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Downstream analysis with genomic data

Downstream analysis that use whole-genome data, such as LD score regression, GREML, Genomic SEM, Mendelian randomization, etc.




Let’s start by going to:

https://workshop.colorado.edu/rstudio/

And clicking on the terminal tab.

R | S ~ |:_|J Go to file/function ~ Addins ~

Console Terminal Background Jobs

Terminal 1 ~  andrew@ip-10-0-201-63: /home
:/home$


https://workshop.colorado.edu/rstudio/

Copy over the practical files from that
terminal tab

cp -r /faculty/andrew/LDSC_Practical 2023 .



Now let’s go over to the console and setwd
for this new folder you just copied

File Edit Code View Plots Session Build Debug Profile Tools Help

Q@ - R =~ - Go to file/function ~ Addins ~

Console Terminal Background Jobs

R R4.2.2 - ~/Documents/LDSC_Practical_2023/

> setwd("LDSC_Practical_2023/™")
> |



Now let’s go to File at the top and open the .R
script with the commands we will be running

m Edit Code View Plots Session Bi

New File P ) to file/fun

©R | New Project...

Console
R R< <" Open File... ago-

> setw¢ <" Open File in New Column...

> Recent Files >

<" Open Project...

Recent Projects 4

Import Dataset 4
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|. Background
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Because traits are highly polygenic:
Variants with higher LD are more likely to pick up
effect of causal variant

Estimated Heritability = strength of association
between LD and SNP effect size

LD-scores are going to be more strongly related to
effective size for traits with stronger genetic signal (i.e.,
higher heritability) Bulik-Sullivan et al., 2015



[l. Univariate LDSC



2.5-

* To estimate SNP Heritability:
* Regress GWAS chi-square against LD
Scores for all SNPs (not just
significant ones)

2.0-

Regression
Weight
1.00

0.75

s * Unbiased by sample overlap or cryptic
0% population stratification
* Only effect the average test statistic
(the LDSC intercept) but not the
relationship between test statistics
and LD Scores (the slope)

Chi-square

] | 1
0 100 200
LD Score Bin
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Elx? 4] =

The expectation for
the GWAS chi-square
given the LD-score for

the SNP j

This is the “Y” variable
in the linear regression



Nh?
E(x*| ¢ = — ttNa+1

M = number of SNPs used to

estimate the LD-scores
h? = SNP-based heritability

This whole piece can be thought
as the estimated “beta” in the
linear regression



If you have two traits that have the exact
same GWAS estimates (i.e., same p-value)

Trait 1: N = 50,000
Trait 2: N=100,000

Trait 1 must be more heritable given
equivalent results at 1/2 the sample size



The LD-score of SNP j

This is the X" variable
in the linear regression



Nh?
E(x*| ¢ = -t Na+1

N is sample size again
a is confounding biases

This whole piece is the “intercept”
in the linear regression



Putting it all together, this is ultimately a
simple linear regression equation to back
out the implied heritability estimates

Nh?
Elx*1 4] = =%+ Na+1



[[l. Bivariate LDSC



-

The genetic code is the
link (the bridge) across
these estimates

Traits do not need to
be from the same
sample!

Offers chance to
examine even mutually
exclusive traits

Trait Y

Trait X



Co-heritability
(genetic covariance) =
strength of association

between LD and
product of effect sizes
for two different

phenotypes (Y1*Y2)

n
o

Y1*Y2 Z-statistics ¢=mm

|
200

100
LD Score Bin

Bulik-Sullivan et al., 2015






E|z1225 |4

The expectation for the
product of z-statistics across
two traits given the LD-score

for the SNP j

This again is the “Y” variable
in the linear regression

_ \/N1N2 Pg
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fj +\/N1N2(l +

PN

VNN,



\/N1N2 Pg
M J

/N1 N, reflects the square root of the sample size
for trait 1 and trait 2
M is the number of SNPs

Py is the genetic covariance

E|z1j2,5 €] =

This is the “beta” where again we back out the
estimate we care about, which in this case is the
genetic covariance
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Again, this is the LD-score for a given SNP j, which
reflects our “X” variable



E|z1jz55 |¢)] =

\/NlNZ Pg

M

fj + \/NlNza |

Here we have the bivariate LDSC intercept.

./ Ny N5a reflects shared sources of population
stratification across the two samples.

PN

JN{N,

overlapping participant samples weighted by
proportional sample overlap

reflects the phenotypic correlation among



Genetic Correlation

r = al
g 2 2
Vh y1h%y;

* In many instances, we are interested in the amount of genetic overlap on the
standardized scale (i.e., genetic correlation).

 What are some important things to keep in mind when interpreting this estimate?

* Why is the bivariate LDSC equation only going to work within ancestry?



