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Population Stratification
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Department of Psychiatry, Amsterdam UMC, University of Amsterdam
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Largest patterns of genetic variation = ancestry
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DNA Story for Abdel Abdellaoui
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88% of GWAS participants is of European descent

Number of
.= - people (m)

30°N

Oo

30°S

60°S

120°W 60°W 0° 60°E 120°E

Fig. 3 A Choropleth Map of the Concentration of GWAS Participant Recruitment. A choropleth map (Robinson projection) detailing the geographic
recruitment of GWAS participants. Source: NHGRI-EBI GWAS Catalog, Natural Earth (v4.0.0) and the CIA World Factbook. Replication material provides a
per-capita population adjusted version

6 A scientometric review of genome-wide association studies
(Mills & Rahal, 2019)



Population stratification

» Population stratification = a systematic difference in
allele frequencies between (sub)populations due to
different ancestry.

» Can cause false positives if the trait values also differ
between the (sub)populations.



Population stratification: chopstick example
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Population stratification: chopstick example

T eoroomios | [ vseorchopus |
e e ol e e e
320 640 320

 Allele 2 [N 80 160 | Allele 2 [JEPNY 20 340
800 640 40 680

There is a clear difference
between Americans and
Chinese in proportion of
“cases” and “controls”



Population stratification: chopstick example

Sample 1 Americans: =0, p=1 Sample 2 Chinese: x>=0, p=1

| | useofchopsticks | WMl | Useofchopsticks | |
--“ --“

320 640 320 340

| Allele 2 [N 80 160 | Allele 2 PN 20 340
400 400 380G 640 40 680

There is a clear allele
frequency difference
between Americans and
Chinese




Population stratification: chopstick example
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Population stratification: chopstick example
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Sample 1 + 2 = Americans + Chinese:
x?=34.2, p=4.9 x 107
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Dealing with population stratification in GWAS

Ways to deal with population stratification:
» Genomic Control (GC)

Principal Component Analysis

v

» Within Family Association

v

Mixed Linear Modeling

» Admixture Modeling

13



Dealing with population stratification in GWAS

Ways to deal with population stratification:
Genomic Control (GC)

v

——> This talk

v

Principal Component Analysis

» Within Family Association ——— Next session (Dorret Boomsma)

v

Mixed Linear Modeling —— Yesterday (Wei Zhou)

» Admixture Modeling —— Tomorrow (Poster Session:
Timothy Thornton)
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Dealing with population stratification in GWAS

Ways to deal with population stratification:

» Genomic Control (GC)
» Principal Component Analysis
» Within Family Association

nature
genetlcs

Variance component model to account for sample
structure in genome-wide association studies

Hyun Min Kang"?#, Jae Hoon Sul*#, Susan K Service?, Noah A Zaitlen®, Sit-yee Kong?, Nelson B Freimer?,
Chiara Sabatti® & Eleazar Eskin®7

nature
genetlcs

Advantages and pitfalls in the application of

mixed-model association methods

Jian Yang"?®, Noah A Zaitlen®3, Michael E Goddard*®, Peter M Visscher!->® & Alkes L Price®7?
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Genomic Control (GC)

» Population stratification can result in higher test statistics
(= lower p-values)

» The genomic control method estimates the factor with
which the test statistics are inflated due to population
stratification =2 A Fefore-anc-after adjustment for popuaton

» Dividing by A cancels this effect )
out for all SNPs:

Unadjusted: Ax?
Adjusted: x?

Observed %2

%2 Statistics

e Unadjusted
© Adjusted

I I I I I
5 10 15 20 25
Expected ¥*
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Genomic Control (GC)

» Ais measured by dividing the median of the distribution of the chi-
square statistics from the actual tests by the median of the chi-square
distribution under the null.

17



Genomic Control (GC)

» Ais measured by dividing the median of the distribution of the chi-

square statistics from the actual tests by the median of the chi-square
distribution under the null.

» Then, GC applies its correction by dividing the actual association test chi-

square statistic results by this A, thus making these results appropriately
more pessimistic.

18



Genomic Control (GC)

» Ais measured by dividing the median of the distribution of the chi-
square statistics from the actual tests by the median of the chi-square
distribution under the null.

» Then, GC applies its correction by dividing the actual association test chi-
square statistic results by this A, thus making these results appropriately
more pessimistic.

» GCis too conservative if the trait is highly polygenic (i.e. the median test
statistic does not represent the null distribution).

European Joumal of Human Genetics (2011) 19, 807-812
© 2011 Macmillan Publishers Limited All rights reserved 10184813/11

Genomic inflation factors under polygenic inheritance

me Lettre®, Karol Estrada®, Cristen ] Willer’,
i ngino'!, Reedik Migi'?,

y Martin'!, Grant W Montgomery"',
Timothy M Frayling?, Joel N Hirschhorn®!*15, Mark I McCarthy'>!¢, Michael E Goddard'?,

Peter M Visscher! and the GIANT Consortium

19



Genomic Control (GC)

» Ais measured by dividing the median of the distribution of the chi-
square statistics from the actual tests by the median of the chi-square
distribution under the null.

» Then, GC applies its correction by dividing the actual association test chi-
square statistic results by this A, thus making these results appropriately
more pessimistic.

» GCis too conservative if the trait is highly polygenic (i.e. the median test
statistic does not represent the null distribution).

