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• An index that linearly aggregates the estimated effects of individual SNPs on the 
trait of interest.

• Can be considered a measure of an individual's genetic propensity towards a trait.

• Defined as a weighted sum of a persons genotypes at 𝑲 loci.

• Start with additive model using measured SNPs:

𝑦𝑖 = 𝐴𝑆𝑁𝑃,𝑖 𝑥𝑖 + 𝜖𝑖,𝑆𝑁𝑃 =

𝑗=1

𝐾

𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖,𝑆𝑁𝑃

additive SNP factor

What is a polygenic index?



⇒ መ𝐴𝑆𝑁𝑃,𝑖 = σ𝑗=1
𝐾 𝛽𝑗 + 𝑢𝑗 𝑥𝑖𝑗 = 𝐴𝑆𝑁𝑃,𝑖 + 𝑈𝑖 where 𝑈𝑖 = σ𝑗=1

𝐾 𝑢𝑗𝑥𝑖𝑗

Additive SNP factor: 

𝐴𝑆𝑁𝑃,𝑖 𝑥𝑖 ≡

𝑗=1

𝐾

𝛽𝑗𝑥𝑖𝑗

True effect size of 
SNP j

What is a polygenic index?

PGI:

መ𝐴𝑆𝑁𝑃,𝑖 𝑥𝑖 ≡

𝑗=1

𝐾

𝛽𝑗𝑥𝑖𝑗

Estimated effect size of 
SNP j

𝛽𝑗 = 𝛽𝑗 + 𝑢𝑗

If 𝑢 is mean-zero estimation 
error uncorrelated with 𝛽𝑗

𝑈 is mean-zero 
measurement error  

𝐸 መ𝐴𝑖 𝐴𝑖 = 𝐴𝑖
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Predictive power of a polygenic index

If we regress 𝑦 on መ𝐴𝑆𝑁𝑃 we get an OLS 
coefficient of

𝑏 =
𝐶𝑜𝑣 መ𝐴𝑆𝑁𝑃, 𝑦

𝑉𝑎𝑟( መ𝐴𝑆𝑁𝑃)

=
𝐶𝑜𝑣 𝐴𝑆𝑁𝑃 + 𝑈𝑖 , 𝐴𝑆𝑁𝑃 + 𝜖𝑆𝑁𝑃

𝑉𝑎𝑟 𝐴𝑆𝑁𝑃 + 𝑈

=
𝑉𝑎𝑟 𝐴𝑆𝑁𝑃

𝑉𝑎𝑟 𝐴𝑆𝑁𝑃 + 𝑉𝑎𝑟(𝑈)

OLS:
𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝜖𝑖

𝑏 =
𝐶𝑜𝑣 𝑥,𝑦

𝑉𝑎𝑟 𝑥
, 𝑅2 =

𝑏2𝑉𝑎𝑟 𝑥

𝑉𝑎𝑟 𝑦

And the expected predictive power is:

𝐸 𝑅2 =
𝑏2𝑉𝑎𝑟 መ𝐴𝑆𝑁𝑃

𝑉𝑎𝑟(𝑦)

=
𝑉𝑎𝑟 𝐴𝑆𝑁𝑃

𝑉𝑎𝑟 𝐴𝑆𝑁𝑃 + 𝑉𝑎𝑟(𝑈)

2
𝑉𝑎𝑟 መ𝐴𝑆𝑁𝑃
𝑉𝑎𝑟(𝑦)

⋮

≈
ℎ𝑆𝑁𝑃
2 2

ℎ𝑆𝑁𝑃
2 +

𝑀𝑒
𝑁

Sometimes called the 
Daetwyler formula 
(Daetwyler et al. 2008)

Effective number of SNPs in the PGI, estimated to 
be between 50k-70k in genome-wide data for 
EUR ancestry (Wray et al. 2013)



Theoretical projections for 𝑅𝑃𝐺𝐼
2



Predictive power and heterogeneity

What if we are predicting into a cohort where the 
genetic architecture is not the same as the GWAS 
sample?

