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Where to put questions for this practical on 
the forum

https://isgw-forum.colorado.edu/



Let’s start by going to: 

https://workshop.colorado.edu/rstudio/

And clicking on the terminal tab.

https://workshop.colorado.edu/rstudio/


Copy over the practical files from that 
terminal tab

cp -r /faculty/andrew/LDSC_Practical_2023  .



Now let’s go over to the console and setwd
for this new folder you just copied



Now let’s go to File at the top and open the .R 
script with the commands we will be running



Finally let’s open the R script 
“LDSC_Practical.R”
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I. Background



Phenotype Y

Imagine that there are 
two causal variants in 

the population. 

All variants in LD with 
those variants are 

going to be estimated 
as having an affect on 

the phenotype, Y

The LD-score of a 
variant is the sum of r2

across SNPs. 

Toy Example: 2 True Causal Variants

ℓ𝑗𝑗 = ∑𝑖𝑖 𝑟𝑟𝑖𝑖𝑗𝑗2



Trait Y

= Causal Variants



Trait Y

= Causal Variants
= High LD Variants



Trait Y

= Causal Variants
= High LD Variants
= Medium LD Variants



Trait Y

= Causal Variants
= High LD Variants
= Medium LD Variants

= Low LD Variants



Because traits are highly polygenic:
Variants with higher LD are more likely to pick up 

effect of causal variant

Estimated Heritability = strength of association 
between LD and SNP effect size

LD-scores are going to be more strongly related to 
effective size for traits with stronger genetic signal (i.e., 

higher heritability) Bulik-Sullivan et al., 2015



II. Univariate LDSC



• To estimate SNP Heritability:
• Regress GWAS chi-square against LD 

Scores for all SNPs (not just 
significant ones)

• Unbiased by sample overlap or cryptic 
population stratification
• Only effect the average test statistic 

(the LDSC intercept) but not the 
relationship between test statistics 
and LD Scores (the slope)
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𝐸𝐸 𝜒𝜒2| ℓ𝑗𝑗 =
𝑁𝑁𝑁2

𝑀𝑀
ℓ𝑗𝑗 + 𝑁𝑁a + 1



𝐸𝐸 𝜒𝜒2| ℓ𝑗𝑗 =
𝑁𝑁𝑁2

𝑀𝑀
ℓ𝑗𝑗 + 𝑁𝑁a + 1

The expectation for 
the GWAS chi-square 
given the LD-score for 

the SNP j

This is the “Y” variable 
in the linear regression



𝐸𝐸 𝜒𝜒2| ℓ𝑗𝑗 =
𝑁𝑁𝑁2

𝑀𝑀
ℓ𝑗𝑗 + 𝑁𝑁a + 1

N = Sample size
M = number of SNPs used to 

estimate the LD-scores
h2 = SNP-based heritability

This whole piece can be thought 
as the estimated “beta” in the 

linear regression



If you have two traits that have the exact 
same GWAS estimates (i.e., same p-value)

Trait 1: N = 50,000
Trait 2: N= 100,000

Trait 1 must be more heritable given 
equivalent results at 1/2 the sample size



𝐸𝐸 𝜒𝜒2| ℓ𝑗𝑗 =
𝑁𝑁𝑁2

𝑀𝑀
ℓ𝑗𝑗 + 𝑁𝑁a + 1

ℓ𝑗𝑗 = ∑𝑖𝑖 𝑟𝑟𝑖𝑖𝑗𝑗2

The LD-score of SNP j 

This is the ”X” variable 
in the linear regression 



𝐸𝐸 𝜒𝜒2| ℓ𝑗𝑗 =
𝑁𝑁𝑁2

𝑀𝑀
ℓ𝑗𝑗 + 𝑁𝑁a + 1

N is sample size again

a is confounding biases 

This whole piece is the “intercept” 
in the linear regression



𝐸𝐸 𝜒𝜒2| ℓ𝑗𝑗 =
𝑁𝑁𝑁2

𝑀𝑀
ℓ𝑗𝑗 + 𝑁𝑁a + 1

Putting it all together, this is ultimately a 
simple linear regression equation to back 

out the implied heritability estimates



III. Bivariate LDSC



Traits do not need to 
be from the same 

sample! 

The genetic code is the 
link (the bridge) across 

these estimates

Offers chance to 
examine even mutually 

exclusive traits
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Bulik-Sullivan et al., 2015

Co-heritability 
(genetic covariance) = 
strength of association 

between LD and 
product of effect sizes 

for two different 
phenotypes (Y1*Y2)

