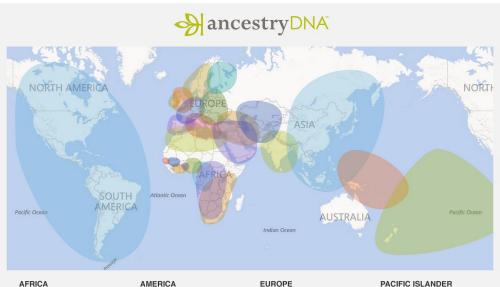


Population Stratification

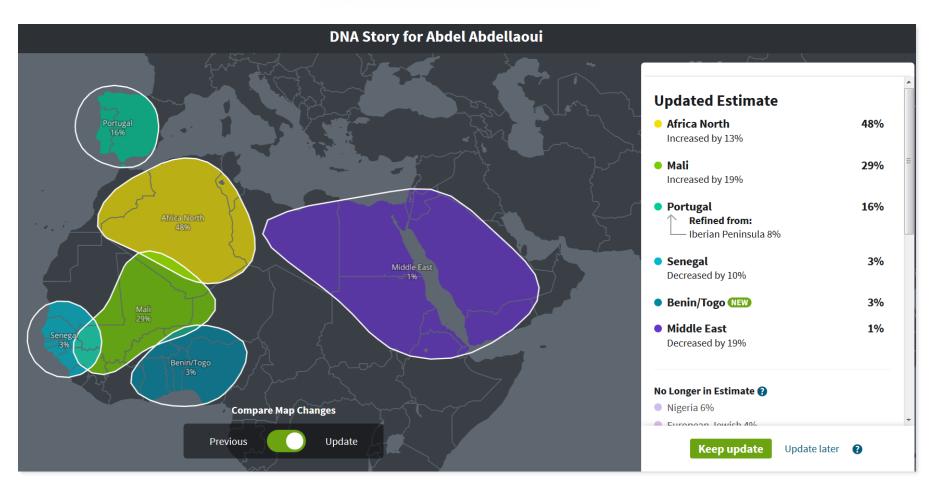
Abdel Abdellaoui Department of Psychiatry, Amsterdam UMC, University of Amsterdam

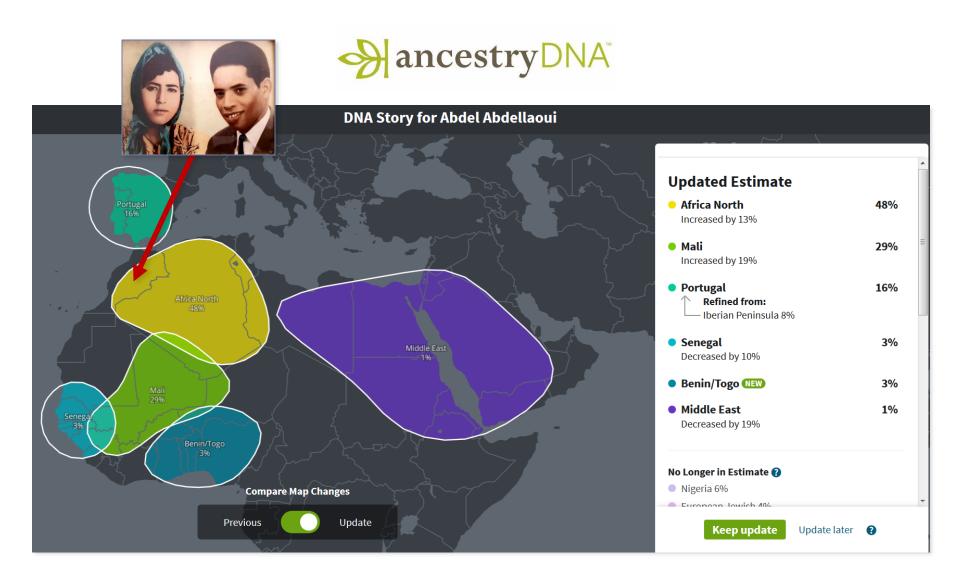


E-mail: a.abdellaoui@amsterdamumc.nl

Largest patterns of genetic variation = ancestry

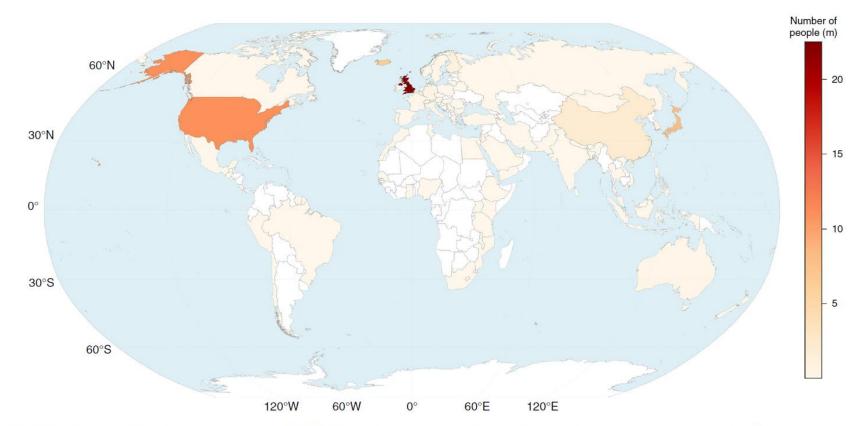
AITIOA	AMEINOA	LOHOLE
Africa North	Native American	Europe East
Africa South-Central		Europe West
Hunter-Gatherers	ASIA	European Jewish
Africa Southeastern Bantu	Asia Central	Finland/Northwest Russia
Benin/Togo	Asia East	Great Britain
Cameroon/Congo		Iberian Peninsula
Ivory Coast/Ghana	Asia South	Ireland
Mali		Italy/Greece
Nigeria		
Senegal		Scandinavia


PACIFIC ISLANDER


Melanesia Polynesia

WEST ASIA

Caucasus Middle East


ancestry DNA[®]

88% of GWAS participants is of European descent

Fig. 3 A Choropleth Map of the Concentration of GWAS Participant Recruitment. A choropleth map (Robinson projection) detailing the geographic recruitment of GWAS participants. Source: NHGRI-EBI GWAS Catalog, Natural Earth (v4.0.0) and the CIA World Factbook. Replication material provides a per-capita population adjusted version

- Population stratification = a systematic difference in allele frequencies between (sub)populations due to different ancestry.
- Can cause false positives if the trait values also differ between the (sub)populations.

Sample 1 Americans: $\chi^2=0$, $p=1$					
	Use of chopsticks				
	Yes	Total			
Allele 1	320	320	640		
Allele 2	80	80	160		
Total	400	400	800		

Sample 2 Chinese: $\chi^2=0$, $p=1$						
	Use of chopsticks					
	Yes	Total				
Allele 1	320	20	340			
Allele 2	320	20	340			
Total	640	40	680			

Sample 1 Americans: $\chi^2=0$, $p=1$					
	Use of chopsticks				
	Yes	Total			
Allele 1	320	320	640		
Allele 2	80	160			
Total	400 400 800				

Sample 2 Chinese: $\chi^2=0$, $p=1$					
	Use of chopsticks				
	Yes	Total			
Allele 1	320	20	340		
Allele 2	320	20	340		
Total	640	680			

There is a clear difference between Americans and Chinese in proportion of "cases" and "controls"

Sample 1 Americans: $\chi^2=0$, $p=1$				Sample 2 Chinese: $\chi^2=0$, $p=1$				
	Use of cl	nopsticks				Use of cl	nopsticks	
	Yes	No	Total			Yes	No	Total
Allele 1	320	320	640		Allele 1	320	20	340
Allele 2	80	80	160		Allele 2	320	20	340
Total	400	400	800		Total	640	40	680
There is a offrequency between A Chinese				dif	K			

Sample 1 Americans: $\chi^2=0$, $p=1$					
	Use of chopsticks				
	Yes	Total			
Allele 1	320	320	640		
Allele 2	80	80	160		
Total	400	800			

Sample 2 Chinese: $\chi^2=0$, $p=1$					
	Use of chopsticks				
	Yes	Total			
Allele 1	320	20	340		
Allele 2	320	20	340		
Total	640	640 40			

Sample 1 Americans: $\chi^2=0$, $p=1$			Sample 2 Chinese: $\chi^2=0$, $p=1$			<i>p</i> =1	
	Use of chopsticks				Use of chopsticks		
	Yes	No	Total		Yes	No	Total
Allele 1	320	320	640	Allele 1	320	20	340
Allele 2	80	80	160	Allele 2	320	20	340
Total	400	400	800	Total	640	40	680

Sample 1 + 2 = Americans + Chinese: χ^2 =34.2, *p*=4.9 × 10⁻⁹

	Use of ch					
	Yes	No	Total			
Allele 1	640	340	980			
Allele 2	400	100	500			
Total	1040	440	1480			

Dealing with population stratification in GWAS

Ways to deal with population stratification:

- Genomic Control (GC)
- Principal Component Analysis
- Within Family Association
- Mixed Linear Modeling
- Admixture Modeling

Dealing with population stratification in GWAS

Ways to deal with population stratification:

- Genomic Control (GC)
- Principal Component Analysis
- Within Family Association —> Next session (Dorret Boomsma)

This talk

- Mixed Linear Modeling —— Yesterday (Wei Zhou)
- Admixture Modeling —> Tomorrow (Poster Session: Timothy Thornton)

