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Regeneron Genetics Center (RGC)
Established In 2014 And Is Now One Of The Largest Operational Human Sequencing Efforts

SAMPLE LIBRARY PREPARATION ILLUMINA-BASED CLOUD BASED INFORMATICS
BIOBANKING AND EXOME CAPTURE SEQUENCING & ANALYSIS

Mission: |
Taking large scale human genetics to the next level for target discovery, support |
existing targets and identify novel indications

RGC. REGENERON



Regeneron Genetics Center:
Unprecedented Speed, Scale & Integration

&he New York Times

Hospital and Drugmaker Move to
Build Vast Database of New Yorkers’

~500,000

~2M

120+

additional exomes research DNA
sequenced collaborations
exomes to be 9 d Patients will be asked if their genetic sequence can be added to a
sequenced to date : . )
database — shared with a pharmaceutical company — in a

RGC

annually quest to cure a multitude of diseases.

Regeneron Genetics Center

NUMEROUS

existing targets &

development
programs

validated

MULTIPLE

potential new
drug targets
identified

>95%
of genes with
identified LOF
carrier(s)

All accomplished in just the first 8 years!

Wilbert Gibson is a Mount Sinai patient who agreed to let the hospital system use his
genetic information in research for treatment of a variety of diseases. Hiroko

RGC has the most diverse collection and
catalogue of human coding variation to date

: ®




Leveraging Resources Across Genetic Architectures & Phenotypes

120+ Research Collaborations — Over 2,000,000 exomes sequenced to date

Integrated approaches across
genetic trait architectures. ..
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Individuals in GWAS (millions)

Genomic Diversity is Lacking...BUT the RGC is Building Diversity

Ancestry of GWAS Participants Over Time
(compared with the global population)

Population

European
East Asian
South Asian/other Asian

African
Hispanic/Latino

Greater Middle Eastemn
Oceanic

Other
Multiple
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Martin et al. (Nature Genetics, 2019)

2021 Season

RGC

2018 Present
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The Players Tribune Jun 4, 2021

Cell, 2019

% of Genomic
Information

Multiple
2.48%

European
78.39%

* Genetic Screenings
* Predicting Disease Risks
* Personalized Medicine

These are NOT accurate for other
ancestry groups

Non-

European

Non-Asian
3.31%

East Asian

Multiple, 8.21%
including
European
0,
2.46% Multiple, Other Asian African Hispanic or
non-European 2.01% 2.03% Latin American
0.01% 1.13%
Other and Greater Middle Eastern/

other admixed Native American/Oceanian

|
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RGC COLLABORATIONS AROUND THE WORLD

AFRICA

e T EUROPE MIDDLE EAST/SOUTH ASIA OCEANIA

CANADA l ;g BELGIUM ITALY ) NIGERIA . INDIA AUSTRALIA
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Sequenced cohorts
ASIA

B Potential cohorts

Over 300,000 individuals
ancestry
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Technologies at RGC Include:

EXOMES, ARRAYS & IMPUTATION WHOLE GENOME SEQUENCING

Target protein coding exons at depth >20x « Sequence entire genome at depth of ~30x

Results in ~20,000 coding variants per individual

« Platforms evolving (e.g. read-length, amplification)
Genotype or capture 0.5 — 1.5M common variants « Analyses strategies evolving (e.g. mapping, assembly)

Impute remaining variants using reference panel

Platforms are mature

Analyses strategy evolving (imputation references)

RGC



Computational pipelines that
can accommodate large-scale
sequencing and genotyping
data on more than a million
study subjects from diverse
populations

LARGE-SCALE G is
SEQUENCING STUDIES 7"
FROM DIVERSE
POPULATIONS

Appropriately accounting for
(and leveraging) diverse and
admixed genomes that are
essential for a variety of
downstream genetic analyses

9 | Confidential



Opportunities:

10 | Confidential

Identification of novel
variants underlying

phenotypic diversity and
new therapeutic targets

LARGE-SCALE
SEQUENCING STUDIES
FROM DIVERSE
POPULATIONS

New insights into human
health and health
disparities, particularly for
underserved populations

Characterization of the
genetic architecture of
worldwide populations

10



Computational pipelines for analysis

of 1+ million samples from diverse
populations

Relatedness estimation/inference and pedigree
reconstruction in large-scale samples

RGC ©



Relatedness inference in complex studies

* Relatedness inference, estimation, and correction is
essential for validity of many down-stream genetic analyses

