Imputation

Sarah Medland

The 2023 International Statistical Genetics Workshop

Session Objectives

By the end of this session, if you stay awake, you might be able to:

Explain how you can use imputation

Gain familiarity with the tasks addressed within each step involved in imputation

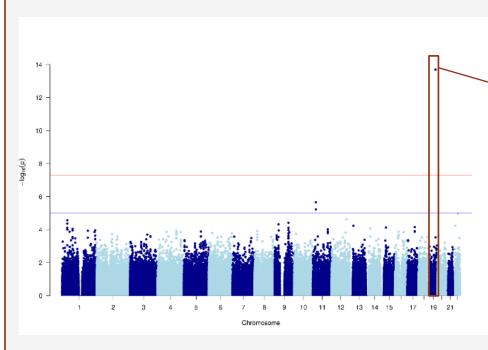
Identify the software commonly used for imputation

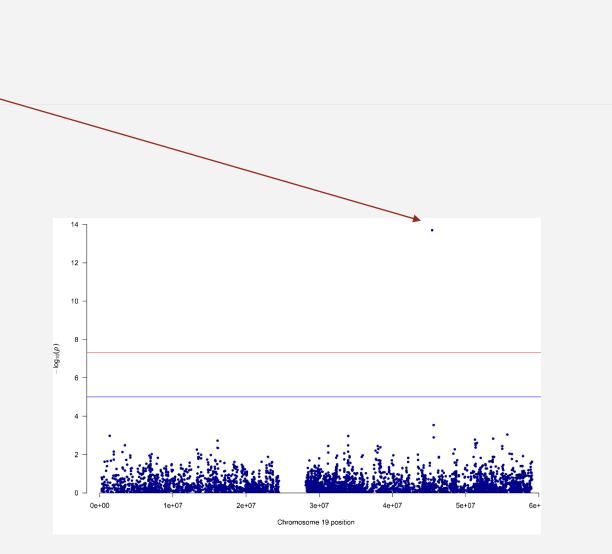
Summarize considerations when using in-house vs. online imputation

Evaluate imputation output and common metrics of imputation

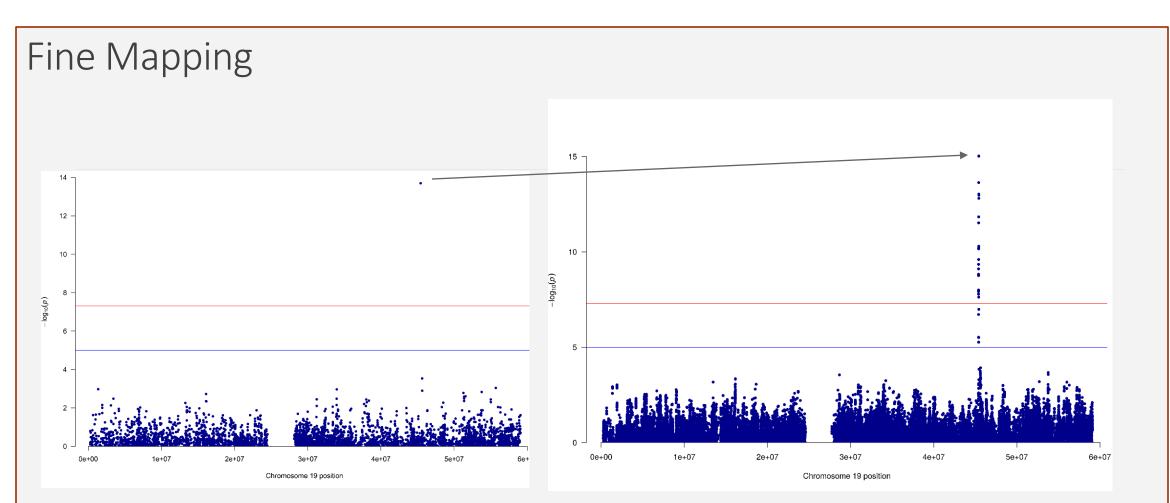
cp /faculty/sarah/Imputation/qualtrics.txt to your working directory

Open up the Qualtrics and start the imputation


Why do we impute?

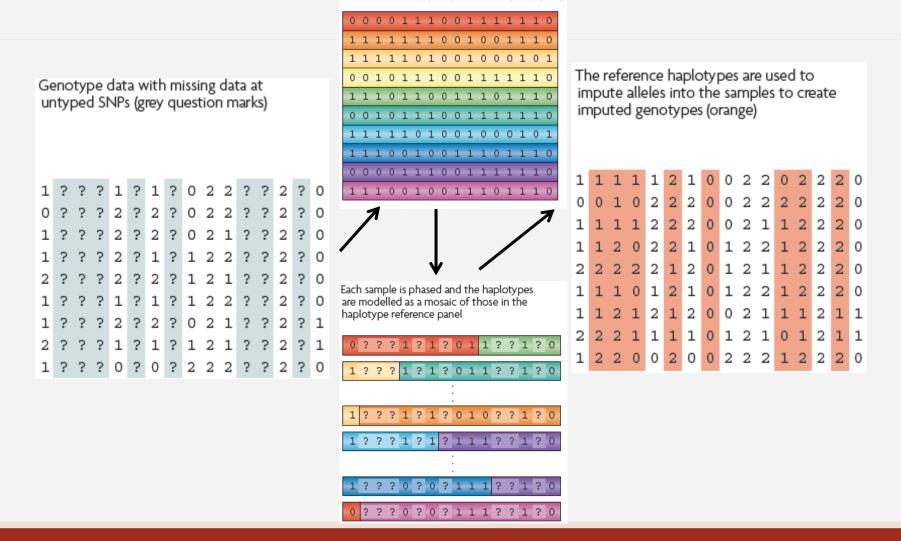

3 main reasons for imputation

- Meta-analysis
- Fine Mapping
- Combining data from different chips

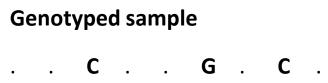

Other less common uses
Sporadic missing data imputation
Correction of genotyping errors
Imputation of non-SNP variation