» LD Score regression can be used ST
to estimate a more pOWEFfUl
anhd accurate correction factor Genomic inflation factors under polygenic inheritance
than GC — L“ \I\s\ .\"" el N Weedor v, 2, Shaun Purcell™, Guilla ¢ Lettre nl\in lth 1111\ \(12( 1 ) Willer
’ genet]_cs ll :h,A\:ll rayling?, lmlrx Hirschhorn® ";‘-'L—:‘. Ml;k“ll McCarthy'216, \\llmll l(k( li\i\ \'1 ha
Peter M Visscher! and the GIANT Consortium

LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies

Brendan K Bulik-Sullivan'-3, Po-Ru Loh "4, Hilary K Finucane*>, Stephan Ripke>3, Jian Yang®,
Schizophrenia Working Group of the Psychiatric Genomics Consortium’, Nick Patterson', Mark ] Daly'=3,
Alkes L Price’*® & Benjamin M Neale! 3

20
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Principal Component Analysis (PCA)



Principal Component Analysis (PCA)

» PCA is a statistical method for exploring large number of
measurements (e.g., SNPs) by reducing the measurements to
fewer principal components (PCs) that explain the main
patterns of variation:

The first PC is the mathematical combination of measurements that
accounts for the largest amount of variability in the data.

The second PC (uncorrelated with the first) accounts for the second
largest amount of variability.

Etc...
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nature
genetlcs

Principal components analysis corrects for stratification
in genome-wide association studies

Alkes L Price!?, Nick J Patterson?, Robert M Plengem, Michael E Weinblatt?, Nancy A Shadick® &
David Reich!?

Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can
cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population
stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences
between cases and controls. The resulting correction is specific to a candidate marker’s variation in frequency across ancestral
populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach
can easily be applied to disease studies with hundreds of thousands of markers.
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Principal Component Analysis (PCA)

CEPH/European
Yoruba

Han Chinese
Japanese
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Principal Component Analysis (PCA)
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Fine-scale genetic variation
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Fine-scale genetic variation reflects geography

PCs reflecting
ancestry differences
usually correlate with

o geography.
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Some caveats

PCA informs about population structures at different times,

depending on allele frequency (rare variant => more recent history)

Common
MAF > 0.05

Rare
MAC in {2,3,4}

Perpetual structure
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Rare variant stratification (i.e., more recent history) can be missed

| 3| ®

+eLife

Demographic history mediates the effect
of stratification on polygenic scores

Arslan A Zaidi*, lain Mathieson*



Some caveats

» PCA informs about population structures at different times,
depending on allele frequency (rare variant => more recent history)

» Rare variant stratification (i.e., more recent history) can be missed

» Effectiveness of PCA depends on sample size (large sample =>
better correction for stratification)

B GIANT B UKB
0.10
0.05
L)
o
8] 7
& 000 9 cLiFe
(=%
005 . Polygenic adaptation on height is
' overestimated due to uncorrected
stratification in genome-wide association
'I' studies
-0 - -k .. Mashaal Sohail#3'*, Robert M Maier®*5'*, Andrea Ganna®*%47,
Alex Bloemendal®**, Alicia R Martin®**, Michael C Turchin®?,
T3 5 7 9 11131517 19 1.3 5 7 9 11 1315 17 19 Charleston WK Chiang™, Joel Hir:d\horn‘” 12, Mark J Daly®*57,
PC Nick Patterson®'?, :Bir:jamin Neale®****, |ain Mathieson'**, David Reich®'*5#*,

Shamil R Sunyaev®*
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Some caveats

» PCA informs about population structures at different times,
depending on allele frequency (rare variant => more recent history)

» Rare variant stratification (i.e., more recent history) can be missed

» Effectiveness of PCA depends on sample size (large sample =>
better correction for stratification)

» PCA is not a magic ancestry-capturing method. It captures large
patterns of variation (so also quality differences or large regions of
LD)

30



Copy and unzip files needed for practical

» Open terminal: Applications Menu -> Terminal Emulator

» First run this in your terminal:

cp -r /home/abdel/PCA practical .
cd PCA practical

unzip dutch 1kG.zip

» command.txt contains all the remaining commands we are
going to run in the terminal (which are also on the slides
abdel pop_strat_boulder 2023.pdf)

31



Overview practical

» Analyses are based on the paper “Population Structure, Migration, and
Diversifying Selection in the Netherlands” (Abdellaoui et al, 2013)

Analyses:
» Run PCA on 1000 Genomes, and project PCs on Dutch individuals

Goal: identify Dutch individuals with non-European ancestry and exclude
» Run PCA on remaining Dutch individuals

Goal: obtain PCs reflecting Dutch ancestry differences

» Software used:
Eigenstrat ->
Plink ->
R->

32


http://genepath.med.harvard.edu/~reich/Software.htm
http://pngu.mgh.harvard.edu/~purcell/plink
http://www.r-project.org/

Description of the data

» Individuals:
171 Dutch individuals from the Netherlands Twin Registry (NTR)
221 from 1000 Genomes (Europeans, Africans, and Asians)

If you're interested in the 1000 Genomes dataset in plink format (~16
million SNPs): e-mail a.abdellaoui@amsterdamumec.nl

» SNPs:
113,164 SNPs (from Affy 6.0 chip)

Quality Control (done in Plink):
MAF > .05
HWE p > .001
SNP missingness < .05 (individual missingness < .02)
Excluded long-range LD regions
LD Pruned

33



Why exclude long-range LD regions?