» Large-scale studies often include related individuals

* Requires specific attention:

Accounting for relationships in PCA
Can induce spurious associations

« Challenging in many settings: |
Can fail in settings with admixture
Computationally costly for biobank-scale

RGC



Relatedness Estimation Approaches

* There are two main approaches for estimating/inferring relatedness for pairs of
individuals from genome-wide data

— Methods based on average allele sharing statistics across the genome for a pair

— Methods based on the length and number of segments inferred to be shared
identical-by-descent (IBD) across the genome for a pair

RGC



Relatedness Estimation: Average Allele Sharing

e PLINK (Purcell et al., AJHG 2007)
— Uses allele frequencies estimated from the sample
— Limitations: Biased relatedness estimates in samples with population structure

* KING-robust estimator (Manichaikul et al., 2010)
— Estimator assumes discrete population structure (no admixture)
— Limitations: Biased estimates in admixed populations

* REAP (Thornton et al., AJHG 2012) and PC-Relate (Conomos et al., AJHG 2016)
— Allows for admixture
— Uses admixture proportions or PCS to calculate ancestry/population-specific allele frequencies
— Limitations:

* Requires reliable estimates of admixture proportions and ancestry/population-specific allele
frequencies

* Biased results if (1) admixture portions are mispecified or (2) PCs not fully capturing ancestry
* SCALABILITY ISSUES WITH LARGE-BIOBANK STUDIES!

RGC



Relatedness Estimation: IBD SEGMENT DETECTION

* |IBD segments inferred based on long segments of identical-
by-state allele IBS sharing

— methods call segments IBD based on pairs of individuals ILQ
sharing many mega-bases of alleles IBS

— Methods available for phased or unphased genetic data: | |
|

* KING: unphased data with ibdseg T 150 segment [
TRU FFLE: unphased data (DimitromanOIakiS et al.’ 2019) ... TGATCCTGAACCTAGATTACAGATTACAGATTACAGATTACAATGCTTCGATGGAC...

hap—IBD: phased d ata (Brown|n g et al_’ 2021) ...CGATCCTGAACCTAGATTACAGAT TACAGATTTGCGTATACAATGCTTCGATGGAC. ..
iLASH: phased data (Shemirani et al., 2021)

RaPID: phased genotype data (Naseri et al., 2019)

IBD detection performance in large-scale ancestrally diverse samples?

RGC ©



Relatedness pipeline architecture:
Automated pipeline

RGC

DNAnexus applets

-Staples et al (AJHG, 2014):

PRIMUS for reconstructing
pedigrees, get nuclear
families

Step1 O

Step 2 o

Step3 O

QC: Filter inputs

» Missingness: 0.05 variant missingness
threshold

» Heterozygosity: HWE 1E-20 (PLINK:
keep few het)

KING: Run IBD segmentation
Priority:
* Retain as much of sample as possible

* Need high quality variants for reliable
IBD segment breakpoints

* KING allows parallelization by splitting
data into K chunks; K included as input
in the applet

PRIMUS: Run pedigree
reconstruction

PLINK commands

KING commands
Data processing
PLINK commands

Data processing
PRIMUS commands



Scalable Relatedness Pipeline: Application to 1+ Million Diverse

Samples

e Study of 46 cohorts with genome-wide data

at RGC

e 1,144,542 individuals with shared variant set
* Relationships detected using pipeline

Total input
sample

n=1144542

RGC

|

Dropped —
flagged
individuals
n=408

v

‘Final’
sample

n=1144134

EAS 1%

Ancestry distribution for 1+ Million
samples at RGC



Scalable Relatedness Pipeline: Application to 1+ Million Samples

Total input
sample

n=1144542

|

Dropped —
flagged
individuals
n=408

‘Final’
sample

n=1144134

IBD segments and relatedness inferred for more than

654 billion pairs of individuals.

Pipeline completed in less than a day!

Parent
ize| D Z ibli 2nd rd
Sample size| Dup/M offspring Full sibling 3
1144134 3178 137900 120217 325032 7398108

Important feature: No re-estimation of existing samples needed with future data freezes!