GWAS using only genotyped SNPs

Fine Mapping

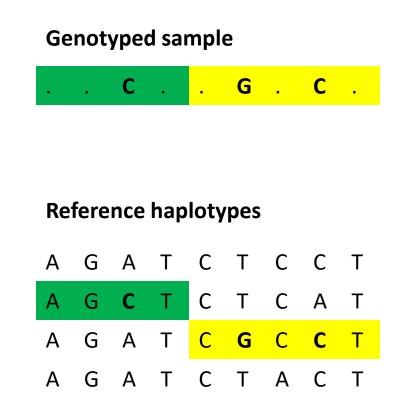


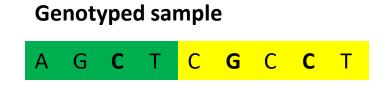
Genotyped only

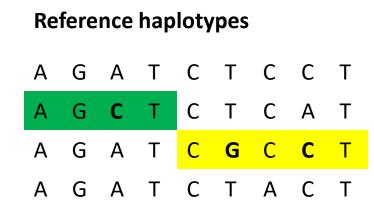

Post-Imputation

What is imputation? (Marchini & Howie 2010)

Reference set of haplotypes, for example, HapMap


1. Starting Data


Reference haplotypes


А	G	А	Т	С	Т	С	С	Т
А	G	С	Т	С	Т	С	А	Т
А	G	А	Т	С	G	С	С	Т
А	G	А	Т	С	Т	А	С	Т

2. Identify shared regions of chromosome

3. Fill in missing genotypes

Step 1 – QC & references

- **Current Publically Available References**
- HapMapII (no phased X data officially released) 2.4M SNPS
- HapMapIII 1.3M SNPS
- 1KGP phase 3 version v5 (X imputation references released after the autosomes)

Step 1 – QC & references

References only available via custom imputation servers

- HRC 64,976 haplotypes 39,235,157 SNPs
- CAPPA African American/Carabbean
- Multi-ethnic HLA
- Genome Asia Pilot GAsP
- TopMed 97,256 haplotypes 308,107,085 SNPs (b38)

Step 2 – Phase your data

In this context it is really Haplotype Estimation We take genotype data and try to reconstruct the haplotypes • Can use reference data to improve this estimation

> Heterozygous genotypes at 3 sites AC TG AT

The 4 possible consistent pairs of haplotypes

ATT ATA AGT AGA CGA CGT CTA CTT

Phasing in Eagle2 or Shapeit2

Hidden Markov Models are used to reconstruct haplotypes in the genotyped data

These are used to provide scaffolds for the imputation

Reference-based phasing using the Haplotype Reference Consortium panel

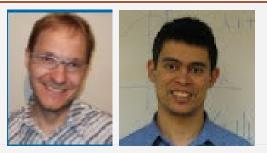
Po-Ru Loh ⊠, Petr Danecek, Pier Francesco Palamara, Christian Fuchsberger, Yakir A Reshef, Hilary K Finucane, Sebastian Schoenherr, Lukas Forer, Shane McCarthy, Goncalo R Abecasis, Richard Durbin & Alkes L Price ⊠

Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

Olivier Delaneau, Jonathan Marchini 🖂 & The 1000 Genomes Project Consortium

Nature Communications 5, Article number: 3934 (2014) Cite this article

Nature Genetics 48, 1443–1448 (2016) Cite this article


Step 3: Impute

Minimac4

Impute5

Positional Burrows Wheeler Transform (PBWT) Beagle never use plink for imputation!

Minimac4

https://github.com/statgen/Minimac4

Building on the work from Gonçalo Abecasis, Christian Fuchsberger and colleagues

Analysis options

- SAIGE
- BoltLMM
- o plink2

Next-generation genotype imputation service and methods

Sayantan Das, Lukas Forer, Sebastian Schönherr, Carlo Sidore, Adam E Locke, Alan Kwong, Scott I Vrieze, Emily Y Chew, Shawn Levy, Matt McGue, David Schlessinger, Dwight Stambolian, Po-Ru Loh, William G Iacono, Anand Swaroop, Laura J Scott, Francesco Cucca, Florian Kronenberg, Michael Boehnke, Gonçalo R Abecasis 🖾 & Christian Fuchsberger 🖂

Nature Genetics 48, 1284–1287 (2016) Cite this article 5242 Accesses 724 Citations 80 Altmetric Metrics

Impute5

https://jmarchini.org/software/#impute-5

Built by Jonathan Marchini and colleges

Incorporating Positional Burrows Wheeler Transform (PBWT)