» Elevated levels of LD can be Long-Range LD Can
overrepresented in PCs, Confound Genome Scans

deluding the genome-wide in Admixed Populations
patte rns that reflect the Table 1.. Correspondence be.tween Regions frum.Tangetal.

and Regions of Extended LD in European Populations

M SNP at Region Peak, Extended LD Region,
S u bt | e a n CeSt ry d Iffe re n Ces . Chromosome from Tang et al."  SNP Position from PCA Analysis

6 15169679 29.0 Mb 25.5-33.5 Mb
250 . 28 rs896760 113.5 Mb 112-115 Mb
o . 11 rs637249 56.0 Mb 46-57 Mb
200 - For each region reported to be under selection, we list the SNP defining the
. ; peak of this region as described in Tang et al,” the physical position of the

SMP, and the physical position of the corresponding region of extended LD

: from PCA analysis.[The other autosomal long-range LD regions identified by
2 H PCA analysis were chromosome 1: 48-52 Mb, 2: 86-100.5 Mb, 2: 134.5-
138 Mb, 2: 183-190 Mb, 3: 47.5-50 Mb, 3: 83.5-87 Mb, 3: 89-97.5 Mb,
5: 44,5-50.5 Mb, 5: 98-100.5 Mb, 5: 129-132 Mb, 5: 135.5-138.5 Mb, 6:
57-64 Mb, 6: 140-142.5 Mb, 7: 55-66 Mb, 8: 8-12 Mb, 8: 43-50 Mb, 10:
37-43 Mb, 11: 87.5-90.5 Mb, 12: 33-40 Mb, 12: 109.5-112 Mb, and
20: 32-34.5 Mb.

-log10{GC)

—Chn e Chr2 == Chr3 ©== Chrd wes Chr e ChrE s Chr7 ses Chri s== Chrd wes Chr10 s Chrl| wes Chr12 ses Chrl3 ses Chr1d ss= Chris
== Chrl § e Chrl 7w Chrl G wess Chr19 mess Chr2() wess Chr21 mes Chr22

GWAS on PC: PC reflects variation at chr8
inversion

The American Journal of Human Genetics 83, 127-147, July 2008
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Why exclude long-range LD regions?

» Elevated levels of LD can be Long-Range LD Can
overrepresented in PCs, Confound Genome Scans

deluding the genome-wide in Admixed Populations
patte rns that reflect the Table 1. Correspondence between Regions from Tang et al.

and Regions of Extended LD in European Populations
M SNP at Region Peak, Extended LD Region,
S u bt | e a n CeSt ry d Iffe re n Ces . Chromosome from Tang et al."  SNP Position from PCA Analysis
i _—>6 15169679 29.0 Mb 25.5-33.5 Mb
8

&0 ) rs896760 113.5 Mb 112-115 Mb
b . 11 rs637249 56.0 Mb 46-57 Mb
::Z i For each region reported to be under selection, we list the SNP defining the

peak of this region as described in Tang et al,” the physical position of the
SMP, and the physical position of the corresponding region of extended LD

§'QO from PCA analysis.|The other autosomal long-range LD regions identified by
= . PCA analysis were chromosome 1: 48-52 Mb, 2: 86-100.5 Mb, 2: 134.5-
e 138 Mb, 2: 183-190 Mb, 3: 47.5-50 Mb, 3: 83.5-87 Mb, 3: 89-97.5 Mb,
:Z . 5: 44,5-50.5 Mb, 5: 98-100.5 Mb, 5: 129-132 Mb, 5: 135.5-138.5 Mb, 6:
@ 57-64 Mb, 6: 140-142.5 Mb, 7: 55-66 Mb, 8: 8-12 Mb, 8: 43-50 Mb, 10:
an H 37-43 Mb, 11: 87.5-90.5 Mb, 12: 33-40 Mb, 12: 109.5-112 Mb, and

$ 20: 32-34.5 Mb.

o
m Chrl e Chr2 s Chrd £== Chrd s ChrS s Chrf e Chi7 s Chrg s Chrd s Chrl0 s Chrl| e Chrl2 s Chrl3 e Chrl 4

e TS s Y15 mm A1 7 e I8 e 19 s G20 e Chr21 e G122 The American Journal of Human Genetics 83, 127-147, July 2008

GWAS on PC: PC reflects variation at
MHC region (chr 6)
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Why also prune for LD?

» From EIGENSTRAT paper Principal components analysis
corrects for stratification in genome-wide association
studies (Price et al, 2006):

“Strong LD at a given locus which affects many markers could
result in an axis of variation which corresponds to genetic
variation specifically at that locus, rather than to genome-wide
ancestry. Nonetheless, we recommend inferring population
structure using all markers. This recommendation is based on
an analysis of HapMap data which suggests that these potential
problems will not affect results in practice.”
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Why also prune for LD?