RGC



Computational pipelines for analysis

of large bio-bank scale samples from
diverse populations

Whole Genome Regression For Complex Trait Mapping

RGC



Computationally efficient WGR REGENIE

[ ]
nature genetics L .
8 « Works on both quantitative and binary
Explore content v  About the journal v  Publish with us v e Correction using penalized
Firth/SPA for highly imbalanced
nature > nature genetics > technical reports > article binary traits
Technical Report | Published: 20 May 2021 » Controls for population structure &

Computationally efficient whole-genome regression "'2tedness through WGR framework

for quantitative and binary traits * Can process multiple phenotypes
» Decoupled WGR & association testing

step

Joelle Mbatchou, Leland Barnard, Joshua Backman, Anthony Marcketta, Jack A. Kosmicki, Andrey

Ziyatdinov, Christian Benner, Colm O'Dushlaine, Mathew Barber, Boris Boutkov, Lukas Habegger,

Manuel Ferreira, Aris Baras, Jeffrey Reid, Goncalo Abecasis, Evan Maxwell & Jonathan Marchini « Extended to gene-based testing

Nature Genetics 53, 1097-1103 (2021) | Cite this article * PUb“Cly available in C++ software on

14k Accesses | 27 Citations | 38 Altmetric | Metrics Github

» Apache Spark based implementation

RGC http://projectglow.io/



http://projectglow.io/

Nature | Vol 599 | 25 November 2021

Article

Exome sequencing and analysis of 454,787
UK Biobank participants

https://doi.org/101038/s41586-021-04103-z

Received: 9 July 2021

Accepted: 6 October 2021

Published online: 18 October 2021

Open access

| ™| Check for updates

Joshua D. Backman', Alexander H. Li', Anthony Marcketta', Dylan Sun', Joelle Mbatchou!',
Michael D. Kessler', Christian Benner', Daren Liu', Adam E. Locke',

Suganthi Balasubramanian', Ashish Yadav', Nilanjana Banerjee', Christopher E. Gillies',
Amy Damask’, Simon Liu', Xiaodong Bai', Alicia Hawes', Evan Maxwell', Lauren Gurski',
Kyoko Watanabe', Jack A. Kosmicki', Veera Rajagopal’, Jason Mighty', Regeneron Genetics
Center*, DiscovEHR?*, Marcus Jones', Lyndon Mitnaul', Eli Stahl', Giovanni Coppola’,

Eric Jorgenson', Lukas Habegger', William J. Salerno', Alan R. Shuldiner’, Luca A. Lotta',
John D. Overton', Michael N. Cantor’, Jeffrey G. Reid', George Yancopoulos', Hyun M. Kang',

Jonathan Marchini'?
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PKD2
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SERFPINC1

Chronic lymphocytic leukemia of B-cell type

Bone disorder

Hereditary hemorrhagic telangiectasia

Hyperparathyroidism

Benign neoplasm of peripheral nerves
NFKBIE  Chronic lymphocytic leukemia of B-cell type

Cystic kidney disease
Coagulation defects
Chronic kidney disease

I I I
5e-06 5e-05 5e-04

0.005 0.0

Minor allele frequency

b 484 genes for which the lead association was with a quantitative trait
Genes with leffectl >2:

Variant effect on trait (beta)
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Most associated quantitative trait
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SLC4A1
Minor allele frequency XPO1

Platelet count
Albumin
Alkaline phosphatase
Neutrophil count
Platelet count
Aspartate aminotransferase
Cystatin C
Peak expiratory flow
Height
Mean corpuscular volume
Lymphocyte count
Reticulocyte percentage
Lymphocyte count

Table 1| Number of coding variants discovered in exome
sequencing datafrom 454,787 participants in the UK

Biobank

Variant category

No. of variants (%

Median number of variants

with MAC=1) per participant (IQR)
mmm) Coding regions® 12,326,144 (46.86) 19,895 (247)
Predicted function
In-frame indels 75,096 (40.33) 115 (11)
Synonymous 3,457,173 (43.12) 10,273 (141)
Missense 7,878,586 (47.28) 9,292 (143)
Likely benign 1,532,129 (44.1) 6,561(104)
Possibly deleterious 4,556,629 (47.23) 2,610 (70)
—) Likely deleterious 1,789,828 (50.1) 121(18)
) pLOF (any transcript) 915,289 (57.88) 214 (16)
Start lost 26,453 (47.94) 13 (4)
Stop gained 279,913 (54.02) 52(8)
Stop lost 12,843 (56.51) 6(3)
Splice donor 104,328 (58.67) 17(5)
Frameshift 405,669 (60.41) 90(10)
Splice acceptor 86,083 (60.79) 20 (5)

®Includes all coding variants: synonymous, in-frame indels, missense and pLOF variants.
MAC, minor allele count; IQR, interquartile range.