Downstream analysis options

- BGENIE
- SNPtest
- Quicktest

PLOS GENETICS

🔓 OPEN ACCESS 度 PEER-REVIEWED

RESEARCH ARTICLE

Genotype imputation using the Positional Burrows Wheeler Transform

Simone Rubinacci, Olivier Delaneau, Jonathan Marchini 🖾

Version 2

Published: November 16, 2020 • https://doi.org/10.1371/journal.pgen.1009049

Issue – in house vs online imputation

Legal restrictions

- eg General Data Protection Regulation (GDRP)
 IRB/Ethics restrictions
- eg UK Biobank

Data sovereignty restrictions

• Study specific

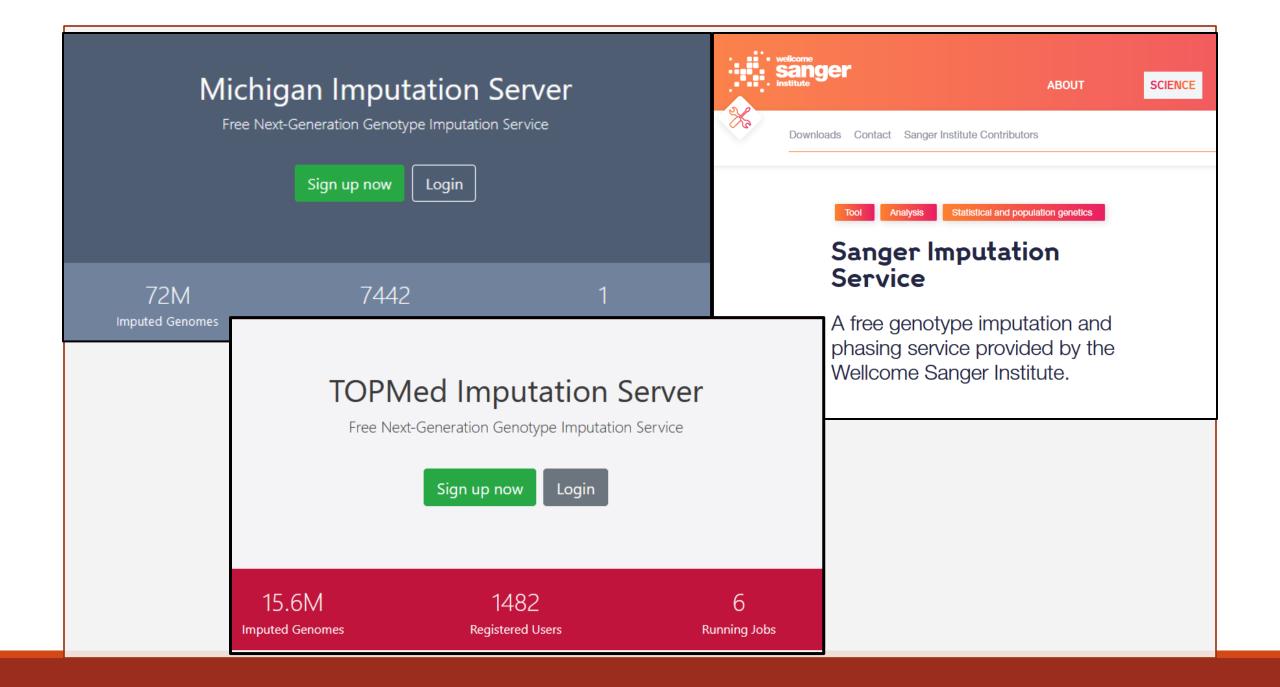
In house Options for imputation

Use a cookbook!

http://genome.sph.umich.edu/wiki/Minimac3_Imputation_Cookbook_OR http://genome.sph.umich.edu/wiki/IMPUTE2: 1000_Genomes_Imputation_ Cookbook

Use a container

- eg <u>https://github.com/HippocampusGirl/ImputationProtocol</u>
- Use with singularity or docker
- Enables you to run the imputation on a stand alone computer or local server
- You can think of this as a container that holds a pre-built environment with everything already set up for your task)


Online options for imputation UMich Imputation Server • https://imputationserver.sph.umich.edu/

Sanger Imputation Server

o <u>https://imputation.sanger.ac.uk/</u>

TOPMed Imputation Server

o <u>https://imputation.biodatacatalyst.nhlbi.nih.gov/</u>

On the Michigan Imputation Server Site - Great practical workshop sessions from ASHG 2020

https://imputations erver.readthedocs.io /en/latest/workshop s/ASHG2020/

Michigan Imputation Server Search docs Home **Getting Started** Data Preparation Reference Panels **Pipeline Overview** Security API Docker Create Reference Panels ASHG2020 Overview The Michigan Imputation Server

Workshop facilitator(s)

For questions:

Workshop description (from the program)

Intended Audience

Session 1: Imputation and the Server

Session 2: Run a job, Quality Control and Data Preparation

Session 3: Tracking runs and downloading data

Session 4: Performing GWAS

« Previous Next »

Docs » Workshops » ASHG2020 » Overview

Edit on genepi/imputationserver

Workshop ASHG2020

The Michigan Imputation Server

Data Preparation, Genotype Imputation, and Data Analysis

For questions:

- Please email us: mis-ashg2020@umich.edu
- Slack channel: Slack sign-up

Workshop facilitator(s)

- Christian Fuchsberger, christian.fuchsberger@eurac.edu (Eurac Research)
- Lukas Forer, lukas.forer@i-med.ac.at (Medical University of Innsbruck)
- Sarah Hanks, schanks@umich.edu (University of Michigan)
- Sebastian Schoenherr, sebastian.schoenherr@i-med.ac.at (Medical University of Innsbruck)
- Albert Smith, albertvs@umich.edu (University of Michigan)
- Cassie Spracklen, cspracklen@umass.edu (University of Massachusetts-Amherst)