𝑦, 𝐴𝑆𝑁𝑃 : phenotype and additive SNP factor in the 
training (GWAS) sample

𝑦∗, 𝐴𝑆𝑁𝑃
∗ : phenotype and additive SNP factor in the 

validation sample

𝐴𝑆𝑁𝑃,𝑖
∗ ≠ 𝐴𝑆𝑁𝑃,𝑖 → ℎ2𝑆𝑁𝑃

∗
≡
𝑉𝑎𝑟 𝐴𝑆𝑁𝑃,𝑖

∗

𝑉𝑎𝑟 𝑦𝑖
∗

≠ ℎ𝑆𝑁𝑃
2

Define the genetic correlation to be 

𝑟𝑔 = 𝐶𝑜𝑟𝑟(𝐴𝑆𝑁𝑃,𝑖
∗ , 𝐴𝑆𝑁𝑃,𝑖)

The expected predictive power

𝐸 𝑅2 ≈
ℎ𝑆𝑁𝑃
2 2

ℎ𝑆𝑁𝑃
2 +

𝑀𝑒
𝑁

now becomes

𝐸 𝑅2 ≈
𝑟𝑔ℎ𝑆𝑁𝑃

2 ℎ2𝑆𝑁𝑃
∗

ℎ𝑆𝑁𝑃
2 +𝑀𝑒/𝑁

(De Vlaming et al. 2016)

This formula will hold even if 𝒚𝒊
∗ is a different phenotype!



Theoretical projections for 𝑅𝑃𝐺𝐼
2 vs Observed 𝑅𝑃𝐺𝐼

2

EA1 (2013)

EA2 Discovery (2016)

EA2 Discovery + Replication (2016)

EA3 (2018)

EA4 (2022)

ℎ𝐺𝑊𝐴𝑆
2 = 0.2
ℎ𝑣𝑎𝑙
2 = 0.2
𝑟𝑔 = 1

ℎ𝐺𝑊𝐴𝑆
2 = 0.12
ℎ𝑣𝑎𝑙
2 = 0.16
𝑟𝑔 = 0.95
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Constructing polygenic indices

What is needed?

• Individual-level genotype data from a prediction sample.

• Weights: GWAS summary statistics from a discovery sample

Caution:  The prediction sample should not overlap with the discovery sample!

GWAS PGI

Overfitting!
The 𝑅2 of the PGI 
will be biased 
upwards!

GWAS PGI



Weights

GWAS results give us መ𝛽𝑗
𝐺𝑊𝐴𝑆, not 𝛽𝑗. Two issues to consider when constructing 

σ𝑗=1
𝐾 መ𝛽𝑗

𝐺𝑊𝐴𝑆𝑥𝑖𝑗 :

1. For some SNPs, መ𝛽𝑗
𝐺𝑊𝐴𝑆 may be a very noisy estimate of 𝛽𝑗 and/or 𝛽𝑗 may be 

close to 0, so adding those SNPs will add more noise than signal

2. If we include all SNPs, we will overweight (“double-count”) SNPs with high LD 
scores



Two solutions

Bayesian approaches

Include all SNPs but adjust the 
effect sizes for LD 

Clumping and thresholding

Include only the most strongly 
associated SNP from each LD 
block (Purcell et al., 2009)



𝑗=1

𝐾

መ𝛽𝑗
𝐺𝑊𝐴𝑆𝑥𝑖𝑗

Weights: Set equal to GWAS coefficients.

Loci: Selected by 

1. using a clumping algorithm that 
ensures the included markers are all 
approximately independent of each 
other

2. omitting SNPs whose P value for 
association with the phenotype is 
above a certain threshold

Weights: Set to GWAS coefficients adjusted 
for LD → approximate results from a 
theoretical multiple regression of the 
phenotype on all SNPs

Loci: Include all SNPs, no LD-based pruning

Examples: LDpred (Vilhjalmsson et al. 2015, 
Prive et al. 2020 ), PRS-CS (Ge et al. 2019), 
SBayesR (Lloyd-Jones et al. 2019)



Practical considerations - (C+T)

Imputed or genotyped SNPs? 

Depends on

• genotyping chip coverage

• quality of imputed SNPs

Clumping parameters

• 𝑟2 threshold: Do not want to double-count, but 
also do not want to lose signal 

• LD-window:

• If too large, then errors in LD estimates can 
lead to apparent LD between unlinked loci.

• If too small, there is risk of not accounting 
for LD between linked loci.

P-value cutoff: Depends on 

• the polygenicity of the trait 

• For highly polygenic traits, 
reasonable to expect 
prediction 𝑅2 to increase 
when more SNPs are 
included

• the sample size of the discovery 
GWAS

• smaller the GWAS sample, 
the larger the P-values →
imposing a very strict P-
value threshold may drop 
too many SNPs in a small 
GWAS.



