

CV MAF <.0025

Again,
2 2
M“va < Mvm

]
0 -

- - ~0 ~0
GCTA LDAK
assumps. assumps.

L
0



GREML-LDMS-I results

CV MAF > .05
E_ _
R
-
(f\l
<
o
o _
CVs: I II
LD-A 0 -0 -
MAF-A - -~ ~0
GCTA LDAK

assumps. assumps.



GREML-LDMS-I results

CV MAF > .05 CV MAF <.0025
.
Q.
5 Q-
(N .
~
gﬂ_ _
CVs:
LD-A 0 - 0 - 0 - 0 -
MAF-A - -~ ~0 - - ~ ~0
GCTA LDAK GCTA LDAK

assumps. assumps. assumps. assumps.



GREML-LDMS-I results

CV MAF > .05 CV MAF <.0025
Lo
~ Within a given MAF/LD bin, r2j,q = r’y.
% o ThUS, EZSNP . hZ (rzMQ/rZMM) — h2
o -
RO
=
CVs:
LD-A 0 - 0 - 0 - 0 -
MAF-A - - ~0 ~0 - - ~0 ~0

GCTA LDAK GCTA LDAK
assumps. assumps. assumps. assumps.



Absolute Bias Across 4 Methods and
hundreds of genetic architectures

0.5 -

Imputed varants

04 —

0.3 —

0.2 —

0.1

0.0 —




Regarding LD-Score regression

m [LD-score regression 1s robust to stratification and
sample overlap. However:

m it cannot estimate 4¢ due to rare CVs, even when
using imputed/ WGS data

m 1t 1s sensitive to assumptions about LD-A

m should provide a lower-bound of /2, from other
methods

m So long as genetic covariance 1s affected in the

same way as genetic variances, estimates of genetic
correlations should be OK.



Summary

m With datasets imputed to large WGS reference panels, /2,
can estimate full 4°. It’s important that we have unbiased
estimators to know the true 4° and for comparison to
twin/family estimates (o/w things will get really
confusing).

m Single-GRM approaches (incl. GREML-SC (“GCTA”) and
LDAK) are extremely sensitive to CV LD being similar to
SNP LD across genome.

m This is mostly influence by CV vs. SNP MAF, and also by
assumptions of LD-A relationship. MAF-A less so.

m Binning SNPs by LD & MAF provides ~ unbiased
estimates for the CVs tagged by SNPs used 1n analysis.

m Even on well-imputed data, you’ll still get an underestimate
due to extremely rare variants



REAL TRAITS
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STRATIFICATION
& LONG-RANGE LD



Chance allele frequency differences b/w populations can
induce long-range LD in stratified samples

Population 1
A a
B .54 .36
b .06 .04
.6 4

r2 = (Pas — PaPs)* _

PAPaPBPb

r2 = (Pag — PaPB)*

Population 2
A a
.03 27 3
.07 .63 4
N 9

PaPaPsPb =0



Chance allele frequency differences b/w populations can
induce long-range LD in stratified samples

Population 1
A a
B .54 .36
b .06 .04
.6 4

r2 — (Pas — PaPs)* _

PAPaPBPb

Population 2

A a

.03 27 3

.07 .63 v

A a
285 | .315
065 | .335

.35 .65

A 9

r2 — (Pag — PaPB)*

PaPaPsPb =0

Stratified Population

r2 — (Pap — PapB)?
PaPaPBPb

=.10



However, such “stratification-LD” is typically
very small for pairs of common SNPs

Population 1
A a
B .54 .36
b .06 .04
.6 4

r2 — (Pag — PaPB)*
PaPaPBPb

=0

A a
490 | .360
.085 | .065
o715 425

Stratified Population

Population 2
A a
44 | .36 8
1 .09 2
55 45
2 _ (Pas — Papp)® -0
PaPaPBPb
85
15 2= Pan ZPaPo) - _ 50