Workshop description (from the program)

Genotype imputation is a key component of modern genetic studies. This interactive workshop is intended for anyone interested in learning how to use the Michigan Imputation Server (MIS; https://imputationserver.sph.umich.edu) to impute genotypes and how to use the imputed genotypes, with a special focus on up-coming reference panels, including the multi-ancestry panel from the TOPMed program. A brief overview of imputation and the server will be followed by demonstrations and exercises, including:

- 1. quality control and preparation of genetic data for use on the MIS with a special focus on diverse ancestries and chromosome X
- 2. tracking runs and use of the application program interface for larger jobs
- 3. downloading data from the MIS and preparing data for genetic analysis
- 4. performing a GWAS using imputed data and interpreting results, taking into account imputation

Preparing your data

- i. Exclude snps with excessive missingness (>5%), low MAF (<1%), HWE violations (~P<10⁻⁶), Mendelian errors
- ii. Drop strand ambiguous (palindromic) SNPs ie A/T or C/G snps
- iii. Update build and alignment (b37 vs b38)
- iv. Output your data in the expected format for the phasing program you will use

Check the naming convention for the program and reference you want to use

rs278405739 OR 22:395704

Michigan Imputation Se	rver Home Run≖ Jobs Help≖ Contact	💄 sarahme 🔫	
Michigan Impu			
Michigan Imputation Server pr	ovides a free genotype imputation service using Minimac3. You can upload phased or unpha in return. For all uploaded data sets an extensive QC is performed.	sed GWAS genotypes and receive	
Name	optional job name		
Reference Panel (Details)	1000G Phase 3 v5		
Input Files (VCF)	File Upload 🗸		
	Select Files Multiple files can be selected by using the cml / cmd of shift keys.		
Phasing	Eagle v2.3 (phased output)		
Population (for QC only)	EUR		
-	Quality Control & Imputation		
Mode			
	AES 256 encryption Imputation Server encrypts all zip files by default. Please note that AES encryption does not work with standard unzip programs. Use 7z instead.		
I will not attempt to re	-identify or contact research participants.		
I will report any inadve	rtent data release, security breach or other data management incident of which I become aw	vare.	
	Submit Job		

Output

3 main genotype output formats

• Hard call or best guess

- Dosage data (most common 1 number per SNP, 1-2)
- Probs format (probability of AA AB and BB genotypes for each SNP)

##filef	ormat=VCFv4.1													
##filed	##filedate=2015.7.12													
##sourc	##source=Minimac3													
##FORMA	##FORMAI= <id=gi,number=1,type=string,description="genotype"></id=gi,number=1,type=string,description="genotype">													
##FORMA	##FORMAT= <id=ds, description="Estimated Alternate Allele Dosage : [P(0/1)+2*P(1/1)]" number="1," type="Float,"></id=ds,>													
##FORMA	T= <id=gp,number=< td=""><td>-3, Type=Float,</td><td>Description</td><td>n="Estima</td><td>ted Poste</td><td>erior Pr</td><td>obabilities for Genotyp</td><td>es 0/0, 0</td><td>/1 and 1/1 "></td><td></td><td></td><td></td><td></td></id=gp,number=<>	-3, Type=Float,	Description	n="Estima	ted Poste	erior Pr	obabilities for Genotyp	es 0/0, 0	/1 and 1/1 ">					
##INFO⇒	<id=maf,number=1< td=""><td>,Type=Float,I</td><td>escription</td><td>="Estimat</td><td>ed Altern</td><td>nate All</td><td>ele Frequency"></td><td></td><td></td><td></td><td></td><td></td><td></td></id=maf,number=1<>	,Type=Float,I	escription	="Estimat	ed Altern	nate All	ele Frequency">							
##INFO=	##INFO= <id=r2,number=1,type=float,description="estimated accuracy"="" imputation=""></id=r2,number=1,type=float,description="estimated>													
##INFO= <id=er2,number=1,type=float,description="empirical (available="" (leave-one-out)="" for="" genotyped="" only="" r-square="" variants)"=""></id=er2,number=1,type=float,description="empirical>														
#CHROM	POS ID	REF ALT	QUAL	FILTER	INFO	FORMAT	A0001_A0001 A0003_	A0003	A0004_A0004	A0007_A0007	80008_8000A	A0009_A0009	A0010_	
10	27754636	10:27754636	С	G		PASS	MAF=0.00032;R2=0.81788	GT:DS:G	P 0/0:0	.000:1.000,0.00	0,0.000 0/0:	0.000:1.000,0.000,	,0.000	
10	27754678	10:27754678	G	A		PASS	MAF=0.00042;R2=0.77190	GT:DS:G	P 0/0:0	.000:1.000,0.00	0,0.000 0/0:	0.000:1.000,0.000,	,0.000	
10	27754849	10:27754849	С	G		PASS	MAF=0.00001;R2=0.00262	GT:DS:G	P 0/0:0	.000:1.000,0.00	0,0.000 0/0:	0.000:1.000,0.000,	,0.000	
10	27754857	10:27754857	Т	С		PASS	MAF=0.00120;R2=0.72916	GT:DS:G	P 0/0:0	0.000:1.000,0.00	0,0.000 0/0:	0.000:1.000,0.000,	,0.000	
10	27754954	10:27754954	Т	С		PASS	MAF=0.11410;R2=0.97841	GT:DS:G	P 1/1:2	2.000:0.000,0.00	0,1.000 1/1	2.000:0.000,0.000,	,1.000	
10	27755014	10:27755014	G	Т		PASS	MAF=0.00000;R2=0.00082	GT:DS:G		0.000:1.000,0.00	•	0.000:1.000,0.000,		
10	27755016	10:27755016	С	Т		PASS	MAF=0.00003;R2=0.01909	GT:DS:G	P 0/0:0	0.000:1.000,0.00	0,0.000 0/0:	0.000:1.000,0.000,	,0.000	
10	27755047	10:27755047	Т	С		PASS	MAF=0.02255;R2=0.87665	GT:DS:G	P 0/0:0	0.000:1.000,0.00	0,0.000 0/0:	0.000:1.000,0.000,	,0.000	
10	27755175	10:27755175	С	Т		PASS	MAF=0.00004;R2=0.13821			0.000:1.000,0.00	•	0.000:1.000,0.000,		
10	27755281	10:27755281	С	Т		PASS	MAF=0.00061;R2=0.86168	GT:DS:G	P 0/0:0	0.000:1.000,0.00	0,0.000 0/0	0.000:1.000,0.000,	,0.000	
10	27755330	10:27755330	A	G		PASS	MAF=0.00273;R2=0.90295	GT:DS:G	P 0/0:0	0.000:1.000,0.00	0,0.000 0/0:	0.000:1.000,0.000,	,0.000	
10	27755439	10:27755439	А	С		PASS	MAF=0.00000;R2=0.00138	GT:DS:G	P 0/0:0	.000:1.000,0.00	0,0.000 0/0:	0.000:1.000,0.000,	,0.000	
10	27755489	10:27755489	С	Α		PASS	MAF=0.00003;R2=0.39172	GT:DS:G	P 0/0:0	.000:1.000.0.00	0.0.000 0/0:	0.000:1.000.0.000.	.0.000	