» PCA was conducted on three sets of SNPs varying in LD on 1000 Genomes
populations and Dutch subjects separately

» PCs were identical for 1000 Genomes across the 3 SNP sets. For the Dutch dataset,

there were big differences:

Nr. of SNPs :

Correlations between PCs and
North-South gradient (N = 3363)

Correlations between PCs and

) A for GWASs on
East-West gradient (N =3363) :

- height including
SNP set used for PCA :
for PCA Pearson ) Pearson . ‘ the North-South
c Iati Difference test c Iati Difference test :
orrelation . Correlation :PC as a covariate
SNP set 1: All SNPs that passed QC 499,849 : ry, 1= 428 - ! Fpcg es= -205 - 1.03937
SNP set 2: SNP set 1 without the 487 672 .74 p=3.9*10% , _ 26 p=42*101°
24 long-range LD regions ' . pals (versus SNPset 1) @ "< (versus SNP set 1) : 1.03092
SNP set 3: SNP set 2 with genome- : p =1.9*%104 p =3.5%102%
130,248 © rpe; =588 Focs,c>=-36 1.02961

wide LD based SNP pruning

(versus SNP set 2)

(versus SNP set 2)

» Conclusion: minimizing LD is necessary for more homogeneous datasets (i.e.,
datasets with subjects from a single population)

37

Population Structure, Migration, and Diversifying Selection in the Netherlands

(Abdellaoui et al, 2013)



Files needed for EIGENSTRAT

» Input files: three files containing information about SNPs
and samples (.ped, .map, .fam)

» Parameter file: file containing parameters for the PCA

38



EIGENSTRAT input files are in plink format

» dutch 1kG.ped » dutch_1kG.bed

» dutch 1kG.map » dutch_1kG.bim
» dutch_1kG.fam

39



EIGENSTRAT input files are in plink format

- -
- -

:\’} dutch 1kG pe(_j_——:::h 4 dUtCh_lkG.bEd
5 —agﬁgﬁ“‘l‘ig('; n}{ép ) » dutch_1kG.bim

__—

EIGENSTRAT ﬁééds
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Values in the phenotype column (column 6) of
fam file:

P e e e e e e e S

/3 = Dutch individuals
4 = CEPH individuals

5= British individuals
! e g ~-> European

—— i — — — — —

6 = Finnish individuals

- o —— -

7 = Iberian (Spain)

_____________________________

-~

9 =Han Chinese in Beijing
10 = Han Chinese South  *-- Asian
i 11 = Japanese individuals

-

12 Luhya individuals ‘:

13 Yoruba individuals "> African

_______________________________



Parameter file (.par)

» The .par file will have the following lines:

genotypename: dutch_1kG.ped -> input genotype file

snpname: dutch_1kG.map -> input snp file

indivname: dutch_1kG.fam -> input individual file

evecoutname: dutch_1kG.evec -> output file of PCs

evaloutname: dutch_1kG.eval -> output file of all eigenvalues

numoutevec: 10 -> number of PCs to output

numoutlieriter: 0 -> maximum number of outlier removal iterations (O turns it off)

poplistname: poplist_1kG.txt -> file containing population value of individuals (If wishing
to infer PCs using only individuals from a subset of
populations, and then project to individuals from all other
populations; will be used to detect individuals of non-
European descent)

snpweightoutname: dutch_1kG.snpweight -> output file with SNP weightings of each PC

42



Parameter file (.par)

» Let’s make the .par file. Run the following commands:

echo
echo
echo
echo
echo
echo
echo
echo

echo

"genotypename: dutch 1kG.ped" >> dutch 1kG.par

"snpname: dutch 1kG.map" >> dutch 1lkG.par

"indivname: dutch 1kG.fam" >> dutch 1kG.par
"evecoutname: dutch 1kG.evec" >> dutch 1kG.par
"evaloutname: dutch 1kG.eval" >> dutch 1kG.par
"numoutevec: 10" >> dutch 1kG.par

"numoutlieriter: 0" >> dutch 1kG.par

"poplistname: poplist 1kG.txt" >> dutch 1kG.par
"snpwelightoutname: dutch 1kG.snpweight" >> dutch 1kG.par

» We need to make the poplistname file (poplist_1kG.txt), containing the population
values of the 1000 Genomes populations (4-13). Run the following command:

shopt -s xpg echo

echo

43

"4\n5\n6\n7\n8\n9%\n10\nl11\nl12\nl13" > poplist 1kG.txt



We're ready to run EIGENSTRAT

» Run this command:

smartpca —-p dutch 1lkG.par > dutch 1kG.log

44



Let’s look at the PCs in R

» First, let's make the file readable for R:
sed 's/:/ /g' dutch 1kG.evec > dutch 1kG.R.evec

» Run R script to make plot and identify outliers:
R CMD BATCH outliers.R

45



Let’s look at the PCs in R

» First, let's make the file readable for R:
sed 's/:/ /g' dutch 1kG.evec > dutch 1kG.R.evec

» Run R script to make plot and identify outliers:
R CMD BATCH outliers.R
» What does the R script do? (open outliers.R)
Read in EIGENSTRAT file /
Plot PC1 & PC2 )
Write 1Ds to file of Dutch s o S an Seans
individuals scoring higher

. Toacan maviuals
than maximum European
or lower than minimum -

0.05

0.00
|

* Han Chinese in Beijing

* Han Chinese South

= Japanese individuals
Yoruba individuals

* Luhya individuals

5

PC 1 (from 1000 Genomes)
-0.0

t
European scores on PC1 l l l ‘ l
or PC2 (to outliers.txt) e 2 (fom 1099 Genomes)
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PC 1 (from 1000 Genomes)

ldentifying Dutch with non-European ancestry

» PCs were calculated using a set of 1014 unrelated individuals from 1000
Genomes, and were then projected on ~7500 Dutch individuals.