Performed exome sequencing of 454,787 participants

Identified ~12M coding variants, ~1M putative loss-of-
function variants and ~ 1.8M deleterious missense variants

Tested association with 3,994 health-related traits & found
564 genes with trait associations at P £ 2.18 x 10-11

Rare variant associations were enriched in loci from
genome-wide association studies, but 91% (most) were
independent of common variant signals




Diverse RGC cohorts:

Science

HOME > SCIENCE > SEQUENCING OF 640,000 EXOMES IDENTIFIES GPR75 VARIANTS ASSOCIATED WITH PROTECTION FROM OBESITY

Science
RESEARCH ARTICLE f ¥ in & & X

Sequencing of 640,000 exomes identifies GPR75 vari-
ants associated with protection from obesity

PARSA AKBARI , ANKIT GILANI , OLUKAYODE SOSINA , JACK A. KOSMICKI , LORI KHRIMIAN , YI-YA FANG, TRIKALDARSHI PERSAUD , VICTOR GARCIA

DYLAN SUN , ALEXANDER LI , JOELLE MBATCHOU, ADAM E. LOCKE , CHRISTIAN BENNER, NIEK VERWEIJ , NAN LIN, SAKIB HOSSAIN, KEVIN AGOSTINUCCI,

JONATHAN V. PASCALE , ERCUMENT DIRICE , MICHAEL DUNN, REGENERON GENETICS CENTER?, DISCOVEHR COLLABORATION¥, WILLIAM E. KRAUS

SVATI H. SHAH, YII-DER I. CHEN, JEROME I. ROTTER ,DANIEL J. RADER , OLLE MELANDER, CHRISTOPHER D. STILL , TOORAJ MIRSHAHI ,DAVID J. CAREY

JAIME BERUMEN-CAMPOS , PABLO KURI-MORALES , JESUS ALEGRE-DIAZ , JASON M. TORRES , JONATHAN R. EMBERSON , RORY COLLINS

SUGANTHI BALASUBRAMANIAN , ALICIA HAWES, MARCUS JONES, BRIAN ZAMBROWICZ , ANDREW J. MURPHY , CHARLES PAULDING , GIOVANNI COPPOLA

JOHN D. OVERTON , JEFFREY G. REID , ALAN R. SHULDINER , MICHAEL CANTOR, HYUN M. KANG , GONCALO R. ABECASIS, KATIA KARALIS, ARIS N. ECONOMIDES

, JONATHAN MARCHINI , GEORGE D. YANCOPOULOS, MARK W. SLEEMAN, JUDITH ALTAREJOS, GIUSY DELLA GATTA , ROBERTO TAPIA-CONYER
MICHAL L. SCHWARTZMAN, ARIS BARAS , MANUEL A. R. FERREIRA, AND LUCA A. LOTTA fewer Authors Info & Affiliations

* Rare predicted loss of function coding variants in GPR75 for
heterozygous carriers found to be associated with

= Lower BMI (-1.8 kg/m?)
= Lower body weight (~5.3 kg or 11.7 Ibs lower)
» Protection against obesity (54% lower odds)

* GPRY75 knock-out mice show resistance to weight gain in high-
fat diet challenge, as well as healthier insulin and fasting glucose

profiles
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Diverse RGC cohorts: Novel genetic discoveries and therapeutic targets

The NEW ENGLAND JOURNAL of MEDICINE

—

ORIGINAL ARTICLE

A Associations with Steatosis and NASH or Fibrosis
‘ Normal Steatosis ] NASH or fibrosis

Normal vs. steatosis or NASH or fibrosis:
odds ratio per allele, 0.34 (95% Cl, 0.14 to 0.79)

Germline Mutations in CIDEB and Protection P=0.01

against Liver Disease Noncarriers
f LOF pl 795 (22 1206 (34
N. Verweij, M.E. Haas, J.B. Nielsen, O.A. Sosina, M. Kim, P. Akbari, T. De, of rare pLOF plus [ERUEER (4%)

G. Hindy, ). Bovijn, T. Persaud, L. Miloscio, M. Germino, L. Panagis,
K. Watanabe, J. Mbatchou, M. Jones, M. LeBlanc, S. Balasubramanian,
C. Lammert, S. Enhdrning, O. Melander, D.). Carey, C.D. Still, T. Mirshahi,