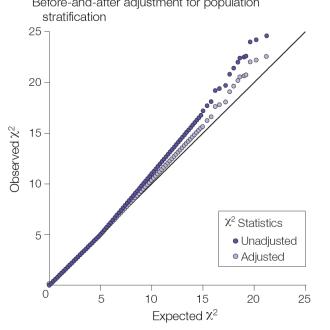
Dealing with population stratification in GWAS

Ways to deal with population stratification:

- Genomic Control (GC)
- Principal Component Analysis
- Within Family Association
- Mixed Linear Modeling

genetics

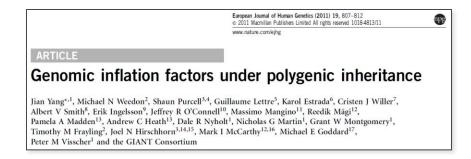
Variance component model to account for sample structure in genome-wide association studies


Hyun Min Kang^{1,2,8}, Jae Hoon Sul^{3,8}, Susan K Service⁴, Noah A Zaitlen⁵, Sit-yee Kong⁴, Nelson B Freimer⁴, Chiara Sabatti⁶ & Eleazar Eskin^{3,7}

genetics

Advantages and pitfalls in the application of mixed-model association methods

Jian Yang^{1,2,8}, Noah A Zaitlen^{3,8}, Michael E Goddard^{4,9}, Peter M Visscher^{1,2,9} & Alkes L Price^{5–7,9}


- Population stratification can result in higher test statistics (= lower p-values)
- The genomic control method estimates the factor with which the test statistics are inflated due to population stratification $\rightarrow \lambda$
- Dividing by λ cancels this effect out for all SNPs:
 - Unadjusted: $\lambda \chi^2$
 - Adjusted: χ²

λ is measured by dividing the median of the distribution of the chisquare statistics from the actual tests by the median of the chi-square distribution under the null.

- λ is measured by dividing the median of the distribution of the chisquare statistics from the actual tests by the median of the chi-square distribution under the null.
- Then, GC applies its correction by dividing the actual association test chisquare statistic results by this λ, thus making these results appropriately more pessimistic.

- λ is measured by dividing the median of the distribution of the chisquare statistics from the actual tests by the median of the chi-square distribution under the null.
- Then, GC applies its correction by dividing the actual association test chisquare statistic results by this λ, thus making these results appropriately more pessimistic.
- GC is too conservative if the trait is **highly polygenic** (i.e. the median test statistic does not represent the null distribution).

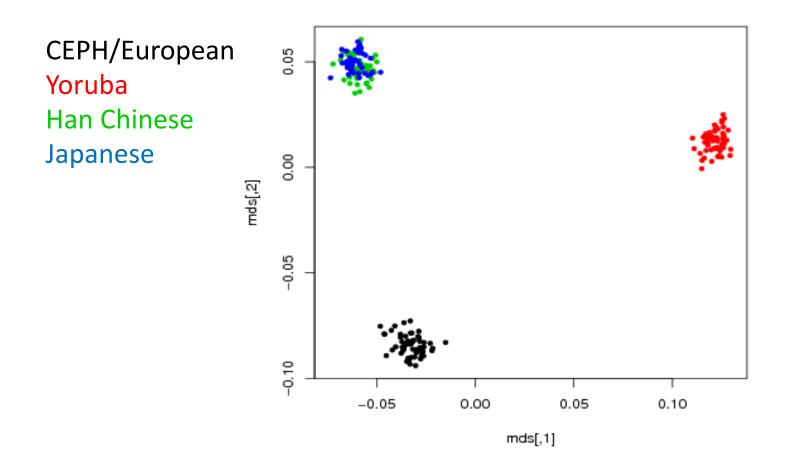
- λ is measured by dividing the median of the distribution of the chisquare statistics from the actual tests by the median of the chi-square distribution under the null.
- Then, GC applies its correction by dividing the actual association test chisquare statistic results by this λ, thus making these results appropriately more pessimistic.
- GC is too conservative if the trait is **highly polygenic** (i.e. the median test statistic does not represent the null distribution).

	LD Score regr	ession can be used		European Journal of Human Genetics (2011) 19, 807–812 © 2011 Macmillon Publishes Limited All rights reserved 1018-4813/11 www.nature.com/elite	œ
	to estimate a	more powerful	ARTICLE		
	and accurate correction factor than GC.		Genomic inflation factors under polygenic inherita Jian Yang ^{*,1} , Michael N Weedon ² , Shaun Purcell ^{3,4} , Guillaume Lettre ⁵ , Karol Estrada ⁶ , Cristen J Willer ⁷		
			Albert V Smith ⁸ , Erik Ingelsson ⁹ , Jeffrey R O'Connell ¹⁰ , Massimo Mangino ¹¹ , Reedik Mägi ¹² , Pamela A Madden ¹³ , Andrew C Heath ¹³ , Dale R Nyholt ¹ , Nicholas G Martin ¹ , Grant W Montgomery ¹ , Timothy M Frayling ² , Joel N Hirschhorn ^{3,14,15} , Mark I McCarthy ^{12,16} , Michael E Goddard ¹⁷ , Peter M Visscher ¹ and the GIANT Consortium		
LD Score regression distinguishes polygenicity in genome-wide asso Brendan K Bulik-Sullivan ¹⁻³ , Po-Ru Loh ^{1,4} , Hilary K Finucane ^{4,5} , Schizophrenia Working Group of the Psychiatric Genomics Cons Alkes L Price ^{1,4,8} & Benjamin M Neale ¹⁻³		ciation studies Stephan Ripke ^{2,3} , Jian Yang ⁶ ,			

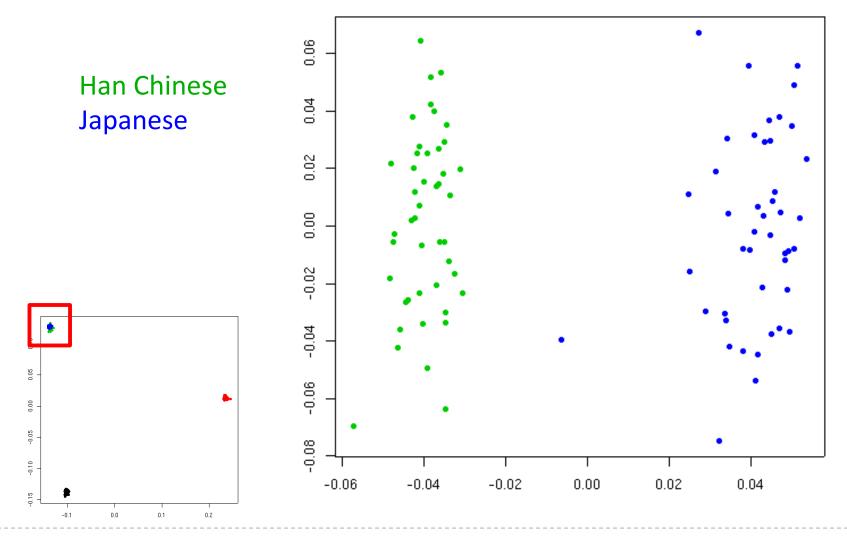
Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

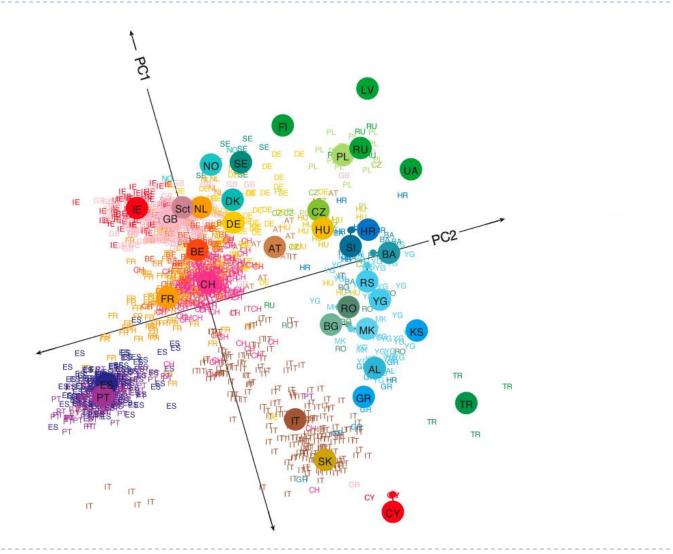
- PCA is a statistical method for exploring large number of measurements (e.g., SNPs) by reducing the measurements to fewer principal components (PCs) that explain the main patterns of variation:
 - The first PC is the mathematical combination of measurements that accounts for the largest amount of variability in the data.
 - The second PC (uncorrelated with the first) accounts for the second largest amount of variability.
 - Etc...