Allows us to produce genetic “heat maps” of
genetic correlations across traits

Analysis of shared heritability in
common disorders of the brain
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Fig. 1. Genetic correlations across psychiatric phenotypes. The color of each box indicates the Fig. 4. Genetic correlations across brain disorders and behavioral-cognitive phenotypes. The
magnitude of the correlation, and the size of the box indicates its significance (LDSC), with color of each box indicates the magnitude of the correlation, and the size of the box indicates its
significant correlations filling each square completely. Asterisks indicate genetic correlations that are significance (LDSC), with significant correlations filling each square completely. Asterisks indicate

significantly different from zero after Bonferroni correction. genetic correlations that are significantly different from zero after Bonferroni correction.



V. Practical for Continuous Traits



Where to get summary statistics

 List lots of resources on the Genomic SEM Wiki:

https://github.com/GenomicSEM/GenomicSEM/wiki/2.-
Important-resources-and-key-information

Where to get GWAS summary statistics.
What you need to know about GWAS before you get started

Below is a brief, and incomplete list of links to consortia data pages, where summary statistics are
available.

1. A genome wide association study (GWAS) boils down to a linear regression of a phenotype (y)
on a genetic variant, usually a single nucleotide polymorphism (x). This regression results in a

1. The PGC (Psychiatric Genomics Consortium), has analyzed all common DSM-IV axis-| psychiatric
parameter estimate (beta), test statistic (Z or t) for each SNP, and information that can be used

disorders (MDD, Schizophrenia, ADHD, OCD, Bipolar Disorder and more)

to determine with respect to which allele the effect size is computed. When available for a

considerable portion of all SNPs, this information is sufficient to compute the heritability of the 2. The SSGAC (Social Sciences Genetic Association Consortium) performs genome wide association
studies of a variety of social and psychological traits like education, personality, and

traits and genetic correlation between traits. This information is also sufficient to fit structural
reproductive behavior.

equation models to the genetic covariance between several traits.

[

. The Nealelab quickly ran and published online GWAS of >4000 traits that were measured as

N

You need the full or very lightly cleaned summary statistics generated from a GWAS, so if the ) X
i 7 part of the UK Biobank. These traits include many disease (ICD-10 diagnostic codes, both self
authors provide summary statistics only for the top 5.000 SNPs, or even the top 100.000

. ) . R X reported and based on hospital data), social traits (e.g. social deprivation), personality traits (e.g.
“pruned” SNPs this is not sufficient. Often if you get in touch with the authors, they have a

neuroticism), cognition (e.g. memory) and many more (from snoring to the propensity to drive
to fast). The Nealelab ran these GWAS very quickly and as a service to the field. Their GWAS of
case/control traits use linear regression (linear probability model). Please read their extensive
read me which describes their GWAS analysis in detail.

mechanism for you to obtain the full summary statistics. Sometimes this may involve you
agreeing not to identify the participants in their study. Sometimes you may need to sign some
documents.

3. You need to know whether the GWAS was a logistic regression, or a linear regression. Note that 4. The CCACE (Centre for Cognitive Ageing and Cognitive Epidemiology has published GWAS on
not all case/control studies use logistic regression. This is because logistic regression can be assorted personality traits, cognitive traits, and tiredness.
computationally proh\bmve if Sample S_‘Zes are hug?. Whe.n .a dichotomous Outcome.(e.g. a 5. Members of the CTGlab (Complex Trait Genetics Lab) published several high quality GWAS on
case/control trait) is analyzed using a linear regression, this is called a "linear probability model" .
o X X 7 X i 1Q, insomnia and other traits.
and it is strictly speaking misspecified. The function sumstats does know how to deal with this
scenario, and please see the package help for instructions. The package also can deal with a 6. The GPC (Genetics of Personality Consortium) published several, slightly dated, GWAS on the

GWAS of a continuous trait being analyzed using linear regression (use the oLs flag in "Big 5" personality scales.

SLf'"StatS_ t? |nd|catelwh\ch GWAS ar.e of continuous traits), .or a c-ase/control tra.\ts analyzed 7. The EGG (Early Growth Genetics) Consortium performs GWAS of traits related to early growth.
using logistic regression (the default in sumstats ). Another issue is the use of "linear mixed

models” (LMM) in GWAS. These models are used to guard against populations stratification, and 8. The GIANT consortium publishes GWAS, mainly about antropomorpic traits.