• Cohort: Health and Retirement 
Study

• Phenotype: Educational 
attainment

C+T

𝑟2= 𝑟2= 𝑟2= 𝑟2= 𝑟2=

5 × 10−8 5 × 10−5 5 × 10−3 5 × 10−2 5 × 10−1 1



Practical considerations - (Bayesian approaches)

Uses as weights

𝐸 𝛽𝑗 መ𝛽𝑗
𝐺𝑊𝐴𝑆, 𝐷

By Bayes’s rule,

𝑓 𝛽𝑗 መ𝛽𝑗
𝐺𝑊𝐴𝑆, 𝐷 =

𝑓 መ𝛽𝑗
𝐺𝑊𝐴𝑆 𝛽, 𝐷 𝑓 𝛽𝑗 𝐷

𝑓 መ𝛽𝑗
𝐺𝑊𝐴𝑆 𝐷

Shrinkage depends on the prior!

LD matrix
LDpred2: Gaussian or Spike-and-Slab

𝛽𝑗 𝐷 ~൝
𝑁 0, 𝜏2 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜋

𝜋 can be estimated from data, sparsity allowed 
(if ഥ𝜋𝑗 < 𝜋, 𝑏𝑗 set to 0), 𝜏2 = ℎ2/𝑀𝜋

PRS-CS: “Continuous shrinkage”

𝛽𝑗 𝐷 ~𝑁(0, 𝜙𝜓𝑗)

𝜓𝑗~𝑁 𝑎, 𝛿𝑗
𝛿𝑗~ 𝑁(𝑏, 1)

Parameters 𝑎 and 𝑏 determine how aggressively to shrink 
small estimates and how much you don’t shrink large ones

SBayesR:  flexible finite mixture of normal 
distributions, sparsity allowed 

𝛽𝑗 𝐷 ~

0, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋1
𝑁 0, 𝛾2𝜎𝑏

2 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋2
…

𝑁(0, 𝛾𝐶𝜎𝑏
2) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 −

𝑐=1

𝐶−1

𝜋𝑐



Practical considerations - (Bayesian approaches)

Same tradeoff between coverage and noise, 
but

• All SNPs included in the PGI also need to be 
in the ref genotype data used to calculate 
the LD matrix

• If using imputed SNPs in the PGI, will either 
need

• Imputed reference data to calculate 
LD → imputation uncertainty 
introduces noise to LD calculation

• A large enough and representative 
sequenced sample →may not be 
available

The same consideration applies to C+T but Bayesian 
approaches are more sensitive to noise in LD estimates!Imputed or genotyped SNPs? 

Solutions:
1. Use genotyped SNPs and genotype data from the 

validation cohort to estimate LD →may not be optimal if 
• the number of genotyped SNPs is low
• sample size is low
• cohort has been genotyped using multiple chips
• want to compare prediction results between 

different cohorts, and hence need the PGI to include 
the same set of SNPs

2. Include only SNPs with imputation accuracy above a 
certain threshold

3. Use HapMap3 SNPs from the imputed data



Practical considerations - (Bayesian approaches)

Reference genotype data to calculate LD matrix should be

• large enough

• representative of the GWAS sample

• cleaned

• sample-level filters: related individuals, ancestry outliers, individuals 
with low genotyping rate

• SNP-level filters: low SNP call rate, MAF, HWE P-value (genotyped 
SNPs), imputation accuracy (imputed SNPs)



Which method is better?

Bayesian approaches

• utilize information from all SNPs by 
adjusting SNP weights for LD, but
• if the reference panel is not a 

good match for the population 
from which summary statistics 
were obtained, prediction 
accuracy might be compromised

• the assumed prior distribution 
might not accurately model the 
true genetic architecture

Clumping and thresholding

Faster and easier, but too black & 
white
• If clumping 𝑟2 or P-value 

cutoffs too strict, it drops 
potentially causal SNPs.