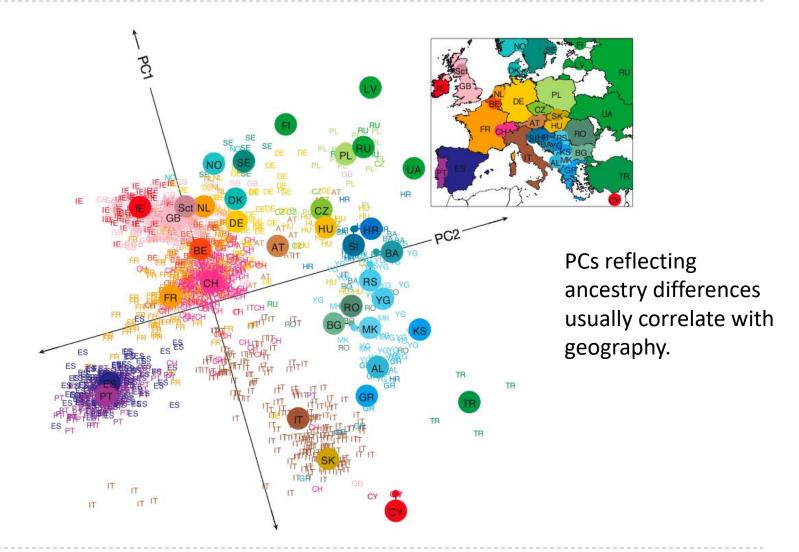


Principal components analysis corrects for stratification in genome-wide association studies

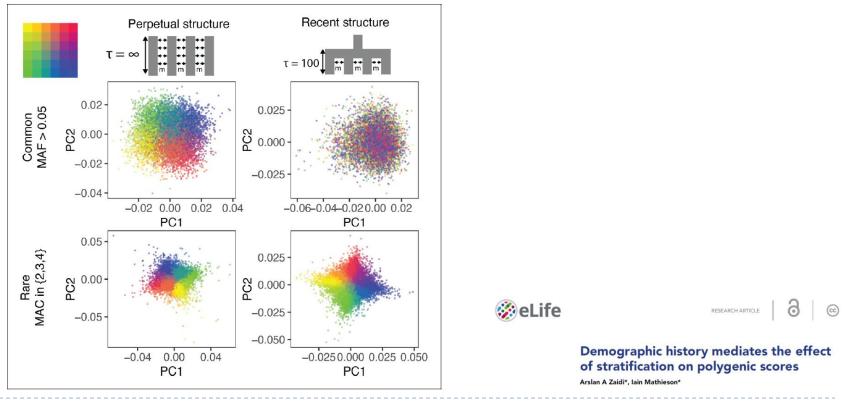

Alkes L Price^{1,2}, Nick J Patterson², Robert M Plenge^{2,3}, Michael E Weinblatt³, Nancy A Shadick³ & David Reich^{1,2}

Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences between cases and controls. The resulting correction is specific to a candidate marker's variation in frequency across ancestral populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach can easily be applied to disease studies with hundreds of thousands of markers.

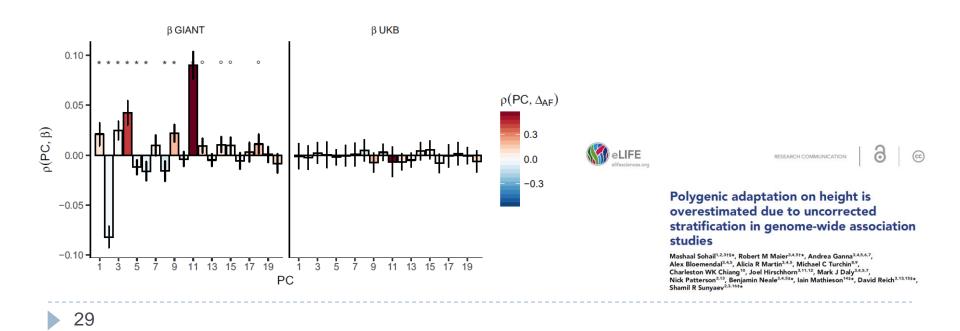

Principal Component Analysis (PCA)


Principal Component Analysis (PCA)

Fine-scale genetic variation



Fine-scale genetic variation reflects geography


Some caveats

- PCA informs about population structures at different times, depending on allele frequency (rare variant => more recent history)
- Rare variant stratification (i.e., more recent history) can be missed

Some caveats

- PCA informs about population structures at different times, depending on allele frequency (rare variant => more recent history)
- Rare variant stratification (i.e., more recent history) can be missed
- Effectiveness of PCA depends on sample size (large sample => better correction for stratification)

Some caveats

- PCA informs about population structures at different times, depending on allele frequency (rare variant => more recent history)
- Rare variant stratification (i.e., more recent history) can be missed
- Effectiveness of PCA depends on sample size (large sample => better correction for stratification)
- PCA is not a magic ancestry-capturing method. It captures large patterns of variation (so also quality differences or large regions of LD)

Copy and unzip files needed for practical

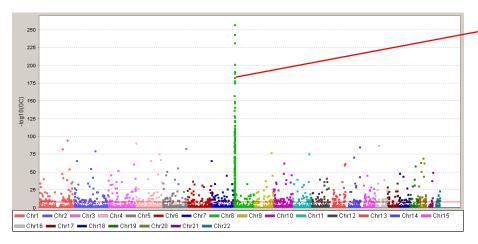
- Open terminal: Applications Menu -> Terminal Emulator
- First run this in your terminal:
- cp -r /home/abdel/PCA_practical .
- cd PCA_practical

```
unzip dutch_1kG.zip
```

 command.txt contains all the remaining commands we are going to run in the terminal (which are also on the slides abdel_pop_strat_boulder_2023.pdf)

Overview practical

 Analyses are based on the paper "Population Structure, Migration, and Diversifying Selection in the Netherlands" (Abdellaoui et al, 2013)


Analyses:

- Run PCA on 1000 Genomes, and project PCs on Dutch individuals
 - Goal: identify Dutch individuals with non-European ancestry and exclude
- Run PCA on remaining Dutch individuals
 - Goal: obtain PCs reflecting Dutch ancestry differences
- Software used:
 - Eigenstrat -> <u>http://genepath.med.harvard.edu/~reich/Software.htm</u>
 - Plink -> <u>http://pngu.mgh.harvard.edu/~purcell/plink</u>
 - R -> <u>http://www.r-project.org/</u>

- Individuals:
 - 171 Dutch individuals from the Netherlands Twin Registry (NTR)
 - 221 from 1000 Genomes (Europeans, Africans, and Asians)
 - If you're interested in the 1000 Genomes dataset in plink format (~16 million SNPs): e-mail a.abdellaoui@amsterdamumc.nl
- SNPs:
 - 113,164 SNPs (from Affy 6.0 chip)
 - Quality Control (done in Plink):
 - ▶ MAF > .05
 - ▶ HWE *p* > .001
 - SNP missingness < .05 (individual missingness < .02)</p>
 - Excluded long-range LD regions
 - LD Pruned

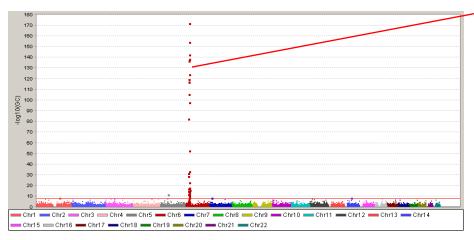
Why exclude long-range LD regions?

 Elevated levels of LD can be overrepresented in PCs, deluding the genome-wide patterns that reflect the subtle ancestry differences.

GWAS on PC: PC reflects variation at chr8 inversion

Long-Range LD Can Confound Genome Scans in Admixed Populations

Table 1. Correspondence between Regions from Tang et al.and Regions of Extended LD in European Populations


	Chromosome	SNP at Region Peak, from Tang et al. ¹		Extended LD Region, from PCA Analysis
	6	rs169679	29.0 Mb	25.5-33.5 Mb
≽	8	rs896760	113.5 Mb	112–115 Mb
	11	rs637249	56.0 Mb	46-57 Mb

For each region reported to be under selection, we list the SNP defining the peak of this region as described in Tang et al.,¹ the physical position of the SNP, and the physical position of the corresponding region of extended LD from PCA analysis. The other autosomal long-range LD regions identified by PCA analysis were chromosome 1: 48-52 Mb, 2: 86-100.5 Mb, 2: 134.5-138 Mb, 2: 183-190 Mb, 3: 47.5-50 Mb, 3: 83.5-87 Mb, 3: 89-97.5 Mb, 5: 44.5-50.5 Mb, 5: 98-100.5 Mb, 5: 129-132 Mb, 5: 135.5-138.5 Mb, 6: 57-64 Mb, 6: 140-142.5 Mb, 7: 55-66 Mb, 8: 8-12 Mb, 8: 43-50 Mb, 10: 37-43 Mb, 11: 87.5-90.5 Mb, 12: 33-40 Mb, 12: 109.5-112 Mb, and 20: 32-34.5 Mb.

The American Journal of Human Genetics 83, 127-147, July 2008

Why exclude long-range LD regions?

 Elevated levels of LD can be overrepresented in PCs, deluding the genome-wide patterns that reflect the subtle ancestry differences.

GWAS on PC: PC reflects variation at MHC region (chr 6)

Long-Range LD Can Confound Genome Scans in Admixed Populations

Table 1. Correspondence between Regions from Tang et al.and Regions of Extended LD in European Populations

	Chromosome	SNP at Region Peak, from Tang et al. ¹		Extended LD Region, from PCA Analysis
≽	6	rs169679	29.0 Mb	25.5-33.5 Mb
	8	rs896760	113.5 Mb	112–115 Mb
	11	rs637249	56.0 Mb	46–57 Mb

For each region reported to be under selection, we list the SNP defining the peak of this region as described in Tang et al.,¹ the physical position of the SNP, and the physical position of the corresponding region of extended LD from PCA analysis. The other autosomal long-range LD regions identified by PCA analysis were chromosome 1: 48-52 Mb, 2: 86-100.5 Mb, 2: 134.5-138 Mb, 2: 183-190 Mb, 3: 47.5-50 Mb, 3: 83.5-87 Mb, 3: 89-97.5 Mb, 5: 44.5-50.5 Mb, 5: 98-100.5 Mb, 5: 129-132 Mb, 5: 135.5-138.5 Mb, 6: 57-64 Mb, 6: 140-142.5 Mb, 7: 55-66 Mb, 8: 8-12 Mb, 8: 43-50 Mb, 10: 37-43 Mb, 11: 87.5-90.5 Mb, 12: 33-40 Mb, 12: 109.5-112 Mb, and 20: 32-34.5 Mb.