Output Info files

	1:10583 1:10611 1:13302	c c	G T	0.79288 0.97889 0.86280	0.20712 0.02111 0.13720	0.97889 0.86280	-0.00000 0.00000 -0.00000	-	ed - -	LooRsq - -	EmpR - -	EmpRsq - - -	Dose1 - -	Dose2 -
	1:13327	G 	c	0.96042	0.03958	0.96042	-0.00000)	-	-	-	-	-	-
1:952071	82	Т	С	0.99547	0.00453	0.99547	0.10108	-	-	-	-	-	-	
1:952073	82	Т	Т	1.00000	0.00000	1.00000	0.00000	-	-	-	-	-	-	
1:952074	42	С	Т	0.62754	0.37246	0.99999	1.00507	Genotype	ed	0.98810	0.99822	0.99645	0.99484	0.00421
1:952075	24	G	А	0.78061	0.21939	1.00000	1.00511	Genotype	ed	1.00059	1.00000	1.00000	0.99924	0.00083
1:952075	32:TG_T	R	D	0.78620	0.21380	0.99441	0.97729	-	-	-	-	-	-	
1:952075	58	С	Т	0.99399	0.00601	0.99399	0.05165	-	-	-	-	-	-	
1:952076	33	Α	С	0.93366	0.06634	0.99998	1.00482	Genotype	d	0.94847	0.99901	0.99802	0.99621	0.00372
1:952078	46	G	Т	0.98937	0.01063	0.98942	0.31316	-	-	-	-	-	-	

Imputation quality evaluation

Minimac hides each of the genotyped SNPs in turn and then calculates 3 statistics:

- IooRSQ this is the estimated rsq for that SNP (as if SNP weren't typed).
- empR this is the empirical correlation between true and imputed genotypes for the SNP. If this is negative, the SNP alleles are probably flipped.
- empRSQ this is the actual R2 value, comparing imputed and true genotypes.
- These statistics can be found in the *.info file

Be aware that, unfortunately, imputation quality statistics are not directly comparable between different imputation programs (MaCH/minimac vs. Impute vs. Beagle etc.).

The r² metrics differ between imputation programs

The MACH \hat{r}^2 measure

This is the ratio of the empirically observed variance of the allele dosage to the expected binomial variance at Hardy-Weinberg equilibrium. At the jth SNP this is defined as

$${}_{j}^{2} = \begin{cases} \frac{\sum_{i=1}^{N} e_{ij}^{2} - \left(\sum_{i=1}^{N} e_{ij}\right)^{2}}{2\hat{\theta}(1-\hat{\theta})} & \text{when } \hat{\theta} \in (0,1) \\ 1 & \text{when } \hat{\theta} = 0, \hat{\theta} = 1 \end{cases}$$
(1)

When all the genotypes are predicted with high certainty this ratio will be close to 1, although it can go above 1 (Figure 1). As the amount of uncertainty increases the allele dosages will tend to 2θ , the empirical variance will tend to 0 and so \hat{r}^2 tends to 0.