PAPaPBPb



But higher b/w rare (often ~ private) SNPs
and common ancestry-informative SNPs

Population 1
A a
.003 .897
.00 .099
.003 997

r2 — (Pag — PaPB)*
PaPaPBPb

=0

Stratified Population

A a
021 | .829
005 | .145
027 973

Population 2
A a
.04 .76 8
.01 19 2
.05 .95
2 _ (Pas — Papp)® -0
PaPaP5Py
.85
15 2 _ (Pap — Paps)° - 0004

PAPaPBPb



Effects of stratification on r2q,,/r’\,

 |In general, stratification inflates long-range r?
between SNPs. However, within a given MAF bin, the
ratio of r’q/r’yy is ~ 1 because SNP-SNP & SNP-CV

LDs are inflated similarly.



Effects of stratification on r2q,,/r’\,

 |In general, stratification inflates long-range r?
between SNPs. However, within a given MAF bin, the
ratio of r’q/r’yy is ~ 1 because SNP-SNP & SNP-CV

LDs are inflated similarly.

 However, across CVs and SNPs of different MAF,
stratification induces differences in r?qy,, & réy. We

observed:

— Forrare CVs, r’q/r’um > 1. Rare (ancestry specific) CVs are tagged
by every common SNP that differs in allele frequency across
ancestry (note r’qy/r’yv < 1 in unstratified samples).

— For very common CVs, r?q/r’ym ~ 1. Very common CVs tend to
have smaller MAF differences, and therefore less LD with common
SNPs than typical between SNPs (note r’q,/r’yv > 1 in unstratified
samples).



This led to an opposite pattern of bias In

stratified ("structured™) samples when using
single GRM GREML

Single GRM using WGS

S _
T e Structured Sample
. * Unstructured Sample
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=
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Causal Variant Minor Allele Frequency



Which once again was corrected by
using LDMS GREML

Single GRM using WGS MAF-stratified GRMs using WGS
g g

o o _

T e Structured Sample T e Structured Sample
. * Unstructured Sample . * Unstructured Sample
o © o ©
Eo N Eo
z z
§o ® fo _
6 o 6 o
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BN 5N
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common very rare randomly drawn common very rare randomly drawn

Causal Variant Minor Allele Frequency Causal Variant Minor Allele Frequency



ASSORTATIVE MATING



Positive primary phenotypic
assortative mating (AM)

AM: Assortment between mates leading to a correlation
between phenotypic (and hence genetic) scores. Often
conceptualized as mate choice based on similarity:.

Induces long-range (across chromosome) “directional”
LD (6) b/w CVs

m 0 = covariance among CV effects; under positive AM,
E[o0]> 0; allelic effects 1n the same direction.

Directional LD increases true Vi & /2 in the population.

m This occurs for same reason the variance of a sum of
positively correlated X > variance of sum of independent X,

m  For polygenic traits, the vast majority (>99%) of this increase
1s due to 0 between different CVs, not to 0 within CVs
(homozygosity)



AM effects on pihat

Assortment has ~ no influence on 7
Recall that E[Z;Z; |7 ] = h*7jy,

However, this 1s much different than the reverse
conditional*: .4 B rh? 1
E|ftx|Z;Z, | = —<—

where 7 1s the mate correlation and m 1s the # CVs

This 1s because o between CVs. the major factor
influencing h?, plays no role in 7, (or means in general)

1
Ty = E 'cor(xi}-, X )
L

m

*Robinson et al., Nature Human Behavior, 2017
Yengo et al., BioarXiv, 2018



However, AM does bias h?,, estimates

AM typically leads to upward bias in estimates of
equilibrium A7,
Occurs because AM creates positive covariances between
CVs and these are correctly reflected in phenotypic
covariances between individuals (product of means) but

poorly reflected in pihat matrix (mean of products).

Thus, variance of pihats 1s too small. Underestimated
variance 1n a predictor leads to overestimates of the
coefficients associated with that predictor.