The American Journal of Human Genetics 83, 127-147, July 2008

Why also prune for LD?

From EIGENSTRAT paper Principal components analysis corrects for stratification in genome-wide association studies (Price et al, 2006):

"Strong LD at a given locus which affects many markers could result in an axis of variation which corresponds to genetic variation specifically at that locus, rather than to genome-wide ancestry. Nonetheless, we recommend inferring population structure using all markers. This recommendation is based on an analysis of HapMap data which suggests that these potential problems will not affect results in practice."

Why also prune for LD?

- PCA was conducted on three sets of SNPs varying in LD on 1000 Genomes populations and Dutch subjects separately
- PCs were identical for 1000 Genomes across the 3 SNP sets. For the Dutch dataset, there were big differences:

SNP set used for PCA	Nr. of SNPs for PCA	Correlations between PCs and North-South gradient (N = 3363)		Correlations between PCs and East-West gradient (N = 3363)		λ for GWASs on
		Pearson Correlation	Difference test	Pearson Correlation	Difference test	the North-South PC as a covariate
SNP set 1: All SNPs that passed QC	499,849	r _{PC2,} € .428	-	r _{PC8,↔} = .205	-	1.03937
SNP set 2: SNP set 1 without the 24 long-range LD regions	487,672	r _{PC1,} ‡= .574	p = 3.9*10 ⁻⁴⁶ (versus SNP set 1)	r _{PC3,⇔} = .260	p = 4.2*10 ⁻¹⁰ (versus SNP set 1)	1.03092
SNP set 3: SNP set 2 with genome- wide LD based SNP pruning	130,248	r _{PC1,} ‡=.588	p = 1.9*10 ⁻⁴ (versus SNP set 2)	r _{PC2,↔} =.369	p = 3.5*10 ⁻²¹ (versus SNP set 2)	1.02961

 Conclusion: minimizing LD is necessary for more homogeneous datasets (i.e., datasets with subjects from a single population)

Files needed for EIGENSTRAT

- Input files: three files containing information about SNPs and samples (.ped, .map, .fam)
- Parameter file: file containing parameters for the PCA

EIGENSTRAT input files are in plink format

Plink ped files (--recode)

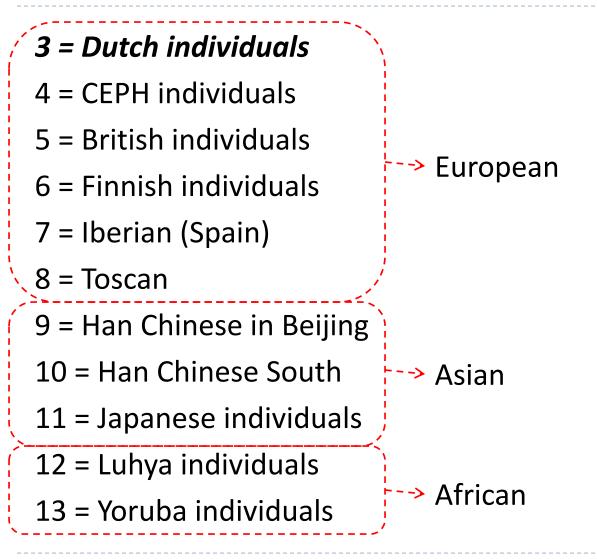
- dutch_1kG.ped
- dutch_1kG.map

Plink binary files (--make-bed)

- dutch_1kG.bed
- dutch_1kG.bim
- dutch_1kG.fam

EIGENSTRAT input files are in plink format

Plink ped files (--recode)



Plink binary files (--make-bed)

- dutch_1kG.bed
- dutch_1kG.bim
- dutch_1kG.fam

EIGENSTRAT needs

Values in the phenotype column (column 6) of .fam file:

Parameter file (.par)

The .par file will have the following lines: genotypename: dutch_1kG.ped -> input genotype file snpname: dutch_1kG.map -> input snp file indivname: dutch_1kG.fam -> input individual file evecoutname: dutch_1kG.evec -> output file of PCs evaloutname: dutch_1kG.eval -> output file of all eigenvalues numoutevec: **10** -> number of PCs to output numoutlieriter: **0** -> maximum number of outlier removal iterations (0 turns it off) poplistname: **poplist_1kG.txt** -> file containing population value of individuals (If wishing to infer PCs using only individuals from a subset of populations, and then project to individuals from all other populations; will be used to detect individuals of non-*European descent*)

snpweightoutname: dutch_1kG.snpweight -> output file with SNP weightings of each PC

Parameter file (.par)

- Let's make the .par file. Run the following commands:
- echo "genotypename: dutch_1kG.ped" >> dutch_1kG.par
- echo "snpname: dutch_1kG.map" >> dutch_1kG.par
- echo "indivname: dutch_1kG.fam" >> dutch_1kG.par
- echo "evecoutname: dutch_1kG.evec" >> dutch_1kG.par
- echo "evaloutname: dutch 1kG.eval" >> dutch 1kG.par
- echo "numoutevec: 10" >> dutch 1kG.par
- echo "numoutlieriter: 0" >> dutch 1kG.par
- echo "poplistname: poplist 1kG.txt" >> dutch 1kG.par
- echo "snpweightoutname: dutch_1kG.snpweight" >> dutch_1kG.par
- We need to make the poplistname file (poplist_1kG.txt), containing the population values of the 1000 Genomes populations (4-13). Run the following command:

shopt -s xpg_echo

echo "4\n5\n6\n7\n8\n9\n10\n11\n12\n13" > poplist_1kG.txt

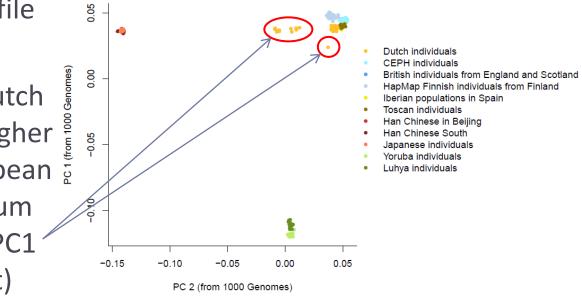
Run this command:

smartpca -p dutch_1kG.par > dutch_1kG.log

Let's look at the PCs in R

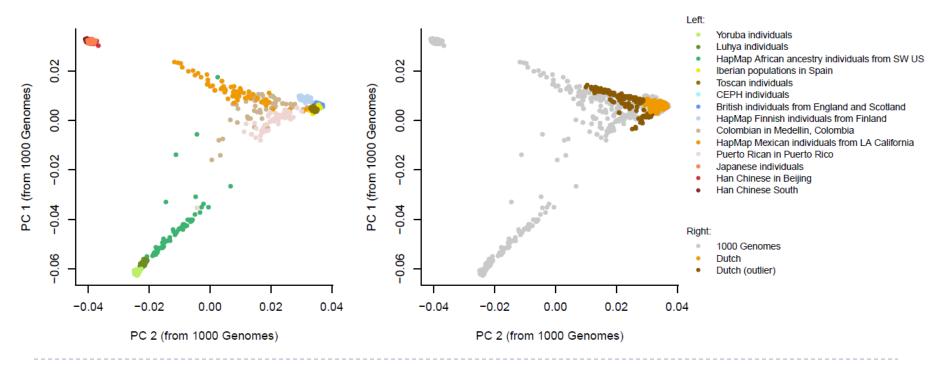
First, let's make the file readable for R:

sed 's/:/ /g' dutch_1kG.evec > dutch_1kG.R.evec

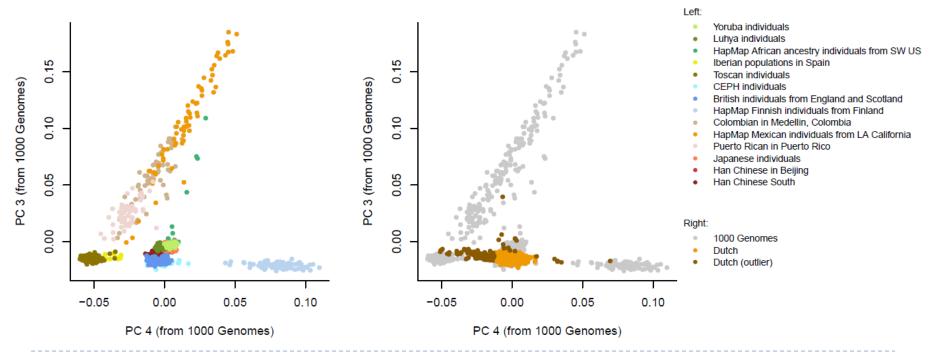

Run R script to make plot and identify outliers:

R CMD BATCH outliers.R

Let's look at the PCs in R

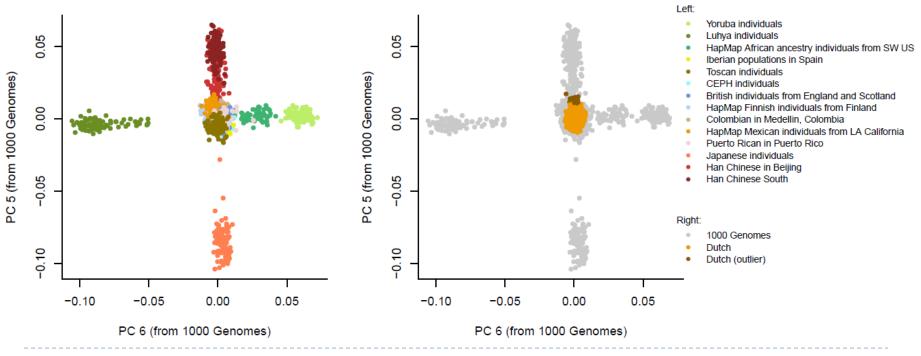

First, let's make the file readable for R: sed 's/:/ /g' dutch 1kG.evec > dutch 1kG.R.evec

- Run R script to make plot and identify outliers:
- R CMD BATCH outliers.R
- What does the R script do? (open outliers.R)
 - Read in EIGENSTRAT file
 - Plot PC1 & PC2
 - Write IDs to file of Dutch individuals scoring higher than maximum European or lower than minimum European scores on PC1 or PC2 (to outliers.txt)


Identifying Dutch with non-European ancestry

- PCs were calculated using a set of 1014 unrelated individuals from 1000 Genomes, and were then projected on ~7500 Dutch individuals.
- 258 individuals were excluded. Parental birth place was available for 132 of these individuals, of which 55.3% had at least one parent born outside of the Netherlands (as opposed to 4% of the rest of the individuals).