D.J. Rader, P. Parasoglou, J.R. Walls, J.D. Overton, J.G. Reid, A. Economides, Carriers
M.N. Cantor, B. Zambrowicz, A.J. Murphy, G.R. Abecasis, M.A.R. Ferreira, of rare pLOF plus 11 (42%) 7 (27%)
E. Smagris, V. Gusarova, M. Sleeman, G.D. Yancopoulos, J. Marchini, H.M. Kang, missense variants
K. Karalis, A.R. Shuldiner, G. Della Gatta, A.E. Locke, A. Baras, and L.A. Lotta T | T 1
0 25 50 75 100
Verweij et al. (2022) N EnglJ Med 387:332-344 Percentage

Rare predicted loss-of-function variants plus
missense variants in CIDEB associated with
33% lower odds of liver disease of any cause



Leveraging Diverse and Admixed

Genomes

The Mexico City Prospective Study

RGC



The Mexico City Prospective Study (MCPS)

* Founded by epidemiologists from Mexico City and Oxford

* 159,755 adults enrolled by visiting 112,333 family
households within two urban districts in 1998-2004

[Coyoacén

Iztapalapa]

* Health questionnaires, physical measurements,
blood, etc.

* Resurvey of ~10,000 participants in 2015-2019

* Linkage to mortality data ongoing



IBD-Based Relatedness Pipeline: MCPS

IRobust to admixture and scalable to large-scale bio-bank

samples.
Distribution of the number of relatives per participant

Proportion of the genome estimated to have 0, 1 or 2 alleles
identical-by-descent (IBD)

IBD 1

Relationship

Relationship

. Parent-Offspring
B Fui siiing
. 2nd Degree
I . 3rd Degree

é 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31~ 40 411—
Number of relatives per participant

© Parent-Offspring
@ Full Sibling

@ 2nd Degree

@ 3rd Degree

Number of Participants

0-

Parent-Offspring Full-Siblings  Second-Degree Third-Degree
31,597 29,482 47,080 120,180

RGC



# of pedigrees (log scale)

10

1000 10000

100

Pedigree Reconstruction in MCPS with PRIMUS

2 6 10 14 18 22 26 30 34 38 42 46 50

# of people in a pedigree

3,595 nuclear families
* 2,268 trios
* 869 quartets

* 308 quintets T— T
* 100 sextets | | oty O DJ J O
* 34 septet O T CrotU @Tj 0O O Q IO OT 1 Q00
* 11 octets E OHQ O QOO0 O []

* 3 nonets - S

* 2 decets

1 1 |

Q g OED Q Ut
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MCPS 2nd degree network of families > 4 in size
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MCPS is the largest non-European ancestry sequencing study

Collaboration between the National Autonomous University of Mexico, the National
Institute of Genomic Medicine in Mexico, Oxford Population Health, Regeneron, Astra

Zeneca and Abbvie.

Unique variants

Samples 140,829 141,046 9,950
All variants 0.56M 4.0M? 131.9M
1.4M"* 31.5M**

*coding only

*not found in UK Biobank, TOPMed & gnomAD

**not found in TOPMed & gnomAD



Two resources derived from MCPS sequencing data

MCPS allele frequency browser

* 142 million variants in combined dataset of Array, WES and WGS
* Ancestry-specific allele frequencies from sequencing data

MCPS10K imputation reference panel
* Phasing of 9,950 WGS samples
* To be included in TOPMed reference panel


https://rgc-mcps.regeneron.com/
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Count

MCPS Allele Frequencies Browser: All Participants vs. Unrelated
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(A) Histogram of the alternate allele count of variants missing from the unrelated subset computed from the combined WES and array dataset

for all chromosomes. (B) Hexbin plot of allele frequencies computed using the unrelated subset (x-axis) and all samples (y-axis) and for

chromosome 22. (C) Hexbin plot of log,, allele frequencies of rare variants (AAF<0.01) on chromosome 22.