» 258 individuals were excluded. Parental birth place was available for 132 of
these individuals, of which 55.3% had at least one parent born outside of
the Netherlands (as opposed to 4% of the rest of the individuals).
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PC 2 (from 1000 Genomes)
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PC 1 (from 1000 Genomes)
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PC 2 (from 1000 Genomes)

0.04
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Luhya individuals

HapMap African ancestry individuals from SW US
Iberian populations in Spain

Toscan individuals
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British individuals from England and Scotland
HapMap Finnish individuals from Finland
Colombian in Medellin, Colombia

HapMap Mexican individuals from LA California
Puerto Rican in Puerto Rico
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Han Chinese in Beijing

Han Chinese South

1000 Genomes
Dutch
Dutch (outlier)

Population Structure, Migration, and Diversifying Selection in the Netherlands

(Abdellaoui et al, 2013)



PC 3 (from 1000 Genomes)

ldentifying Dutch with non-European ancestry

» PCs were calculated using a set of 1014 unrelated individuals from 1000
Genomes, and were then projected on ~7500 Dutch individuals.

» 258 individuals were excluded. Parental birth place was available for 132 of
these individuals, of which 55.3% had at least one parent born outside of
the Netherlands (as opposed to 4% of the rest of the individuals).
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PC 4 (from 1000 Genomes)
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PC 3 (from 1000 Genomes)
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PC 5 (from 1000 Genomes)

ldentifying Dutch with non-European ancestry

» PCs were calculated using a set of 1014 unrelated individuals from 1000
Genomes, and were then projected on ~7500 Dutch individuals.

» 258 individuals were excluded. Parental birth place was available for 132 of
these individuals, of which 55.3% had at least one parent born outside of
the Netherlands (as opposed to 4% of the rest of the individuals).
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Exclude Dutch individuals with non-European
ancestry and 1000 Genomes

awk '$6>3{print $1,$2}' dutch 1kG.fam > 1kG.ids

cat outliers.txt 1kG.ids > remove outliers.ids

plink --bfile dutch 1kG --remove remove outliers.ids --make-bed --out dutch

plink --bfile dutch --recode --out dutch
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Parameter file (.par)

» Let’s make the .par file. Run the following commands:
echo "genotypename: dutch.ped" >> dutch.par
echo "snpname: dutch.map" >> dutch.par

echo "indivname: dutch.fam" >> dutch.par

echo "evecoutname: dutch.evec" >> dutch.par
echo "evaloutname: dutch.eval" >> dutch.par
echo "numoutevec: 10" >> dutch.par

echo "numoutlieriter: 0" >> dutch.par

echo "poplistname: poplist NL.txt" >> dutch.par

echo "snpweightoutname: dutch.snpweight" >> dutch.par

» We also need to make the poplistname file (poplist_NL.txt). Run the following
command:

echo "3" > poplist NL.txt
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We're ready to run the 2nd round of
EIGENSTRAT!

» Run this command:

smartpca —-p dutch.par > dutch.log
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Let’s plot the first two PCs in R

» First, let's make the file readable for R:
sed 's/:/ /g' dutch.evec > dutch.R.evec

» Run R script to make plot :
R CMD BATCH plot NL.R
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Let’s plot the first two PCs in R

» First, let's make the file readable for R:
sed 's/:/ /g' dutch.evec > dutch.R.evec

» Run R script to make plot :
R CMD BATCH plot NL.R

I
G O

» What does the R script do? (open plot_NL.R) @//4/
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PC1

Same plot, with N=4,441
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PC1, PC2, and PC3

» The color of the dots represent the mean PC value per postal
code (based on current living address of the 4,441 subjects).

PC2 PC3
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PC1 (N=4,441)

e » Correlates .656 with European
North-South PC.

» Serial founder effect? (correlation
with F: .245)

» Spouse correlation =.555
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Serial founder effect: heterozygosity decreases (F increases) as
you move away from Addis Ababa, Ethopia

Worldwide Human Relationships

Inferred from Genome-Wide
Patterns of Variation

Jun Z. Li,***t Devin M. Absher,“** Hua Tang," Audrey M. Southwick,™* Amanda M. Casto,*
Sohini Ramachandran,® Howard M. Cann,® Gregory S. Barsh,’ Marcus Feldman,*t

Luigi L. Cavalli-Sforza,*t Richard M. Myers®?

w

Mean Haplotype Heterozygosity
045 050 055 060 065 070 0.75

L ] .

slope: =1.144e-05
r: =0,91

e Africa
= Europe

* MiddleEast
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* Oceania
* America
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We compared SNP haplotype heterozygosity
across populations and found, consistent with
earlier reports (22), that it 1s highest in sub-
Saharan Africa and decreases steadily with
distance from this region (Fig. 3B). The mean
heterozygosity across autosomal haplotypes
(using 295 haplotype blocks in Chrl6) (/4) 1s
negatively correlated with distance from Addis
Ababa, Ethiopia (5, 23), with a correlation co-
efficient 7 of —0.91 and a slope of —1.1 x 10> per
km (Fig. 3B). This trend 1s consistent with a serial
founder effect, a scenario in which population
expansion involves successive migration of a
small fraction of individuals out of the previous
location, starting from a single origin in sub-
Saharan Africa.