Identifying Dutch with non-European ancestry


- PCs were calculated using a set of 1014 unrelated individuals from 1000 Genomes, and were then projected on ~7500 Dutch individuals.
- 258 individuals were excluded. Parental birth place was available for 132 of these individuals, of which 55.3% had at least one parent born outside of the Netherlands (as opposed to 4% of the rest of the individuals).

48

Identifying Dutch with non-European ancestry

- PCs were calculated using a set of 1014 unrelated individuals from 1000 Genomes, and were then projected on ~7500 Dutch individuals.
- 258 individuals were excluded. Parental birth place was available for 132 of these individuals, of which 55.3% had at least one parent born outside of the Netherlands (as opposed to 4% of the rest of the individuals).

49

Exclude Dutch individuals with non-European ancestry and 1000 Genomes

awk '\$6>3{print \$1,\$2}' dutch_1kG.fam > 1kG.ids
cat outliers.txt 1kG.ids > remove_outliers.ids

plink --bfile dutch_1kG --remove remove_outliers.ids --make-bed --out dutch
plink --bfile dutch --recode --out dutch

Parameter file (.par)

• Let's make the .par file. Run the following commands:

- echo "genotypename: dutch.ped" >> dutch.par
- echo "snpname: dutch.map" >> dutch.par
- echo "indivname: dutch.fam" >> dutch.par
- echo "evecoutname: dutch.evec" >> dutch.par
- echo "evaloutname: dutch.eval" >> dutch.par
- echo "numoutevec: 10" >> dutch.par
- echo "numoutlieriter: 0" >> dutch.par
- echo "poplistname: poplist NL.txt" >> dutch.par

echo "snpweightoutname: dutch.snpweight" >> dutch.par

We also need to make the poplistname file (poplist_NL.txt). Run the following command:

echo "3" > poplist NL.txt

We're ready to run the 2nd round of EIGENSTRAT!

Run this command:

smartpca -p dutch.par > dutch.log

Let's plot the first two PCs in R

First, let's make the file readable for R:

sed 's/:/ /g' dutch.evec > dutch.R.evec

Run R script to make plot :

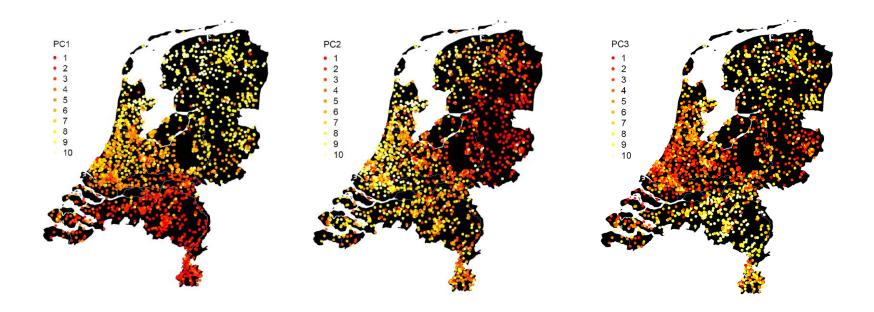

R CMD BATCH plot_NL.R

Let's plot the first two PCs in R

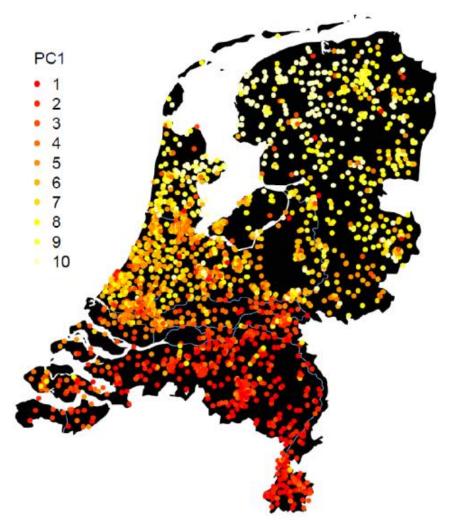
First, let's make the file readable for R:

sed 's/:/ /g' dutch.evec > dutch.R.evec

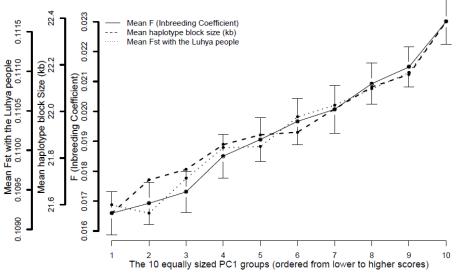
- Run R script to make plot :
- R CMD BATCH plot_NL.R
- What does the R script do? (open plot_NL.R)



Same plot, with N=4,441

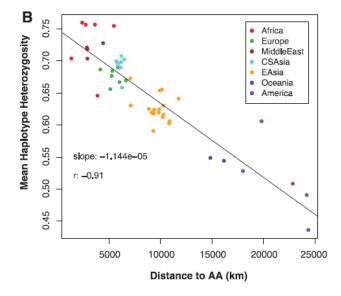

PC1, PC2, and PC3

The color of the dots represent the mean PC value per postal code (based on current living address of the 4,441 subjects).



PC1 (N=4,441)

57


- Correlates .656 with European North-South PC.
- Serial founder effect? (correlation with F: .245)
- Spouse correlation = .555

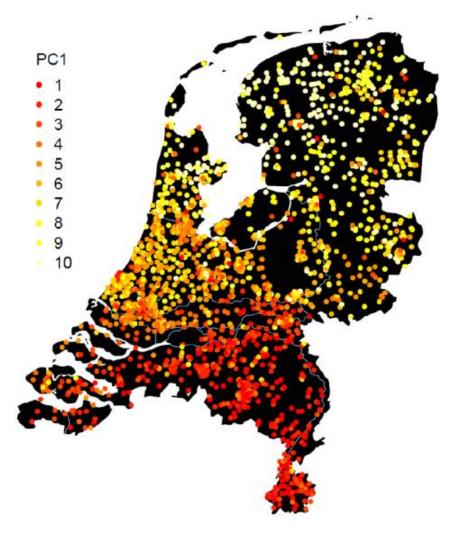
Serial founder effect: heterozygosity decreases (F increases) as you move away from Addis Ababa, Ethopia

Worldwide Human Relationships Inferred from Genome-Wide Patterns of Variation

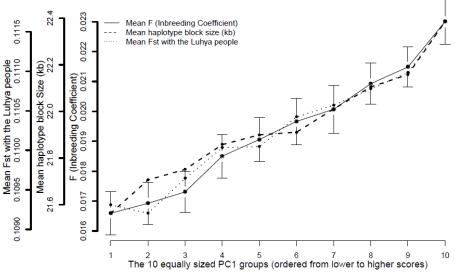
Jun Z. Li,^{1,2,*}† Devin M. Absher,^{1,2,*} Hua Tang,¹ Audrey M. Southwick,^{1,2} Amanda M. Casto,¹ Sohini Ramachandran,⁴ Howard M. Cann,⁵ Gregory S. Barsh,^{1,3} Marcus Feldman,⁴‡ Luigi L. Cavalli-Sforza,¹‡ Richard M. Myers^{1,2}‡

We compared SNP haplotype heterozygosity across populations and found, consistent with earlier reports (22), that it is highest in sub-Saharan Africa and decreases steadily with distance from this region (Fig. 3B). The mean heterozygosity across autosomal haplotypes (using 295 haplotype blocks in Chr16) (14) is negatively correlated with distance from Addis Ababa, Ethiopia (5, 23), with a correlation coefficient r of -0.91 and a slope of -1.1×10^{-5} per km (Fig. 3B). This trend is consistent with a serial founder effect, a scenario in which population expansion involves successive migration of a small fraction of individuals out of the previous location, starting from a single origin in sub-Saharan Africa.