NEW APPROACH: Relatedness-Corrected Allele Frequencies Using IBD Segments
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IBD Graph at Specific Genomic Location
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NEW APPROACH: Relatedness-Corrected Allele Frequencies Using IBD Segments

IBD segments define breakpoints where the relatedness Algorithm
structure changes along the genome
For each IBD graph along the genome:

1. Grab variants that fall in the span of the graph
2. Compute connected components of the graph

IBD Graphs 3. Set AC = # of alternate allele connected components
/ 4. Set AN = total # of connected components
Gl G2 G3 G9 G10
* * * * * % 3k Xk *
IBD Segments N Breakpoints

e
Genome O Product

Solutions Open Source Pricing

& rgcgithub / mcps_ibd_freq_calc  pubiic

<> Code (© Issues I Pullrequests (® Actions [ Projects () Security |~ Insights

¥ main ~ ¥ 1branch & 0 tags Go to file m

rgc-tj added contact info 045689f 4 hoursago ‘Y7 commits
W calc-ibd-freq initial commit yesterday
mcps-rfmix-processing clean yesterday

R G C"‘ 3 README.md added contact info 4 hours ago



(A) Alternate allele frequencies computed for chromosome 22 correcting for IBD (x-axis) and computed from all samples (y-axis). (B) Log,
alternate allele frequencies for rare variants (AAF<0.01) computed for chromosome 22 correcting for IBD (x-axis) and computed from all
samples (y-axis). (C) Log,, alternate allele frequencies for rare variants (AAF<0.01) computed for chromosome 22 correcting for IBD (x-axis)
and computed from unrelated samples (y-axis).

RGC



>10-fold increase in size compared to gnomAD

gnomAD! | WGS 7,612 4,610 14.8M**
MCPS | WGS 9,950 6,549 131.9M
MCPS | WES | 141,046 —_ 91,856 — 9.3M |

* Latino/Admixed American samples
**bi-allelic variants with low genotype missingness (<10%) and an AF > 0.1%

1Wilson et al., AHGS 2021

142M variants
—10-fold increase

- 20-fold increase
in WES sample size



MCPS WES AF estimates agree with gnomAD
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MCPS Variant Browser

rs149483638

v DETAILS

~ ALLELE FREQUENCIES BY POPULATION

RARE
0 000001 0.0001  0.001

MCPS

Allele Count / Allele Number

EXPORT | =

Ancestry
All (ALL)

> African/African-American (AFR)

v Admixed American (AMR)
Indigenous Mexican (IMX)
Mexican from Los Angeles US...
Puerto Ricans from Puerto Ric...
Colombians from Medellin, Co...
Peruvians from Lima, Peru (PE...

> European (EUR)

Vv VARIANT EFFECTS

0.01

All (ALL)

R 0.2340

64,768 / 276,400

MCPS gnomAD Genomes

R 0.2340

0.000586
»

N o0.3500

0.000435

0.015325

0.142343

0.000203

https://rec-mcps.regeneron.com/

n Search for gene or variant or range

COMMON
1

African (AFR) Indigenous Mexican (IMX)

§ 0.3500

I

0.000586

4.7/8,008.4 64,727.1/185,063.0

gnomAD Exomes TOPMed

0.027823 0.024565
0.00133

® 0193395

0.000045

European (EUR)

Database
of 142 M
variants

0.000435

36.2/83,328.9

Expand All / Collapse All
oneKGP

0.022165

0.144092

0.179688
0.048077
0.148936
0.229412

0.000994

Raw VCF data files with allele frequencies are available for download


https://rgc-mcps.regeneron.com/
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We are hiring! Visit our website for all posted positions:
careers.regeneron.com

Open Position in Statistical Genetics:

Regeneron Genetics Center https://careers.regeneron.com/job/R20103/Associate-

Manager-Statistical-Genetics
* Please contact Joelle Mbatchou for specific
interest: joelle.mbatchou@regeneron.com

gl

CREATE THE FUTURE

YOU BELIEVE IN

Associate Manager, Statistical Genetics o
Save Apply Now >
Tarrytown, New York, United States of America - Research and Development - R20103

We are seeking a dedicated researcher to develop methods at the interface between machine learning and Get notified for similar jobs
statistical genetics to provide a deeper understanding of human biology and aid in discovering novel
therapeutic targets, enabling Regeneron to deliver novel medicines to patients in need. The role will include
hands-on research and methods development, working across various applications involving large-scale

genetic variation and electronic health record datasets at the Regeneron Genetics Center (RGC). You will m

design, implement, and refine methods and analyses to connect genetic variation to human health and

disease.

In this Associate Manager role, a typical day might include the following:

« Develop and apply innovative methods at the interface between statistical genetics and MLand deploy .
them at scale to answer biological and disease genetics questions that cover all the areas of interest of based on your interests.

—— RGC.

Sign up to receive job alerts

Get tailored job recommendations



https://careers.regeneron.com/job/R20103/Associate-Manager-Statistical-Genetics
https://careers.regeneron.com/job/R20103/Associate-Manager-Statistical-Genetics
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