We derived this bias algebraically in HE regression
estimates and confirmed it in simulation.

REML also upwardly biased, but bias depends on ratio N/m.



Parameter h?,

Define parameter h2snp: proportion of phenotypic variance
tagged by SNPs, accounting for their inter-correlations

Equilibrium %7, : R* from linear model Z ~ X, + X, +...X,

for all m SNPs fit simultaneously as n — o

The parameter depends on how well CVs are tagged by
SNPs (e.g., SNP density). Thus, it depends on the SNP
chip and the population it 1s estimated in.



HE regression estimate of h?,

E[Z;Zj] = COV(Z,ZJ)

E[ijj I J%Ij] = ﬁﬂ + ﬁl'?%if

A COV(ZIZJe:j%U) hhz
1= B

V(.ﬁ'tj) snp



. . 5
HE regression estimate of h<g,,
E[ZZ,1=COV(Z,Z))

E(ZZ,\7,]1= B, +B.7,

= "2 4+2M0
_— M
, _COVZZ.%) -
1 V(ﬁr_u) Snp

2
— El+(2M:5)



We don’t predict HE estimates to change as a function of
m or N. GREML estimates are clearly a function of N/m,
which occurs because when N>>m, the effects of each
SNP are separable.

mean & 95% Cls of VA estimates (red or blue) or cbserved VA (green) by N/m. r(spouse)=4, VAtime 0 =1

—_ * HEWAests
==~ Algebraic Expected HE VA ests
s  GREML VA est's (% missing)
= *  Empirical Eq. VA
- —- Expected Eg. VA

A4 I -—- Time 0VA
@ | L
o {0

()
= (0)

Ew M TR = = e T s ToEEEEE R o - ---
{0
3
{0 -+
(=]
EN
e [ (',j) """""""""""""""" I T
(0 (0
98
.04 A1 33 1 3 9 27 g1

Mim



SNP heritability

1.0

02 03 04 05 06 07 08 09

Predicted h?

snp PIASES assuming

SNPs tag 50% of true VA
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SNP heritability

1.0

02 03 04 05 06 07 08 09

Predicted h<,, biases assuming

SNPs tag 50% of true VA

. 'ﬂ'E
~©~ HEregression hg r
-o- Equilibrium hZ__ (total h* = .80) e

”~

.Y 7’
—9— HEregression hg ,,f 59
—o— Equilibrium hZ  (total h” = .50) _.0

-

. —
_...l-...-l
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Potential degree of over-
estimation for various traits

Trait

Extraversion
Neuroticism
Height

1Q

Political Pref.

r(spouse)

.01
.08
20
.35
48

2
h ETFD
from

literature

23
24
.70
.62
.26

h2

snp
from

literature

15
.16
45
.35
18

corrected % Over-

h2,,. estimated
15 0

155 .03

.39 15

28 25

15 20



Simulations

Rasool Tahmasbi

Simulated populations under AM using
GeneEvolve (Tahmasbi & Keller, 2016).

CVs: 1000

Heritability: 0.5

Relative pruning: >.05

Spousal phenotypic correlation: .4
Took mean of 100 iterations



Heritability estimate
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GeneEvolve Simulation Results

Time 0 h?

Equilibrium h?
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Heritability estimate
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GeneEvolve Simulation Results
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Heritability estimate
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0.4

GeneEvolve Simulation Results

Equilibrium h?

Empirical Equilibrium h?
Expectation HE h?
Empirical HE h?
Empirical REML h?