0



𝐸𝐸 𝑧𝑧1𝑗𝑗𝑧𝑧2𝑗𝑗 |ℓ𝑗𝑗 =
𝑁𝑁1𝑁𝑁2 𝜌𝜌𝑔𝑔
𝑀𝑀

ℓ𝑗𝑗 + 𝑁𝑁1𝑁𝑁2𝑎𝑎 +
𝜌𝜌𝑁𝑁𝑠𝑠
𝑁𝑁1𝑁𝑁2



𝐸𝐸 𝑧𝑧1𝑗𝑗𝑧𝑧2𝑗𝑗 |ℓ𝑗𝑗 =
𝑁𝑁1𝑁𝑁2 𝜌𝜌𝑔𝑔
𝑀𝑀

ℓ𝑗𝑗 + 𝑁𝑁1𝑁𝑁2𝑎𝑎 +
𝜌𝜌𝑁𝑁𝑠𝑠
𝑁𝑁1𝑁𝑁2

The expectation for the 
product of z-statistics across 
two traits given the LD-score 

for the SNP j

This again  is the “Y” variable 
in the linear regression



𝐸𝐸 𝑧𝑧1𝑗𝑗𝑧𝑧2𝑗𝑗 |ℓ𝑗𝑗 =
𝑁𝑁1𝑁𝑁2 𝜌𝜌𝑔𝑔
𝑀𝑀

ℓ𝑗𝑗 + 𝑁𝑁1𝑁𝑁2𝑎𝑎 +
𝜌𝜌𝑁𝑁𝑠𝑠
𝑁𝑁1𝑁𝑁2

𝑁𝑁1𝑁𝑁2 reflects the square root of the sample size 
for trait 1 and trait 2

M is the number of SNPs
𝜌𝜌𝑔𝑔 is the genetic covariance

This is the “beta” where again we back out the 
estimate we care about, which in this case is the 

genetic covariance



𝐸𝐸 𝑧𝑧1𝑗𝑗𝑧𝑧2𝑗𝑗 |ℓ𝑗𝑗 =
𝑁𝑁1𝑁𝑁2 𝜌𝜌𝑔𝑔
𝑀𝑀

ℓ𝑗𝑗 + 𝑁𝑁1𝑁𝑁2𝑎𝑎 +
𝜌𝜌𝑁𝑁𝑠𝑠
𝑁𝑁1𝑁𝑁2

Again, this is the LD-score for a given SNP j, which 
reflects our “X” variable



𝐸𝐸 𝑧𝑧1𝑗𝑗𝑧𝑧2𝑗𝑗 |ℓ𝑗𝑗 =
𝑁𝑁1𝑁𝑁2 𝜌𝜌𝑔𝑔
𝑀𝑀

ℓ𝑗𝑗 + 𝑁𝑁1𝑁𝑁2𝑎𝑎 +
𝜌𝜌𝑁𝑁𝑠𝑠
𝑁𝑁1𝑁𝑁2

Here we have the bivariate LDSC intercept.

𝑁𝑁1𝑁𝑁2𝑎𝑎 reflects shared sources of population 
stratification across the two samples. 

𝜌𝜌𝑁𝑁𝑠𝑠
𝑁𝑁1𝑁𝑁2

reflects the phenotypic correlation among 

overlapping participant samples weighted by 
proportional sample overlap 



Genetic Correlation

• In many instances, we are interested in the amount of genetic overlap on the 
standardized scale (i.e., genetic correlation). 

• What are some important things to keep in mind when interpreting this estimate?

• Why is the bivariate LDSC equation only going to work within ancestry? 

rg = 
𝜌𝜌𝑔𝑔

h2
Y1h2

Y1



Allows us to produce genetic “heat maps” of 
genetic correlations across traits

Brainstorm Consortium, 2018



IV. Practical for Continuous Traits



Where to get summary statistics

• List lots of resources on the Genomic SEM Wiki:
https://github.com/GenomicSEM/GenomicSEM/wiki/2.-
Important-resources-and-key-information



https://docs.google.com/spre
adsheets/d/1AeeADtT0U1Aukl
iiNyiVzVRdLYPkTbruQSk38Deu
tU8/edit#gid=268241601

https://www.ebi.ac.uk/gwas/

https://pgc.unc.edu
/for-
researchers/downlo
ad-results/

https://enigma.ini.
usc.edu/research/
download-enigma-
gwas-results/

https://pheweb.jp/

https://www.finngen.fi/en/access_results



Only TWO Primary Steps to estimate ldsc

1. Munge the summary statistics 
(munge)

2. Run LD-Score Regression to obtain 
the genetic covariance and 
sampling covariance matrices 
(ldsc)

Munge: convert 
raw data from one 

form to another



The summary statistics files input to the munge function at a 
minimum need to contain five pieces of information:

1.The rsID of the SNP.
2.An A1 allele column, indicating the effect allele.
3.An A2 allele column, indicating the non-effect allele.
4.A signed (+/-) effect column. 
5.The p-value associated with this effect.



The munge function takes 6 arguments:

1.files: The name of the summary statistics files
2.hm3: The name of the reference file. Here we use Hapmap 3 SNPs. 
3.trait.names: The trait names that will be used to name the saved files
4.N: The sample sizes associated with the traits. 
5.info.filter: INFO filter. Package default is to retain SNPs with INFO > 

0.9. 
6.maf.filter: MAF filter. Package default is to retain SNPs with MAF > 

0.01.