22 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org

» Genome-wide homozygosity (F) can be computed in plink with --het
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Height

» Northern Dutch are known to be taller on average than the
Dutch from the Southern parts of the Netherlands. Also
within Europe, Northern Europeans are taller on average
than Southern Europeans.

» In our sample, height does not correlate very high with the
North-South gradient of the current living address:

males: r =.055, p =.032; females: r =.066, p = .001

» Height however correlates higher and more significantly
with the North-South PC:

males: r=.178, p = 3x101%; females: r =.166, p = 1x1018
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PC1 (N=4,441)

e » Correlates .656 with European
North-South PC.

» Serial founder effect? (correlation
with F: .245)

» Spouse correlation =.555
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Religion in the Netherlands

» The Netherlands had a long history (>400 years) of societal segregation and
assortment based on religious affiliation.

Spouse correlation for religion in current dataset =.728 (p < .001)

» This may have increased parental relatedness among religious people.

e Catholic * Protestant Not Religious

T ¢

b}
8

® o ° 0o o
2 OO~NOOOEWN =

Current NTR 3{:4. Genotyped *33,,
dataset (N=25,450) dataset (N=6,367) =~
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PC2 (N=4,441)
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PC3 (N=4,441)

. p— » Was only observed with minimized LD

PC3 » Spouse correlation =.174
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PC3 (N=4,441)
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Natural selection vs genetic drift

» The 1000 individuals with the lowest PC score were compared with the 1000
individuals with the highest PC score

» Using the 500 000 SNPs it is estimated what the expected divergence is under
genetic drift

» For each SNP we then compute whether the divergence is significantly greater than
expected under genetic drift (i.e., whether they are under selection)
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Using PCs and F, to identify loci under selection

4

Bayescan 2.1 was used to calculate F_, values for all SNPs and
identify outliers with a Bayesian approach

F..'s were computed between top 1000 and bottom 1000
individuals for each ancestry-informative PC

Total population

Subpopulation 1 Subpopulation 2
® e * o
L] » |
® o0
L]

Subpopulati_dn 1= Suﬁpopulation 2
F_.=0
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Using PCs and F to identify loci under selection

» Bayescan 2.1 was used to calculate F values for all SNPs and
identify outliers with a Bayesian approach

» F.'s were computed between top 1000 and bottom 1000
individuals for each ancestry-informative PC
» F is then decomposed into 2 components:
population-specific component (B), shared by all loci
locus-specific component (a), shared by both populations
» If ais significantly different from 0, the locus may have been
under selection:
a > 0 = diversifying selection
a < 0 = balancing selection (power to detect this is weak)

» Significance is based on FDR corrected g-value (< .05)
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Using PCs and F, to identify loci under selection: results

» 499,849 SNPs in total (51.4% within genes):
PC1 (North-South): 273 significant SNPs (59% within 88 genes)
PC2 (East-West): 172 significant SNPs (58.1% within 55 genes)
PC3 (Middle-Band): 100 significant SNPs (75% within 41 genes)

» Several of the genes with significant SNPs have been observed
to be strongly differentiated within Europe in previous studies:

LCT (PC1), HERC2 (PC1), CADPS (PC1), IRF1 (PC1), SLC44A5 (PC1),
R3HDM1 (PC1), ACOXL (PC3), and BTBD9 (PC3)
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HERC2 & eye color

» Highest F observed in PC1 for SNP in HERC2 gene (rs8039195).
Strongly associated with eye color in several GWASs (p = 7.8 x 10-112
in current dataset).
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HERC2 & eye color

» Highest F observed in PC1 for SNP in HERC2 gene (rs8039195).
Strongly associated with eye color in several GWASs (p = 7.8 x 10-112
in current dataset).

2 Fst’S were calculated for 3495 SNPs in Population rs8039195 (HERC2)

cc cT T
and around HERC2 between Northern — TR T ETY
European populations (British and NorthernDutch .4 131 865
.. British 1.2 21.4 77.4
Finnish) and Southern European SouthernDutch 23 238 737
populations (Iberian and Toscan) from  'berian 0 500 500
Toscan 16.8 42.1 41.1

1000 Genomes.
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HERC2 & eye color

» Highest F observed in PC1 for SNP in HERC2 gene (rs8039195).
Strongly associated with eye color in several GWASs (p = 7.8 x 10-112
in current dataset).

2 Fst’S were calculated for 3495 SNPs in Population rs8039195 (HERC2)
and around HERC2 between Northern —— T —
European populations (British and NorthernDutch .4 131 865

. . British 1.2 21.4 77.4
Finnish) and Southern European SouthernDutch 23 239 737
populations (Iberian and Toscan) from  'berian 0 500 500
1000 Genomes Toscan 16.8 42.1 41.1

» Of the SNPs genotyped in the Dutch, rs8039195 had the highest F...
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HERC2 & eye color

<

Highest F , observed in PC1 for SNP in HERC2 gene (rs8039195).
Strongly associated with eye color in several GWASs (p = 7.8 x 10-112
in current dataset).