Sample Size



HE vs. GREML estimates

 For most realistic situations, m>>N, and
thus GREML and HE estimates are
similar: both over-estimate equilibrium
thnp

 We can vary N (holding m constant) to see
if AM is biasing estimates in real data



HE (blue) vs. REML (red) h%g,,
estimates of systolic BP - UK Biobank

Error bars: 1 SEMs; GRM pruned for relatedness > .05; Covariates: sex, age, age-squared, PCs 1-4, townsend deprivation
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Heritability
0.2 0.4 0.6 08

0.0

HE (blue) vs. REML (red) h%g,,
estimates of height - UK Biobank

Error bars: 1 SEMs; GRM pruned for relatedness > .05; Covariates: sex, age, age-squared, PCs 1-4
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Heritability

HE (blue) vs. REML (red) VA
estimates of fluid I1Q - UK Biobank

Error bars: 1 SEMs; GRM pruned for relatedness > .05; Covariates: sex, age, age—squared, PCs 1-4, townsend deprivation
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Summary — bias due to AM

m  AM creates upward biases in HE and REML
h?¢\p €stimates

m \We see evidence for this in UK Biobank data for
height but not for fluid 1Q

m Natural selection creates negative LD among
CVs. The combined effect of AM and NS could
cancel each other out.

m  Remaining issues:

m Unsure how to account for the bias. LDMS
GREML does not help.

m  Need to understand the effects of NS on h?,,,



Big picture: Using SNPs to estimate h?

m There has been a great deal of excitement about
using SNPs to estimate h?

m Large sequence reference panels (TopMed) allow
SNPs to be imputed down to MAF ~ .0001.

m h?,, will approach h?

m Also allows investigation of allelic spectra, and importance
of biological/evolutionary annotations

m By understanding true h?, can begin understanding
importance of familial environmental factors

m However, it is crucial to understand the factors that
can bias these estimates

m LDMS accounts for biases due to MAF & stratification
m  But not for biases caused by AM (and probably NS)
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Table 1| Summary of commonly applied methods and a description of findings from simulations

Method Description Major assumptions Simulation findings regarding R;NP Computational issues
GREML-SC® Often called the GCTA (i) Genetic similarity is Biased to the degree that the Simple model tractable

approach. Originally applied uncorrelated with environmental average LD among SNPs is different  with large samples

to common array SNPs only. similarity; (ii) an infinitesimal from the average LD between SNPs  (>100,000).

Estimates ﬁ,SNP’ the amount of model; (iii) SNP effects and CVs. This occurs in stratified

h? caused by CVs tagged by are normally distributed, samples and when MAF and LD

SNPs used to create the GRM., independent of LD, and inversely distributions of SNPs do not match

proportionate to MAF (a=-1). those of CVs.

GREML-MS" The first multicomponent Requires that the same Biased when CVs have generally Run times and memory

GREML-LDMS-R’

GREML-LDMS-I

LDAK-SC'50

LDAK-MS"

Threshold
GRMs**

LD score
regression'”

approach, usually applied
by binning SNPs according
to their MAF, annotation, or
physical regions to explore
genetic architecture.

A multicomponent approach
that bins imputed SNPs by
their MAF and regional LD.

A multicomponent approach
introduced here that bins
imputed SNPs by their MAF
and individual LD.

Intreduced to account for
redundant tagging of CVs
by common SNPs. Recently
modified to incorporate
error due to imputation and
to alter the MAF effect-size
relationship.

A multicomponent extension
of LDAK-SC that bins SNPs
by MAF.

A multicomponent approach
with two GRMs: the normal
(unthresholded) GRM built
from all SNPs and a second
GRM with entries set to O if
below a threshold. Conducted
in samples that include close
relatives.

Uses the slope from y? (from
GWAS) regressed on SNPs’ LD
scores to estimate the h? due to
CVs in LD with common SNPs.

assumptions of GREML-SC hold
within each GRM.

Same as GREML-MS.

Same as GREML-MS,

Same as GREML-SC, except that
allelic effects are a function of
LD. Extended to assume that
effects are also a function of
imputation quality and weakly
inversely proportionate to MAF
(x=-0.25).

Requires that the same
assumptions of LDAK-SC hold
within each GRM.