22 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org

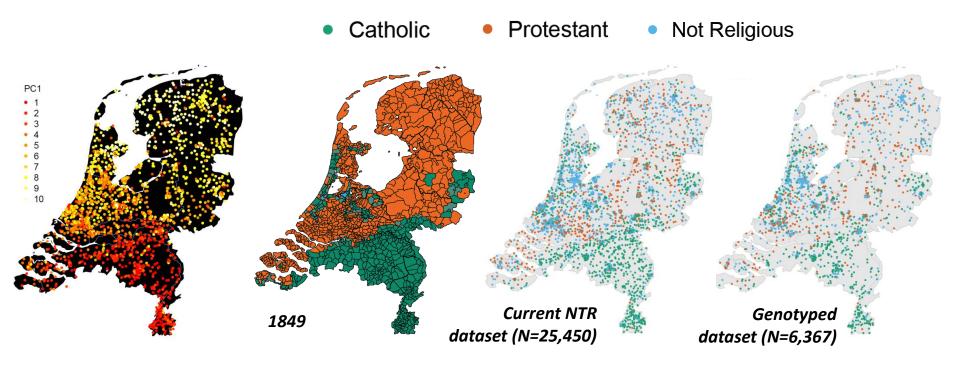

• Genome-wide homozygosity (F) can be computed in plink with --het

- Northern Dutch are known to be taller on average than the Dutch from the Southern parts of the Netherlands. Also within Europe, Northern Europeans are taller on average than Southern Europeans.
- In our sample, height does not correlate very high with the North-South gradient of the current living address:
 - males: r = .055, p = .032; females: r = .066, p = .001
- Height however correlates higher and more significantly with the North-South PC:
 - males: r = .178, $p = 3 \times 10^{-12}$; females: r = .166, $p = 1 \times 10^{-18}$

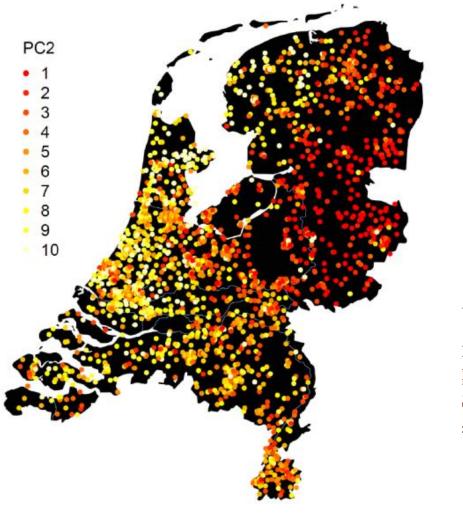


PC1 (N=4,441)

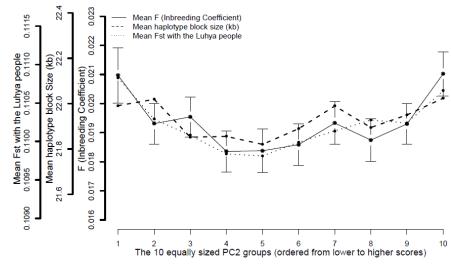
60



- Correlates .656 with European North-South PC.
- Serial founder effect? (correlation with F: .245)
- Spouse correlation = .555

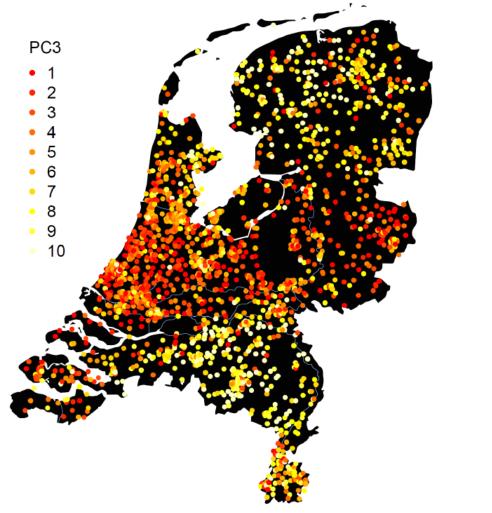

Religion in the Netherlands

- The Netherlands had a long history (>400 years) of societal segregation and assortment based on religious affiliation.
 - Spouse correlation for religion in current dataset = .728 (p < .001)</p>
- This may have increased parental relatedness among religious people.

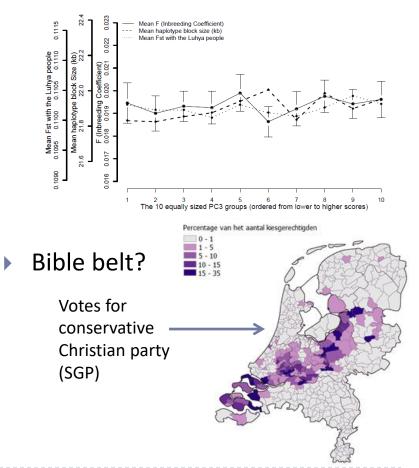


Association between autozygosity and major depression: Stratification due to religious assortment (Abdellaoui et al, 2013) PC2 (N=4,441)

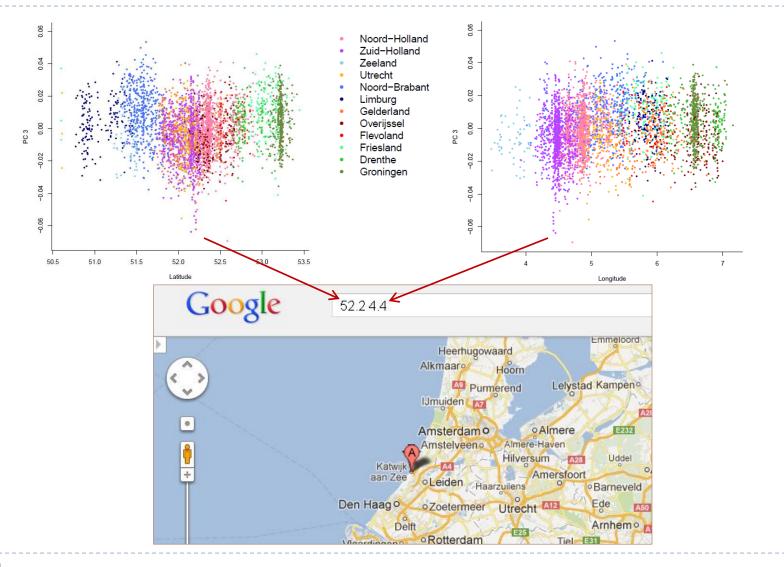
62



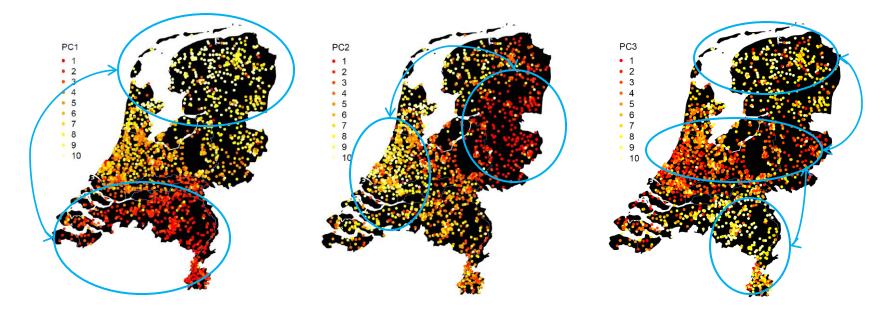
Spouse correlation = .164



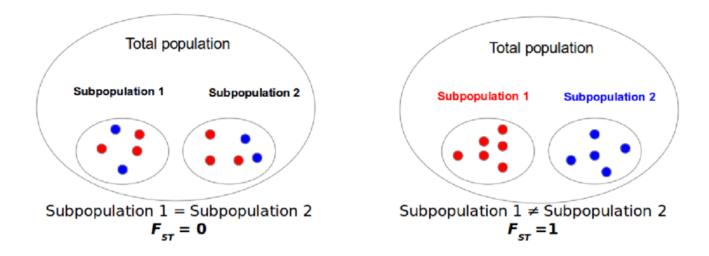
PC3 (N=4,441)


63

- Was only observed with minimized LD
- Spouse correlation = .174



PC3 (N=4,441)


Natural selection vs genetic drift

- The 1000 individuals with the lowest PC score were compared with the 1000 individuals with the highest PC score
- Using the 500 000 SNPs it is estimated what the expected divergence is under genetic drift
- For each SNP we then compute whether the divergence is significantly greater than expected under genetic drift (i.e., whether they are under selection)

Using PCs and F_{st} to identify loci under selection

- Bayescan 2.1 was used to calculate F_{st} values for all SNPs and identify outliers with a Bayesian approach
- F_{st}'s were computed between top 1000 and bottom 1000 individuals for each ancestry-informative PC

Using PCs and F_{st} to identify loci under selection

- Bayescan 2.1 was used to calculate F_{st} values for all SNPs and identify outliers with a Bayesian approach
- F_{st}'s were computed between top 1000 and bottom 1000 individuals for each ancestry-informative PC
- $F_{\rm st}$ is then decomposed into 2 components:
 - population-specific component (β), shared by all loci
 - Iocus-specific component (α), shared by both populations
- If α is significantly different from 0, the locus may have been under selection:
 - $\alpha > 0$ = diversifying selection
 - $\alpha < 0$ = balancing selection (power to detect this is weak)
- Significance is based on FDR corrected q-value (< .05)</p>

Using PCs and F_{st} to identify loci under selection: results

- 499,849 SNPs in total (51.4% within genes):
 - PC1 (North-South): 273 significant SNPs (59% within 88 genes)
 - PC2 (East-West): 172 significant SNPs (58.1% within 55 genes)
 - PC3 (Middle-Band): 100 significant SNPs (75% within 41 genes)
- Several of the genes with significant SNPs have been observed to be strongly differentiated within Europe in previous studies:
 - LCT (PC1), HERC2 (PC1), CADPS (PC1), IRF1 (PC1), SLC44A5 (PC1), R3HDM1 (PC1), ACOXL (PC3), and BTBD9 (PC3)

Highest F_{st} observed in PC1 for SNP in HERC2 gene (rs8039195).
 Strongly associated with eye color in several GWASs (p = 7.8 × 10⁻¹¹² in current dataset).