The ldsc function takes 6 arguments:

1.traits: a vector of file names/paths to files which point to the munged 
sumstats.

2.sample.prev: A vector of sample prevalences of length equal to the 
number of traits. If the trait is continuous, the values should equal NA.

3.population.prev: A vector of population prevalences. If the trait is 
continuous the values should equal NA.

4. ld: A folder of LD scores used as the independent variable in LDSC 
5. wld: A folder of LDSC weights (Typically same folder as specified for 
the ld argument) 
6. trait.names: The trait names. 



We will be estimating LDSC for both European               
and East Asian Samples

Using European GWAS sumstats for:
Height (Yengo et al., 2022)

BMI from Pan UKB

Using East Asian GWAS sumstats for:
Height (Yengo et al., 2022)
BMI from Biobank Japan



LET’S GO TO THE CODE

In this first practical you will get practice running the munge and ldsc
functions and plotting the output as a heatmap. 

Make sure to look at the .log files produced by each function to get a 
sense of what they are each doing “behind the scenes”

In practice, you will always want to inspect these to ensure that 
columns are being interpreted correctly



munge .log file





ldsc .log file





V. Liability Scale Heritability for 
Binary Traits



Diagnosed with 
disease (P)

Not diagnosed 
with disease (1-P)

Threshold (t) at which 
diagnosis is made

𝜙𝜙 height of the standard 
normal probability 
density function at the 
truncation threshold t



𝑁𝑙𝑙2 = 𝑁𝑜𝑜2
𝑃𝑃(1 − 𝑃𝑃)

𝜙𝜙2
𝑃𝑃(1 − 𝑃𝑃)
𝑣𝑣 1 − 𝑣𝑣

This first part of this equation 
backs out the expected heritability 

estimate on that continuous 
distribution of risk (liability)

P is the population prevalence of 
the disorder. 

𝜙𝜙 is the height of the continuous 
distribution of liability at the 

threshold t at which a diagnosis of 
the disorder is made 



𝑁𝑙𝑙2 = 𝑁𝑜𝑜2
𝑃𝑃(1 − 𝑃𝑃)

𝜙𝜙2
𝑃𝑃(1 − 𝑃𝑃)
𝑣𝑣 1 − 𝑣𝑣

This second part of this equation
performs the correction for 
participant ascertainment 

P is again the population 
prevalence of the disorder. 

v is the prevalence of the disorder 
in our participant sample. 

The ratio then reflects the degree 
of ascertainment



Lee et al. (2011)

“In case-control studies 
the proportion of cases is 

usually (much) larger than 
the prevalence in the 

population yet estimates 
of genetic variation are 

most interpretable if they 
are not biased by this 

ascertainment”



Cohort-specific ascertainment

• As GWAS have continued to grow in sample size they often reflect meta-
analyses of a series of contributing cohorts. 

• For pragmatic reasons relating to data sharing with raw genotypes cohorts 
often share the GWAS summary stats to be meta-analyzed with other 
summary stats

• When this happens a correction for ascertainment within each cohort is 
required. 

• The reason: the ascertainment calculated using total cases and controls is not the 
same as ascertainment calculated within cohort

• Sum of parts != sum of totals



𝑁𝑙𝑙2 = 𝑁𝑜𝑜2
𝑃𝑃(1 − 𝑃𝑃)

𝜙𝜙2
𝑃𝑃(1 − 𝑃𝑃)

∑𝑘𝑘 𝑣𝑣𝑘𝑘 1 − 𝑣𝑣𝑘𝑘
In order to appropriately 

perform the ascertainment 
correction we need to calculate 
the sum of ascertainment across 

the contributing cohorts, k 



𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑘𝑘 = 4𝑣𝑣𝑘𝑘 1 − 𝑣𝑣𝑘𝑘 𝑛𝑛𝑘𝑘

In practice, we use what’s call the effective sample size for this cohort-specific 
ascertainment correction. 

The effective sample size is the sample size you would have had if the study design 
was balanced (50% cases and 50% controls)

Thus, it corrects the sample size for ascertainment and allows for summing sample 
size across cohorts. 

We use sum of effective N as many GWAS pipelines (e.g., Ricopili) automatically 
output this for the GWAS 



VI. Practical for Binary Traits



We will be estimating LDSC for European Samples for 
Bipolar Disorder and Schizophrenia



The ldsc function takes 6 arguments:

1.traits: a vector of file names/paths to files which point to the munged 
sumstats.

2.sample.prev: A vector of sample prevalences of length equal to the 
number of traits. Enter 0.5 if inputting sum of effective N. 

3.population.prev: A vector of population prevalences. 
4.ld: A folder of LD scores used as the independent variable in LDSC 
5. wld: A folder of LDSC weights (Typically same folder as specified for 
the ld argument) 
6. trait.names: The trait names. 



LET’S GO TO THE CODE

In this second practical you will get practice running the munge and
ldsc functions for binary traits 

Note that bipolar disorder and schizophrenia are diagnostically 
exclusionary of one another. 

What does a method like LDSC tell us about these two traits? 
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