Same as GREML-SC for the
unthresholded GRM. Assumes
no shared environmental

influences among close relatives.

Infinitesimal model with allelic
effects normally distributed.

higher or lower levels of LD than
the SNPs used to make the GRM.
Relatively large standard errors.

Use of regional LD scores can lead
to biases when CVs have different
LD on average compared to
surrounding SNPs. Relatively large
standard errors.

Appears to be the least biased
approach, even when traits have
complex genetic architectures.
Relatively large standard errors.

Can correct for the overestimation
observed in GREML-SC from
redundant tagging of CVs, but
otherwise about as biased as
GREML-SC when assumptions are
unmet, although the biases are
sometimes in different directions.

Less biased on average than
LDAK-SC, but more biased than
GREML-LDMS-I or -R). Relatively
large standard errors.

Estimates associated with
unthresholded GRM similar to
those of GREML-SC. When used
in samples that include close

relatives, the second GRM captures

pedigree-associated variation but
can be upwardly biased by shared
environmental influences.

Largely robust to confounding
due to stratification and shared

environmental influences. Estimates

h? due to common CVs only, even

when used on imputed or WGS data.
Underestimates h? if the trait is not

highly polygenic.

requirements higher
than GREML-SC and
increase as a function of
the number of variance
components estimated.

Same as GREML-MS.

Same as GREML-MS,

Same as GREML-SC.

Same as GREML-MS.

See GREML-SC.

The most computationally
efficient method of those
compared and tractable
for very large datasets.



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	pihat
	Slide Number 10
	Slide Number 11
	H-E REGRESSION
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	GREML
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	LD
	Slide Number 29
	Slide Number 30
	Slide Number 31
	LD drops as a function of distance
	…and high LD possible only if the two alleles are of similar frequencies…
	…and high LD possible only if the two alleles are of similar frequencies…
	…and high LD possible only if the two alleles are of similar frequencies…
	…AND where the rare allele at SNP 1 is in PHASE with the rare allele at SNP 2
	Slide Number 37
	THE END �(extra slides after)
	RUNNING GCTA
	SNP QC
	Individual QC
	GCTA command & input
	GCTA command & output
	GCTA command & output
	GCTA command & output
	LDAK
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	GREML-LDMS-I & -R
	Slide Number 53
	Slide Number 54
	Slide Number 55
	RUNNING LDMS-I
	Create LD quartiles
	Run LDMS-I using GCTA
	LDMS-I Output (3 GRM example)
	GREML vs. LDAK vs. LDMS-I
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	REAL TRAITS
	LDMS-I on UKB phenotypes
	STRATIFICATION �& LONG-RANGE LD
	Chance allele frequency differences b/w populations can induce long-range LD in stratified samples�
	Chance allele frequency differences b/w populations can induce long-range LD in stratified samples�
	However, such “stratification-LD” is typically �very small for pairs of common SNPs�
	But higher b/w rare (often ~ private) SNPs �and common ancestry-informative SNPs�
	Effects of stratification on r2QM/r2MM
	Effects of stratification on r2QM/r2MM
	This led to an opposite pattern of bias in stratified (”structured”) samples when using single GRM GREML
	Which once again was corrected by using LDMS GREML
	ASSORTATIVE MATING
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Predicted h2snp biases assuming SNPs tag 50% of true VA
	Slide Number 100
	Potential degree of over-estimation for various traits
	Simulations
	GeneEvolve Simulation Results
	GeneEvolve Simulation Results
	GeneEvolve Simulation Results
	HE vs. GREML estimates
	HE (blue) vs. REML (red) h2snp estimates of systolic BP - UK Biobank
	HE (blue) vs. REML (red) h2snp estimates of height - UK Biobank
	HE (blue) vs. REML (red) VA estimates of fluid IQ - UK Biobank
	Slide Number 110
	Slide Number 111
	Acknowledgements
	Slide Number 113
	Slide Number 114