• If clumping 𝑟2 and P-value 
cutoffs too relaxed, there is a 
lot of double-counting and 
noise 



Source: Privé, Arbel, Vilhjálmsson (2020)

Source: Lloyd-Jones et al (2019)

If the purpose is to maximize predictive 
power, than Bayesian approaches clearly 
do better

There may still be uses for C+T, 
e.g. explore how much variance 
is explained out-of-sample by 
the genome-wide significant loci



HM3, LDpred

Source: Okbay et al. (2022)
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Major advantage of PGI over 
specific genetic variants: can 
have much greater predictive 
power

e.g., if 𝑅𝑃𝐺𝐼
2 = 0.07, then 80% 

to detect its effect in a sample 
of size ~110 individuals. If 
𝑅𝑃𝐺𝐼
2 = 0.09, then ~85

individuals.

→ Can study PGI in datasets 
containing high quality 
measures of outcomes, 
mediators, and covariates.

Applications
Identify correlates of genetic factors
e.g. Educational attainment PGI predicts early speech acquisition and is 
mediated by cognitive ability (Belsky et al., 2016).

Identify causal effects of genetic factors
Sibling data and family fixed effects → causal effect of PGI

Study treatment effect heterogeneity by genotype
e.g. Increase of compulsory schooling age in U.K. reduces BMI only 
among those with a high-BMI PGI (Barcellos, Carvalho, and Turley 2016)

Use as control variable
To control for confounding genetic factors or to increase statistical 
power for estimating the effect of a randomized treatment. If 
incremental 𝑅𝑃𝐺𝐼

2 is 15%, then power increase is equivalent to 17% 
increase in sample size (Rietveld, 2013)

Use for balance tests of randomization
PGIs should be identically distributed in treatment and control groups 

(Davies et al. 2016, Barcellos, Carvalho, and Turley 2016)

Identify at-risk individuals

⋮
Personalized treatment 



Individual-level prediction is not 
accurate enough for most complex 
phenotypes!

Source: Okbay et al. (2022)



Prediction with related samples

If you are interested in incremental-𝑅2, no need to do anything special, 
𝑅2 is still valid, but

• the standard error for the coefficient of the PGI is going to be wrong!

What to do?
• Can control for the relatedness using the GRM and a linear mixed model

• Possible to do in GCTA

• We will post a video on how to this!
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LIMITATIONS & PITFALLS

Mechanisms are poorly 
understood.

• Including many genetic 
variants
• increases predictive 

power
• requires including 

genetic variants with 
unknown function 

→makes it hard to 
specify what is captured 
by PGI.

Source: Okbay et al. (2022)



LIMITATIONS & PITFALLS

• Current polygenic indices far 
less predictive in non-
European-descent samples.

• For example, for the EA4 PGI: 

• 𝑅2 ≈ 17% for European-
ancestry individuals in 
Add Health, 13% in HRS.

• 𝑅2 ≈ 2.3% for African-
ancestry individuals in 
Add Health, 1.3% in HRS.

→ Relative accuracies of 
15% and 11% 

Source: Wang et al. (2020)



LIMITATIONS & PITFALLS

Two sources of population stratification 

• In the discovery phase

• leads to bias in the GWAS estimates, so the PGI may give more weight to 
SNPs that just correspond to ancestry

• In the prediction phase 

• If the prediction sample is stratified, this can lead to bias in our PGI-based 
analyses even if SNP-weights are unbiased

• Interaction of bias in both phases

• The combination of these two interact so group differences are strongly 
exaggerated

→ Important to control for PCs in prediction analyses!



PGI Repository

Source: Becker et al. (2021)

v1.0 
• 47 phenotypes
• 11 cohorts

- Dunedin Multidisciplinary Health and 
Development Study

- English Longitudinal Study of Ageing 
(ELSA)

- Environmental Risk (E-Risk) 
Longitudinal Twin Study

- Estonian Biobank
- Health and Retirement Study
- Minnesota Center for Twin and 

Family Research (MCTFR)
- National Longitudinal Study of 

Adolescent to Adult Health
- Swedish Twin Registry
- Texas Twin Project
- UK Biobank
- Wisconsin Longitudinal Study

v2.0 (coming soon)
• 7 new cohorts, 21 new phenotypes
• Parental PGIs



QUESTIONS?
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PRACTICAL

• Clumping and thresholding PGI

• Obtaining the incremental-𝑅2

• Confidence intervals for incremental-𝑅2

• Plotting the results

https://ucsas.qualtrics.com/jfe/form/SV_0xO9zBVxPeJVWZ0

https://ucsas.qualtrics.com/jfe/form/SV_0xO9zBVxPeJVWZ0
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