The IMPUTE info measure *I*_A

This is based on measuring the relative statistical information about the population allele frequency, θ_j . If the G_{ij} 's were observed then the full data likelihood is given by

$$L(\theta_j) = \prod_{i=1}^{N} \theta_j^{G_{ij}} (1 - \theta_j)^{2 - G_{ij}}$$
(10)

For this likelihood the score and information are given by

$$U(\theta_j) = \frac{d \log L(\theta_j)}{d\theta_j} = \frac{X - 2N\theta_j}{\theta_j(1 - \theta_j)}$$
(11)

$$I(\theta_j) = \frac{-d^2 \log L(\theta_j)}{d\theta_j^2} = \frac{X}{\theta_j^2} + \frac{2N - X}{(1 - \theta_j)^2}$$
(12)

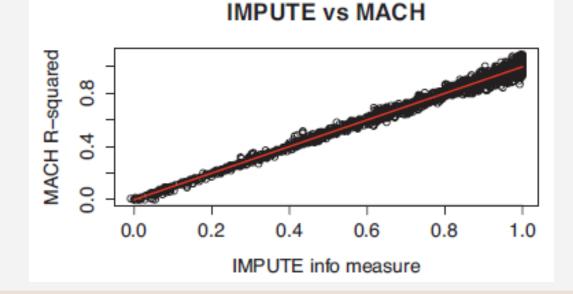
The IMPUTE info measure is based on the same idea used to calculate the SNPTEST information measure i.e. the ratio of the observed and complete information.

$$I_A = \frac{\mathbb{E}_{G,j}[I(\hat{\theta})] - V_G[U(\hat{\theta})]}{\mathbb{E}_{G,j}[I(\hat{\theta})]}$$
(13)

where the expectations are taken over the imputed genotype distribution and evaluated at the allele frequency estimate, $\hat{\theta}_j$. The exact terms are given by

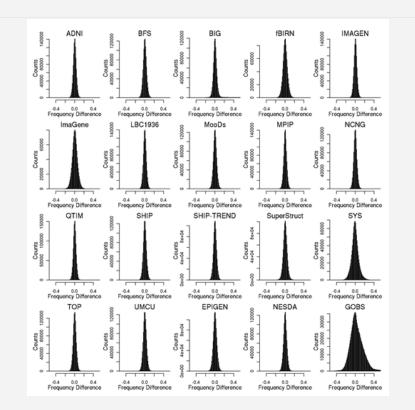
$$\mathcal{E}_{G,j}[I(\hat{\theta})] = \frac{2N}{\hat{\theta}(1-\hat{\theta})}$$
(14)

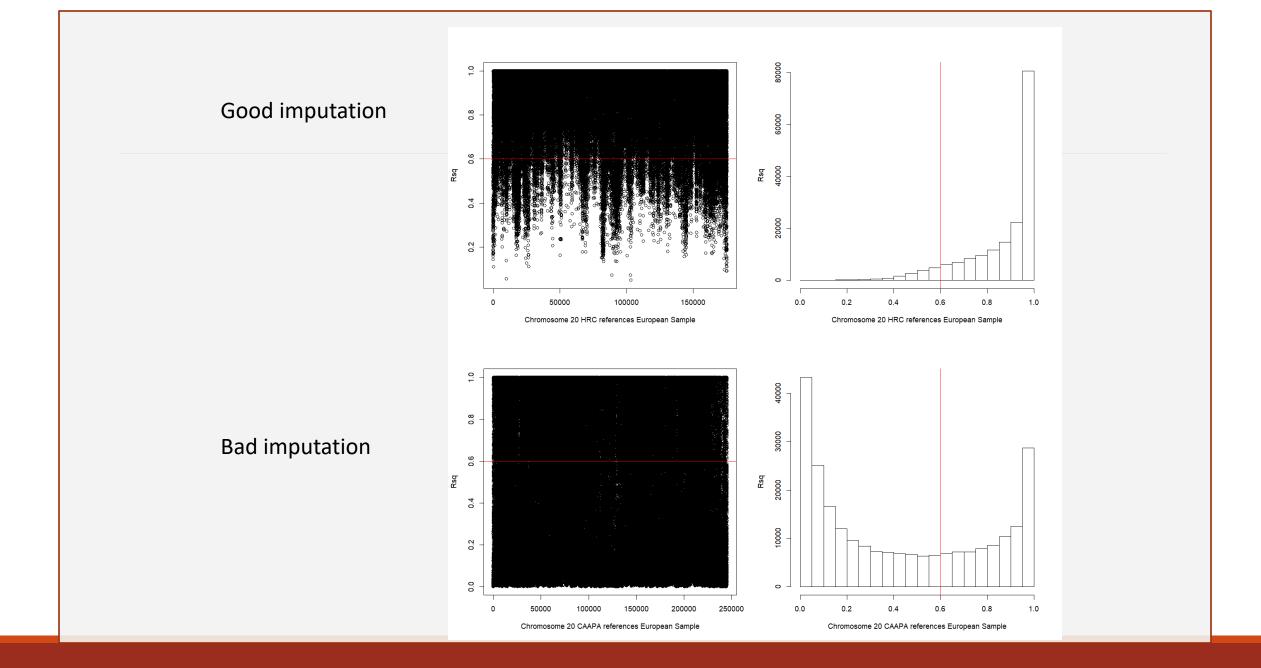
$$V_G[U(\hat{\theta})] = \frac{\sum_{i=1}^{N} (f_{ij} - e_{ij}^2)}{\hat{\theta}^2 (1 - \hat{\theta})^2}$$
(15)


so that

$$I_{A} = \begin{cases} 1 - \frac{\sum_{i=1}^{N} (f_{ij} - e_{ij}^{2})}{2N\hat{\theta}(1 - \hat{\theta})} & \text{when } \hat{\theta} \in (0, 1) \\ 1 & \text{when } \hat{\theta} = 0, \hat{\theta} = 1. \end{cases}$$
(16)

So I_A is bounded above at 1 and will equal 0 when the sample mean variance of the imputed genotypes equals the variance you would expect if alleles where sampled with frequency $\hat{\theta}$.