- Highest F_{st} observed in PC1 for SNP in HERC2 gene (rs8039195). Strongly associated with eye color in several GWASs (p = 7.8 × 10⁻¹¹² in current dataset).
- *F*_{st}'s were calculated for 3495 SNPs in and around HERC2 between Northern European populations (British and Finnish) and Southern European populations (Iberian and Toscan) from 1000 Genomes.

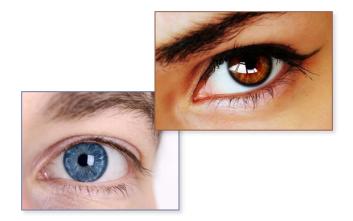
	rs8039195 (HERC2)			
Population	СС СТ		TT	
Finnish	.0	6.5	93.5	
Northern Dutch	.4	13.1	86.5	
British	1.2	21.4	77.4	
Southern Dutch	2.3	23.9	73.7	
Iberian	.0	50.0	50.0	
Toscan	16.8	42.1	41.1	

- Highest F_{st} observed in PC1 for SNP in HERC2 gene (rs8039195).
 Strongly associated with eye color in several GWASs (p = 7.8 × 10⁻¹¹² in current dataset).
- *F*_{st}'s were calculated for 3495 SNPs in and around HERC2 between Northern European populations (British and Finnish) and Southern European populations (Iberian and Toscan) from 1000 Genomes.

	rs8039195 (HERC2)			
Population	CC CT		TT	
Finnish	.0	6.5	93.5	
Northern Dutch	.4	13.1	86.5	
British	1.2	21.4	77.4	
Southern Dutch	2.3	23.9	73.7	
Iberian	.0	50.0	50.0	
Toscan	16.8	42.1	41.1	

• Of the SNPs genotyped in the Dutch, rs8039195 had the highest F_{st} .

- Highest F_{st} observed in PC1 for SNP in HERC2 gene (rs8039195).
 Strongly associated with eye color in several GWASs (p = 7.8 × 10⁻¹¹² in current dataset).
- *F*_{st}'s were calculated for 3495 SNPs in and around HERC2 between Northern European populations (British and Finnish) and Southern European populations (Iberian and Toscan) from 1000 Genomes.

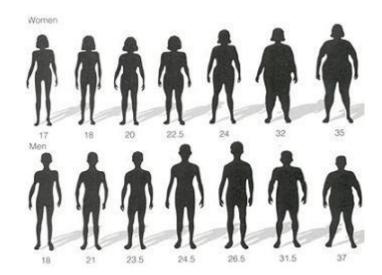

Dopulation	rs8039195 (HERC2)			
Population	CC	СТ	TT	
Finnish	.0	6.5	93.5	
Northern Dutch	.4	13.1	86.5	
British	1.2	21.4	77.4	
Southern Dutch	2.3	23.9	73.7	
Iberian	.0	50.0	50.0	
Toscan	16.8	42.1	41.1	

- Of the SNPs genotyped in the Dutch, rs8039195 had the highest F_{st}.
- Of all 3495 SNPs, highest F_{st} was observed for rs12913832 (LD with rs8039195: r² = .394, D' = .993), the SNP with the largest effect on human blue/brown eye color.

A Single SNP in an Evolutionary Conserved Region within Intron 86 of the *HERC2* Gene Determines Human Blue-Brown Eye Color

Richard A. Sturm,^{1,3} David L. Duffy,^{2,3} Zhen Zhen Zhao,² Fabio P.N. Leite,² Mitchell S. Stark,² Nicholas K. Hayward,² Nicholas G. Martin,² and Grant W. Montgomery^{2,*}

We have previously demonstrated that haplotypes of three single nucleotide polymorphisms (SNPs) within the first intron of the *OCA2* gene are extremely strongly associated with variation in human eye color. In the present work, we describe additional fine association mapping of eye color SNPs in the intergenic region upstream of *OCA2* and within the neighboring *HERC2* (hect domain and RLD2) gene. We screened an additional 92 SNPs in 300–3000 European individuals and found that a single SNP in intron 86 of *HERC2*, rs12913832, predicted eye color significantly better (ordinal logistic regression $R^2 = 0.68$, association LOD = 444) than our previous best *OCA2* haplotype. Comparison of sequence alignments of multiple species showed that this SNP lies in the center of a short highly conserved sequence and that the blue-eye-associated allele (frequency 78%) breaks up this conserved sequence, part of which forms a consensus binding site for the helicase-like transcription factor (HLTF). We were also able to demonstrate the *OCA2* R419Q, rs1800407, coding SNP acts as a penetrance modifier of this new *HERC2* SNP for eye color, and somewhat independently, of melanoma risk. We conclude that the conserved region around rs12913832] represents a regulatory region controlling constitutive expression of *OCA2* and that the C allele at rs12913832] leads to decreased expression of *OCA2*, particularly within iris melanocytes, which we postulate to be the ultimate cause of blue eye color.


HERC2<u>rs12913832</u> modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the *OCA2* promoter

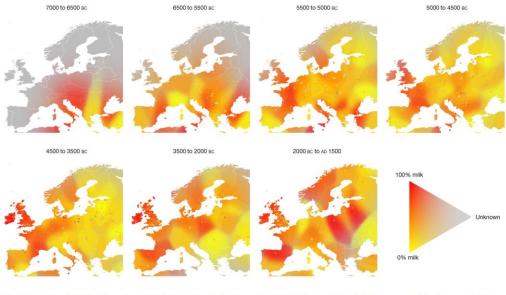
Mijke Visser, Manfred Kayser and Robert-Jan Palstra

Genome Res. 2012 22: 446-455 originally published online January 10, 2012

Other notable genes include:

FTO (PC1): has been associated with BMI and obesity many times.

Population Structure, Migration, and Diversifying Selection in the Netherlands (Abdellaoui et al, 2013)


Other notable genes include:

- > FTO (PC1): has been associated with BMI and obesity many times.
- LCT (PC1): influences the ability to digest lactose into adulthood.

Other notable genes include:

- > FTO (PC1): has been associated with BMI and obesity many times.
- LCT (PC1): influences the ability to digest lactose into adulthood.

Nature | Vol 608 | 11 August 2022

Article

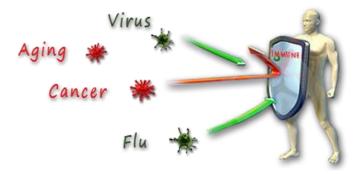
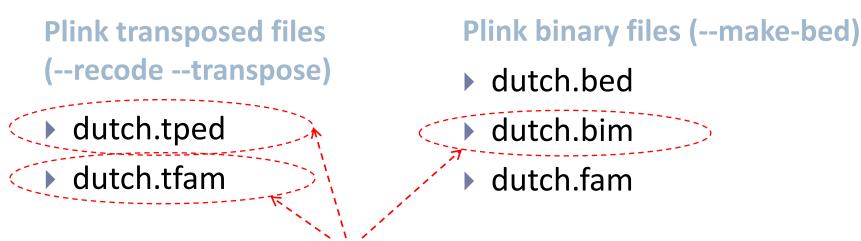

Dairying, diseases and the evolution of lactase persistence in Europe

Fig. 2 | Regional variation in milk use in prehistoric Europe. Interpolated time slices of the frequency of dairy fat residues in potsherds (colour hue) and confidence in the estimate (colour saturation) using two-dimensional kernel density estimation. Bandwidth and saturation parameters were optimized using cross-validation. Circles indicate the observed frequencies at site-phase locations. The broad southeast to northeast cline of colour saturation at the beginning of the Neolithic period illustrates a sampling bias towards earliest evidence of milk use. Substantial heterogeneity in milk exploitation is evident across mainland Europe. By contrast, the British Isles and western France maintain a gradual decline across 7,000 years after first evidence of milk about 5500 pc. Note that interpolation can colour some areas (particularly islands) for which no data are present.

Population Structure, Migration, and Diversifying Selection in the Netherlands (Abdellaoui et al, 2013)

Other notable genes include:

- FTO (PC1): has been associated with BMI and obesity many times.
- LCT (PC1): influences the ability to digest lactose into adulthood.
- HCP5 (HLA Complex P5 gene) from the MHC region. One of two genes that appear in multiple PCs (PC1 & PC2), and plays a role in the immune system. Strong divergence of genes from the HLA complex has been observed in many human populations. Other immunity-related genes that showed significant signals of selection in this study as well as previous studies are: *IRF1* (PC1), *ACE* (PC1), *LRRC4C* (PC2), *PLCL1* (PC3), and *HSPD1* (PC3).



Other notable genes include:

- FTO (PC1): has been associated with BMI and obesity many times.
- LCT (PC1): influences the ability to digest lactose into adulthood.
- HCP5 (HLA Complex P5 gene) from the MHC region. One of two genes that appear in multiple PCs (PC1 & PC2), and plays a role in the immune system. Strong divergence of genes from the HLA complex has been observed in many human populations. Other immunity-related genes that showed significant signals of selection in this study as well as previous studies are: *IRF1* (PC1), *ACE* (PC1), *LRRC4C* (PC2), *PLCL1* (PC3), and *HSPD1* (PC3).