9. The ENIGMA consortium which has published GWAS of subcortical brain volumes and
hippocampal volumes.



GWAS Catalog

https://www.ebi.ac.uk/gwas/

QP
<~ BioBank Japan PheWeb

The NHGRI-EBI Catalog of human genome-wide association studies BIOBANKAPAN

https://pheweb.jp/

§ FINNGEN https://www.finngen.fi/en/access_results
[ ]

Pan-UK
Biobank

Pan-ancestry genetic analysis of the UK Biobank

https://docs.google.com/spre
adsheets/d/1AeeADtTOU1AuUKkl
iiNyiVzVRdLYPkTbruQSk38Deu
tU8/edit#gid=268241601

PGCZ

Psychiatric Genomics Consortium

?:gf_s://pgc.unc.edu ENIGMA

researchers/downlo https://enigma.ini

ad-results/ usc.edu/research/
download-enigma-
gwas-results/




Only TWO Primary Steps to estimate ldsc

Munge: convert
raw data from one
form to another

1. Munge the summary statistics
(munge)

2. Run LD-Score Regression to obtain
the genetic covariance and
sampling covariance matrices

(1dsc)



The summary statistics files input to the munge function at a
minimum need to contain five pieces of information:

1.The rsID of the SNP.

2.An Al allele column, indicating the effect allele.
3.An A2 allele column, indicating the non-effect allele.
4.A signed (+/-) effect column.

5.The p-value associated with this effect.



The munge function takes 6 arguments:

1.files: The name of the summary statistics files

2.hm3: The name of the reference file. Here we use Hapmap 3 SNPs.
3.trait.names: The trait names that will be used to name the saved files
4.N: The sample sizes associated with the traits.

5.info.filter: INFO filter. Package default is to retain SNPs with INFO >
0.9.

6.matf.filter: MAF filter. Package default is to retain SNPs with MAF >
0.01.



The ldsc function takes 6 arguments:

1.traits: a vector of file names/paths to files which point to the munged

sumstats.

2.sample.prev: A vector of sample prevalences of length equal to the
number of traits. If the trait is continuous, the values should equal NA.

3.population.prev: A vector of population prevalences. If the trait is

continuous the values should equal NA.
4. |d: A folder of LD scores used as the independent variab

5. wld: A folder of LDSC weights (Typically same folder as s
the |d argument)

6. trait.names: The trait names.

e in LDSC

necified for



We will be estimating LDSC for both European
and East Asian Samples

Using European GWAS sumstats for:
Height (Yengo et al., 2022)
BMI from Pan UKB

Using East Asian GWAS sumstats for:
Height (Yengo et al., 2022)
BMI from Biobank Japan




LET’S GO TO THE CODE

In this first practical you will get practice running the munge and Ildsc
functions and plotting the output as a heatmap.

Make sure to look at the .log files produced by each function to get a
sense of what they are each doing “behind the scenes”

In practice, you will always want to inspect these to ensure that
columns are being interpreted correctly



munge .log file

Munging file: Yengo_Height_EUR_chrl.txt

Interpreting the RSID column as the SNP column.

Interpreting the EFFECT_ALLELE column as the A1l column.

Interpreting the OTHER_ALLELE column as the A2 column.

Interpreting the BETA column as the effect column.

Interpreting the P column as the P column.

Interpreting the N column as the N column.

Interpreting the MAF column as the MAF column.

Interpreting the SE column as the SE column.

Merging file:Yengo_Height_EUR_chrl.txt with the reference file:eur_w_1ld_chr/w_hm3.snplist

96851 rows present in the full Yengo_Height_ EUR_chril.txt summary statistics file.

7910 rows were removed from the Yengo_Height_EUR_chrl.txt summary statistics file as the rs-ids for these rows were not present in the reference file.
No INFO column, cannot filter on INFO, which may influence results

@ rows were removed from the Yengo_Height_EUR_chrl.txt summary statistics file due to missing MAF information or MAFs below the designated threshold of@.e01
88941SNPs are left in the summary statistics file Yengo_Height_EUR_chri.txt after QC.

I am done munging file: Yengo_Height_EUR_chrl.txt

The file is saved as Height.sumstats.gz in the current working directory.



European

@®

BMI

Height




[dsc .log file

Calculating genetic covariance [2/3] for traits: BMI.sumstats.gz and Height.sumstats.gz
71781 SNPs remain after merging BMI.sumstats.gz and Height.sumstats.gz summary statistics
Results for genetic covariance between: BMI.sumstats.gz and Height.sumstats.gz

Mean Z*Z: —-0.1603

Cross trait Intercept: -0.028 (0.0305)

Total Observed Scale Genetic Covariance (g_cov): -0.0239 (0.0143)

g_cov Z: -1.67

g_cov P-value: 0.094448

Estimating heritability [3/3] for: Height.sumstats.gz
Heritability Results for trait: Height.sumstats.gz
Mean Chi”*2 across remaining SNPs: 2.4191

Lambda GC: 1.6247

Intercept: 1.0755 (0.0685)

Ratio: 0.0532 (0.0483)

Total Observed Scale h2: 0.2414 (0.0325)

h2 Z: 7.42

Genetic Correlation Results
Genetic Correlation between BMI and Height: -0.1288 (0.077)

LDSC finished running at 2023-83-07 12:23:52
Running LDSC for all files took @ minutes and 12 seconds



East Asian
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V. Liability Scale Heritability for
Binary Traits



Density
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hZ

P(1—P) P(1 - P)

hZ

g v(1l —v)

This first part of this equation
backs out the expected heritability
estimate on that continuous
distribution of risk (liability)

P is the population prevalence of
the disorder.