In general fairly close correlation


- rsq/ ProperInfo/ allelic Rsq
 - 1 = no uncertainty
 - 0 = complete uncertainty
 - .8 on 1000 individuals = amount of data at the SNP is equivalent to a set of perfectly observed genotype data in a sample size of 800 individuals

Post imputation QC

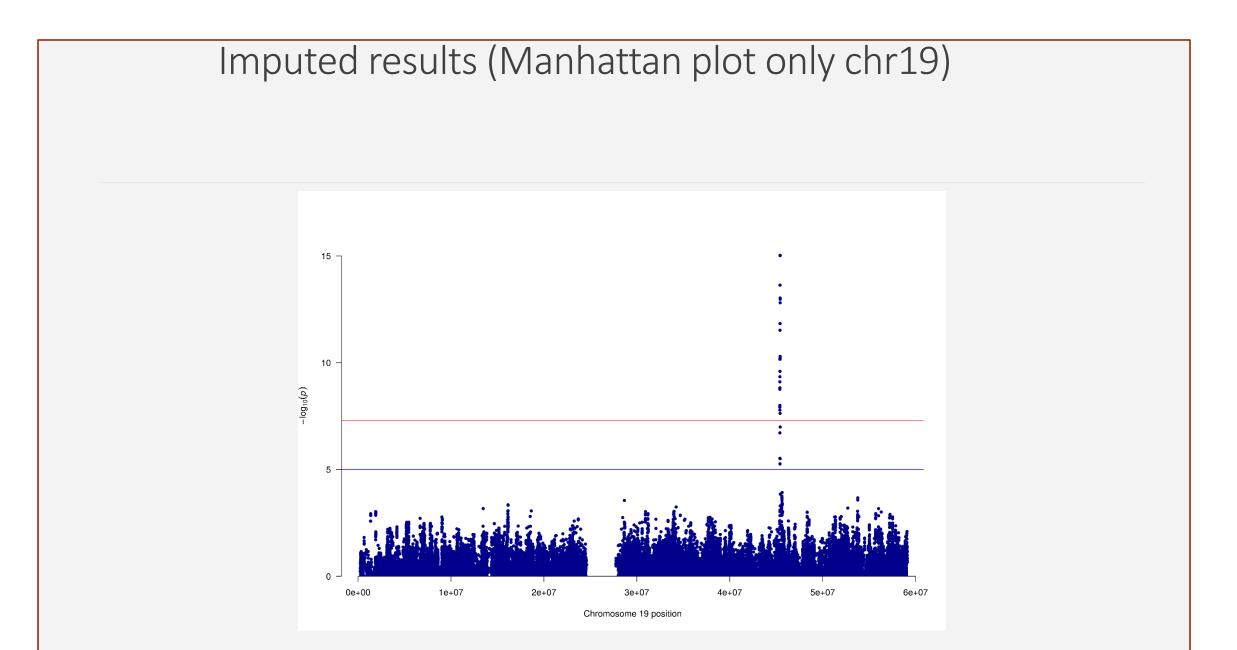
- After imputation you need to check that it worked and the data look ok
- Things to check
- Plot r² across each chromosome look to see where it drops off
- Plot MAF-reference MAF

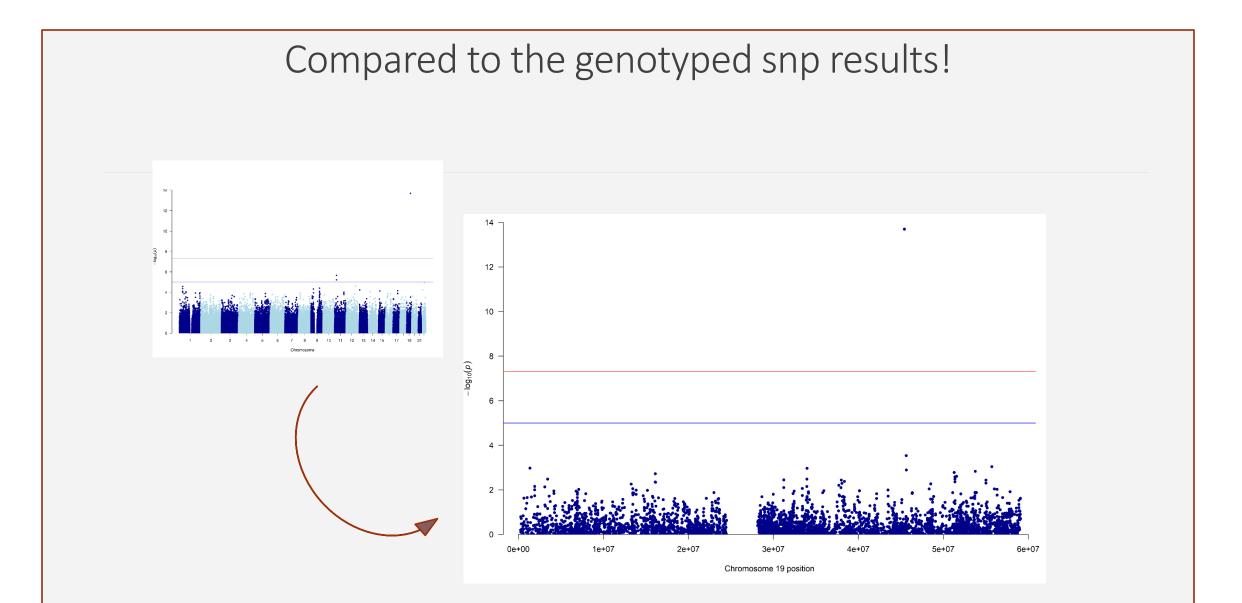
Post imputation QC

Next run GWAS for a trait – ideally continuous, calculate lambda and plot:

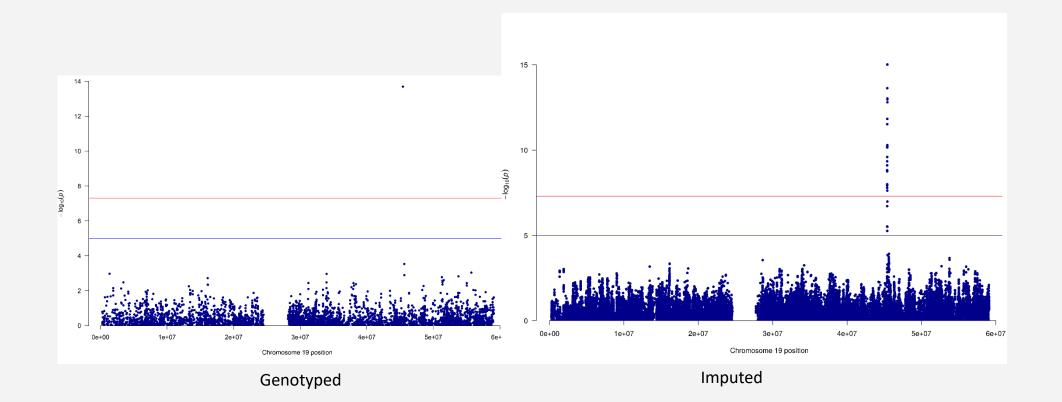
- ° QQ
- Manhattan
- SE vs N
- P vs Z

Run the same trait on the observed genotypes – plot imputed vs observed

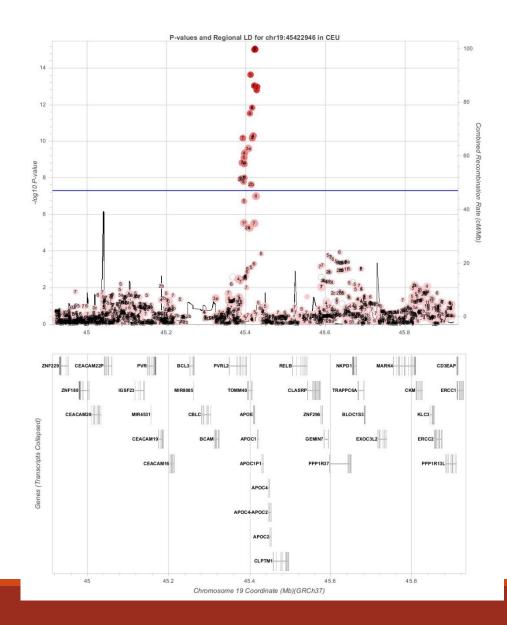

Last points

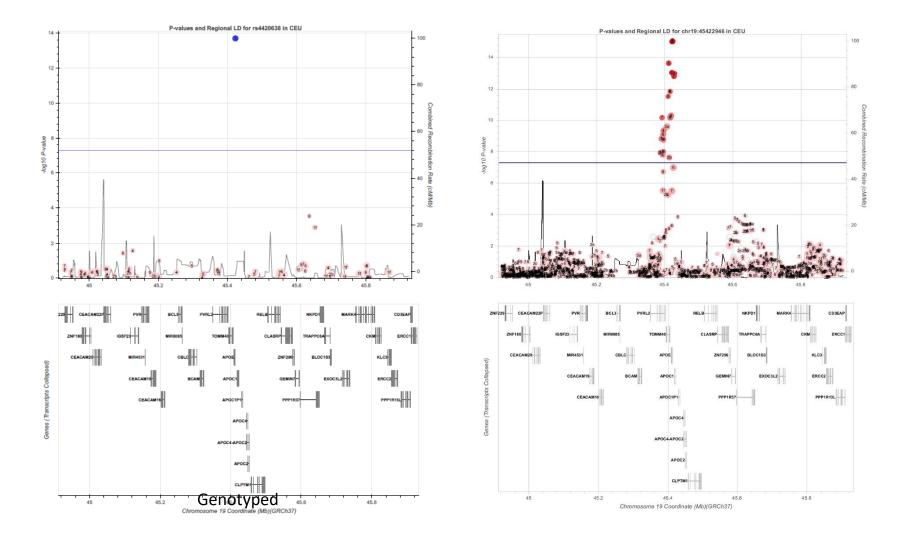

If you are running analyses for a consortium they will probably ask you to analyse all variants regardless of whether they pass QC or not...

(If you are setting up a meta-analysis consider allowing cohorts to ignore variants with MAF <.5% and low r2 - it will save you a lot of time)


Analysis of Imputed data using SAIGE

Back to qualtrics...




And Compare...

Imputed results (regional plot)

And Compare...

Questions