Fst’S were calculated for 3495 SNPs in Population rs8039195 (HERC2)
and around HERC2 between Northern —— T
European populations (British and NorthernDutch 4 131 865

. . British 1.2 21.4 77.4
Finnish) and Southern European SouthernDutch 23 238 737
populations (Iberian and Toscan) from  'berian 0 500 500

Toscan 16.8 42.1 41.1

1000 Genomes.
Of the SNPs genotyped in the Dutch, rs8039195 had the highest F..

Of all 3495 SNPs, highest F, was observed for rs12913832 (LD with
rs8039195: r? = .394, D’ = .993), the SNP with the largest effect on
human blue/brown eye color.
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ARTICLE

A Single SNP in an Evolutionary Conserved Region
within Intron 86 of the HERC2 Gene
Determines Human Blue-Brown Eye Color

Richard A. Sturm,!3 David L. Dufty,23 Zhen Zhen Zhao,? Fabio P.N. Leite,2 Mitchell S. Stark,?
Nicholas K. Hayward,? Nicholas G. Martin,? and Grant W. Montgomery2*

We have previously demonstrated that haplotypes of three single nucleotide polymorphisms (SNPs) within the firstintron of the OCA2
gene are extremely strongly associated with variation in human eye color. In the present work, we describe additional fine association
mapping of eye color SNPs in the intergenic region upstream of OCA2 and within the neighboring HERCZ2 (hectdomain and RLD2) gene.
We screened an additional 92 SNPs in 300-3000 European individuals and found that a single SNP in intron 86 of HERC2, 1512913832,
predicted eye color significantly better (ordinal logistic regression R* = 0.68, association LOD = 444) than our previous best OCA2 hap-
lotype. Comparison of sequence alignments of multiple species showed that this SNP lies in the center of a short highly conserved
sequence and that the blue-eye-associated allele (frequency 78%) breaks up this conserved sequence, part of which forms a consensus
binding site for the helicase-like transcription factor (HLTF). We were also able to demonstrate the OCA2 R419Q), rs1800407, coding SNP
acts as a penetrance modifier of this new HERCZ SNP for eye color, and somewhat independently, of melanoma risk. We conclude that
the conserved region amundrepresents aregulatory region controlling constitutive expression of OCAZ2 and that the C allele
atleads to decreased expression of OCA2, particularly within iris melanocytes, which we postulate to be the ultimate cause of
blue eye color.

ESEARCH

HERC2|rs12913832/modulates human pigmentation by attenuating
chromatin-loop formation between a long-range enhancer and the
OCA2 promoter

Mijke Visser, Manfred Kayser and Robert-Jan Palstra

Genome Res. 2012 22: 446-455 originally published online January 10, 2012
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Using PCs and F, to identify loci under selection: results

» Other notable genes include:
FTO (PC1): has been associated with BMI and obesity many times.

gILEEY
EIEEEY
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Using PCs and F, to identify loci under selection: results

» Other notable genes include:

FTO (PC1): has been associated with BMI and obesity many times.
LCT (PC1): influences the ability to digest lactose into adulthood.

Worldwide prevalence of lactose intolerance
in recent populations

-so-ums
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Using PCs and F, to identify loci under selection: results

» Other notable genes include:
» FTO (PC1): has been associated with BMI and obesity many times.
» LCT (PC1): influences the ability to digest lactose into adulthood.

100% milk

.

‘ 0% milk

Nature | Vol 608 | 11 August 2022

Aftk]e Fig.2|Regional variationin milk usein prehistoric Europe. Interpolated beginning of the Neolithic period illustrates a sampling bias towards earliest
D . . d. d h l . f timeslices of the frequency of dairy fatresidues in potsherds (colour hue) and evidence of milk use. Substantial heterogeneity in milk exploitationis evident
se t t confidence inthe estimate (colour saturation) using two-dimensional kernel across mainland Europe. By contrast, the BritishIsles and western France
alrylng’ lsea S an e evo u lon 0 density estimation. Bandwidth and saturation parameters were optimized maintainagradual declineacross 7,000 years after first evidence of milk about

I ct H t H E using cross-validation. Circles indicate the observed frequencies atsite-phase 5500 Bc. Note thatinterpolation can colour someareas (particularly islands)

a ase perSIS en Ce In urope locations. The broad southeast to northeast cline of colour saturationat the for which no dataare present.
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Using PCs and F, to identify loci under selection: results

» Other notable genes include:
» FTO (PC1): has been associated with BMI and obesity many times.
» LCT (PC1): influences the ability to digest lactose into adulthood.

» HCP5 (HLA Complex P5 gene) from the MHC region. One of two genes
that appear in multiple PCs (PC1 & PC2), and plays a role in the immune
system. Strong divergence of genes from the HLA complex has been
observed in many human populations. Other immunity-related genes
that showed significant signals of selection in this study as well as
previous studies are: IRF1 (PC1), ACE (PC1), LRRC4C (PC2), PLCL1 (PC3),
and HSPD1 (PC3).

Virus
Aging £
Cancer e

Flu *
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Using PCs and F, to identify loci under selection: results

» Other notable genes include:
» FTO (PC1): has been associated with BMI and obesity many times.
» LCT (PC1): influences the ability to digest lactose into adulthood.

» HCP5 (HLA Complex P5 gene) from the MHC region. One of two genes
that appear in multiple PCs (PC1 & PC2), and plays a role in the immune
system. Strong divergence of genes from the HLA complex has been
observed in many human populations. Other immunity-related genes
that showed significant signals of selection in this study as well as
previous studies are: IRF1 (PC1), ACE (PC1), LRRC4C (PC2), PLCL1 (PC3),
and HSPD1 (PC3).