¢ is the height of the continuous
distribution of liability at the
threshold t at which a diagnosis of
the disorder is made



? = 3

P(1-P) P(1-P)

¢2

v(1 — v)

This second part of this equation
performs the correction for
participant ascertainment

P is again the population
prevalence of the disorder.

v is the prevalence of the disorder
in our participant sample.

The ratio then reflects the degree
of ascertainment



2 -
8 - .
N - “In case-control studies
the proportion of cases is
EI 8 - i usually (much) larger than
E the prevalence in the
g - g population yet estimates
TH - of genetic variation are
S - 1 15 most interpretable if they
are not biased by this
o - ascertainment”
I | 1 I 1 I |
3 2 1 0 1 2 3 4
Phenotypic value
. ~- P ~ A
Control Case

Lee et al. (2011)



Cohort-specific ascertainment

* As GWAS have continued to grow in sample size they often reflect meta-
analyses of a series of contributing cohorts.

* For pragmatic reasons relating to data sharing with raw genotypes cohorts
often share the GWAS summary stats to be meta-analyzed with other
summary stats

* When this happens a correction for ascertainment within each cohort is
required.

* The reason: the ascertainment calculated using total cases and controls is not the
same as ascertainment calculated within cohort

e Sum of parts |= sum of totals



P(1—P) P(1-P)
ok 2k Vi (1 — vg)

In order to appropriately
perform the ascertainment
correction we need to calculate
the sum of ascertainment across
the contributing cohorts, k

? = 3



EffNy = 4v (1 — vy )ny

In practice, we use what’s call the effective sample size for this cohort-specific
ascertainment correction.

The effective sample size is the sample size you would have had if the study design
was balanced (50% cases and 50% controls)

Thus, it corrects the sample size for ascertainment and allows for summing sample
size across cohorts.

We use sum of effective N as many GWAS pipelines (e.g., Ricopili) automatically
output this for the GWAS



VI. Practical for Binary Traits



We will be estimating LDSC for European Samples for
Bipolar Disorder and Schizophrenia

Article | Published: 08 April 2022

Mapping genomic lociimplicates genes and synaptic
biology in schizophrenia

Vassily Trubetskoy, Antonio F. Pardifias, Ting Qi, Georgia Panagiotaropoulou, Swapnil Awasthi, Tim B.

Bigdeli, Julien Bryois, Chia-Yen Chen, Charlotte A. Dennison, Lynsey S. Hall, Max Lam, Kyoko Watanabe,

Oleksandr Frei, Tian Ge, Janet C. Harwood, Frank Koopmans, Sigurdur Magnusson, Alexander L.

Richards, Julia Sidorenko, Yang Wu, Jian Zeng, Jakob Grove, Minsoo Kim, Zhigiang Li, Indonesia

SynGO Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium

+ Show authors

Nature 604, 502-508 (2022) | Cite this article
48k Accesses | 229 Citations | 461 Altmetric | Metrics

Article | Published: 17 May 2021

Genome-wide association study of more than 40,000
bipolar disorder cases provides new insights into the
underlying biology

Niamh Mullins &, Andreas J. Forstner, Kevin S. O'Connell, Brandon Coombes, Jonathan R. |. Coleman,

Zhen Qiao, Thomas D. Als, Tim B. Bigdeli, Sigrid Berte, Julien Bryois, Alexander W. Charney, Ole Kristian

Drange, Michael J. Gandal, Saskia P. Hagenaars, Masashi lkeda, Nolan Kamitaki, Minsoo Kim, Kristi

Krebs, Georgia Panagiotaropoulou, Brian M. Schilder, Laura G. Sloofman, Stacy Steinberg, Vassily

Trubetskoy, Bendik 5. Winsvold, HUNT All-In Psychiatry, ... Ole A. Andreassen + Show authors

Nature Genetics 53, 817-829 (2021) | Cite this article
25k Accesses | 224 Citations | 321 Altmetric | Metrics



The ldsc function takes 6 arguments:

2.sample.prev: A vector of sample prevalences of length equal to the
number of traits. Enter 0.5 if inputting sum of effective N.

3.population.prev: A vector of population prevalences.



LET’S GO TO THE CODE

In this second practical you will get practice running the munge and
Idsc functions for binary traits

Note that bipolar disorder and schizophrenia are diagnostically
exclusionary of one another.

What does a method like LDSC tell us about these two traits?



SCZ / BIP

SCZ

BIP
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