Bayescan can be found here: http://cmpg.unibe.ch/software/bayescan/
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http://cmpg.unibe.ch/software/bayescan/

Converting plink files to Bayescan format with
the script convert_to bayescan.pl

_________________ » dutch.bed
» dutchtped 5 <) dutch.bim
—————————— """""“-::__\\ \‘ /—7‘-——__________________——
<) dutch.tfam > "% dutch.fam

convert_to bayescan.pl needs

- The populations you want to compare have to be coded as 1 and 2 in the
phenotype column (6th column) of the .tfam file.

- Use --pheno to update phenotypes :

Usage:
perl convert to bayescan.pl dutch dutch outputfile
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Geographic Distribution of Ancestry in
UK Biobank
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Moran’s |

A measure of spatial autocorrelation

Moran’s =1 Moran’s =0 Moran’s [ =-1

Positive spatial No spatial Negative spatial
autocorrelation autocorrelation autocorrelation
Clustered Spatially random Dispersed

together
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Ancestry differences in Great Britain

» Local authorities (378 areas) — evenly spaced cut-offs

PC1 PC2

Moran’s I =.77 Moran’s [ = .83 Moran’s [ = .58 Moran’s | = .84 Moran’s | =.93
p <104 p<10* p <10* p<10* p <104

83 Genetic Correlates of Social Stratification in Great Britain (Abdellaoui et al, 2019)



Ancestry differences in Great Britain

» MSOA: 8,436 areas — evenly spaced cut-offs

PC1 PC2 PC3 PC4

~s
A

Moran’s I =.77 Moran’s [ = .83 Moran’s [ = .58 Moran’s | = .84 Moran’s | =.93
p <104 p<10* p <10* p<10* p <104
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Ancestry differences in Great Britain

» MSOA: 8,436 areas — class-interval cut-offs

PC1 PC2 PC3 PC4 PC5

Moran’s I =.77 Moran’s [ = .83 Moran’s [ = .58 Moran’s | = .84 Moran’s | =.93
p <104 p<10* p <10* p<10* p <10*
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Ancestry differences in Great Britain

Moran’s [ =.70 Moran’s [ = .78 Moran’s [ = .61 Moran’s | = .61 Moran’s | = .43
p <104 p<10* p <10* p<10* p <104
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Ancestry differences in Great Britain

PCé6 PC7 PC8 ' PC9 PC10
I g 4 _k"
! t

i B “
Moran’s I =.70 Moran’s [ =.78 Moran’s | = .61 Moran’s | = .61 Moran’s | = .43
p<10* p<10* p<10* p <104 p <104
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Ancestry differences in Great Britain

» MSOA: 8,436 areas — class-interval cut-offs

PCé6 PC7 PC8 PC9 PC10

Moran’s [ =.70 Moran’s [ = .78 Moran’s [ = .61 Moran’s | = .61 Moran’s | = .43
p <104 p<10* p <10* p<10* p <10*

88 Genetic Correlates of Social Stratification in Great Britain (Abdellaoui et al, 2019)



Ancestry differences in Great Britain

08

Moran’s | =.57 Moran’s | = .60 Moran’s | =.50 Moran’s | = .47 Moran’s | = .49
p <104 p<10* p <10* p<10* p <104
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Ancestry differences in Great Britain

» MSOA: 8,436 areas — evenly spaced cut-offs

PC11 PC12 PC13 PC14 PC15
¥ i i ¥ ‘a
1

Moran’s | = .57 Moran’s | = .60 Moran’s | =.50 Moran’s | = .47 Moran’s | = .49
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Ancestry differences in Great Britain

» MSOA: 8,436 areas — class-interval cut-offs

PC11 PC12 PC13 PC14 PC15
& 1'! 3 4 3 L’f 3

Moran’s | =.57 Moran’s | = .60 Moran’s | =.50 Moran’s | = .47 Moran’s | = .49
p <104 p<10* p <10* p<10* p <10*

91 Genetic Correlates of Social Stratification in Great Britain (Abdellaoui et al, 2019)



Ancestry differences in Great Britain

» Local authorities: 378 areas — evenly spaced cut-offs

Moran’s | = .30
p<10*

PC17

Moran’s [ = .10
p =.002

PC18 PC19

Moran’s [ =.53 Moran’s | =.25 Moran’s | = .56
p <10* p <104 p <104

Genetic Correlates of Social Stratification in Great Britain (Abdellaoui et al, 2019)

00



Ancestry differences in Great Britain

» MSOA: 8,436 areas — evenly spaced cut-offs
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Ancestry differences in Great Britain

» MSOA: 8,436 areas — class-interval cut-offs
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Ancestry differences in Great Britain
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Ancestry differences in Great Britain

» MSOA: 8,436 areas — evenly spaced cut-offs
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Ancestry differences in Great Britain

» MSOA: 8,436 areas — class-interval cut-offs
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Ancestry differences in Great Britain

» Polygenic scores, before and after regressing out 100 PCs
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Ancestry differences in Great Britain

» Polygenic scores, before and after regressing out 100 PCs
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Ancestry differences in Great Britain

» Polygenic scores, before and after regressing out 100 PCs
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Next up:
Family-Based Association
with Dorret Boomsma & Mike Neale
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