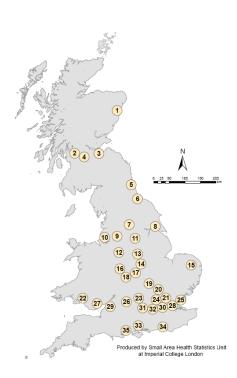
Bayescan can be found here: <u>http://cmpg.unibe.ch/software/bayescan/</u>

Converting plink files to Bayescan format with the script convert_to_bayescan.pl

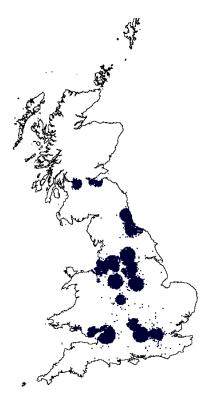
convert_to_bayescan.pl needs

- The populations you want to compare have to be coded as 1 and 2 in the phenotype column (6th column) of the .tfam file.
- Use --pheno to update phenotypes :

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#pheno

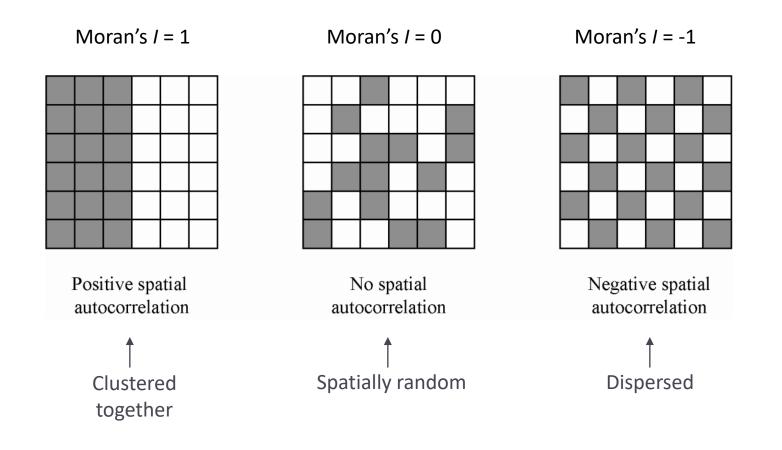

Usage:

perl convert_to_bayescan.pl dutch dutch_outputfile

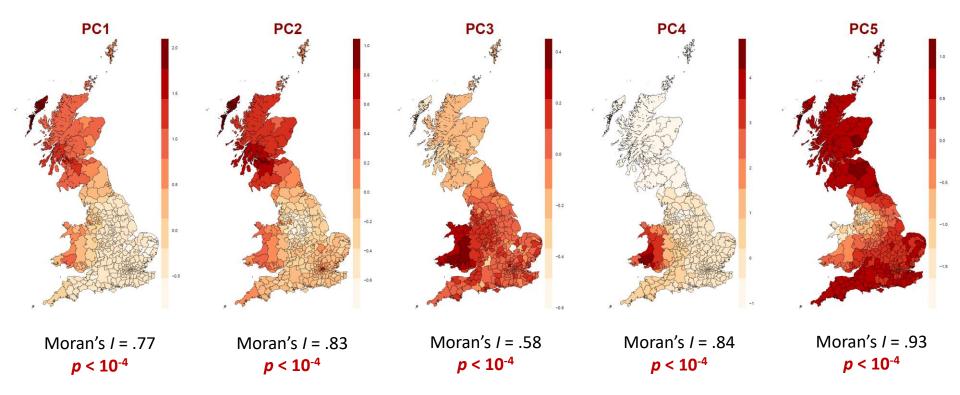

Geographic Distribution of Ancestry in UK Biobank

D

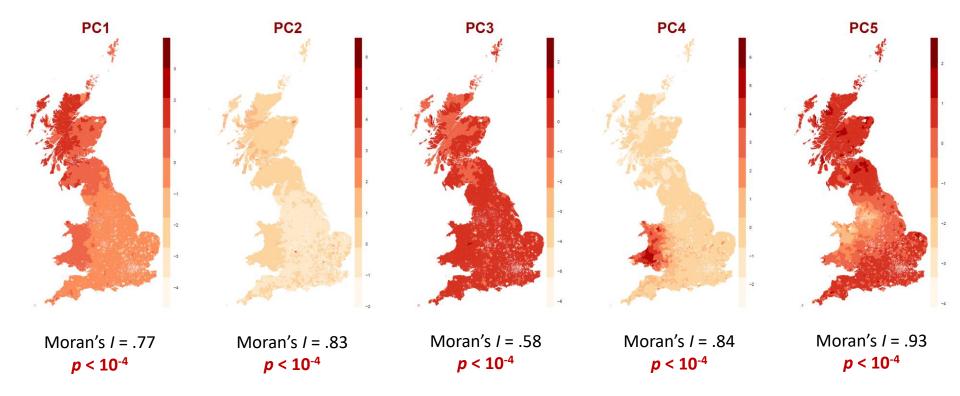
Assessment centers



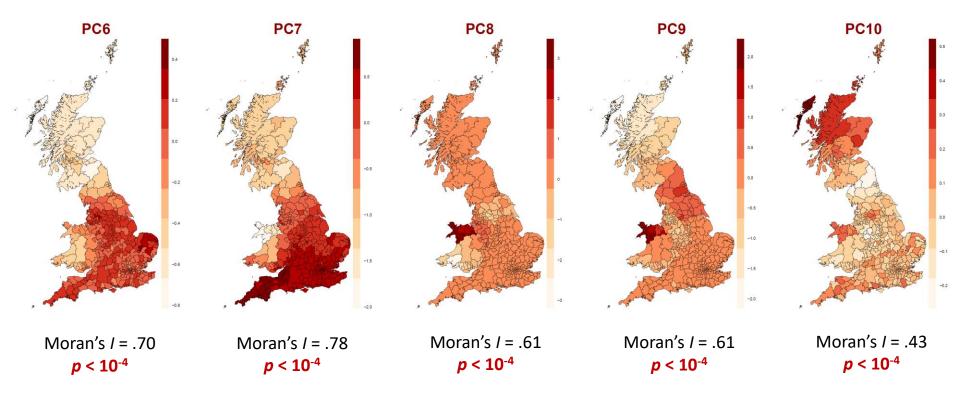
Current living address

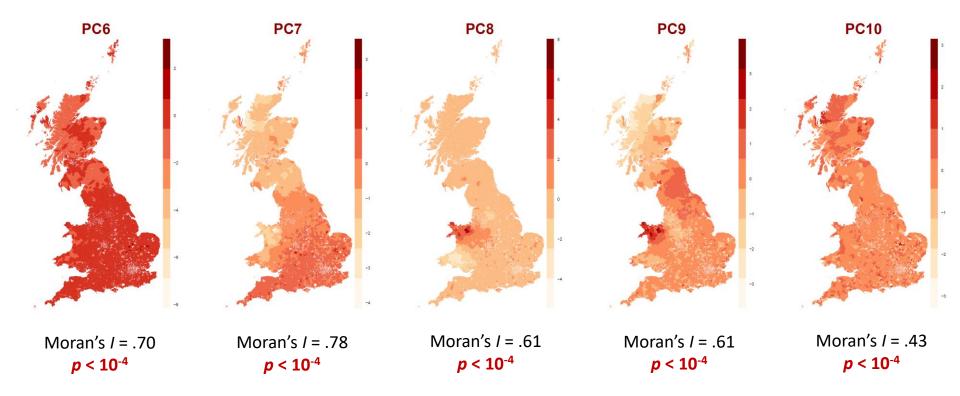

Place of birth

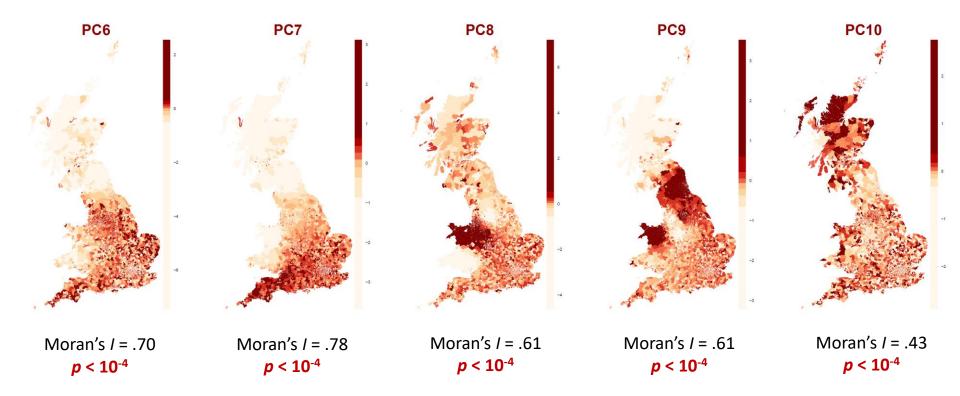
Moran's I

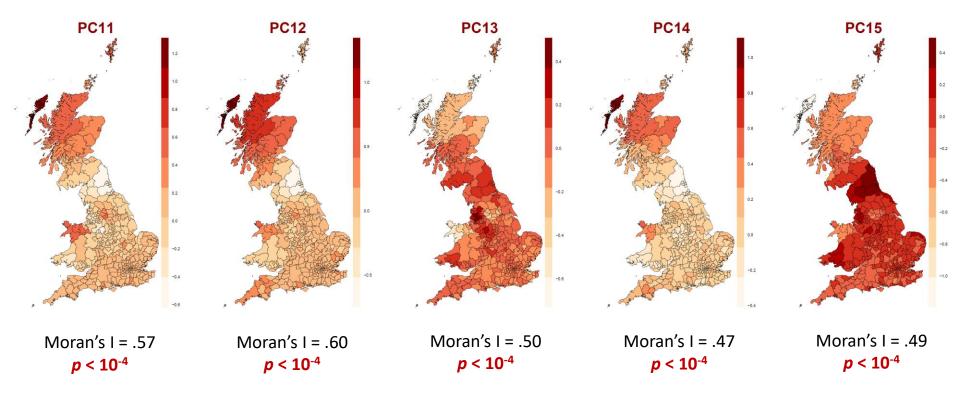

A measure of spatial autocorrelation

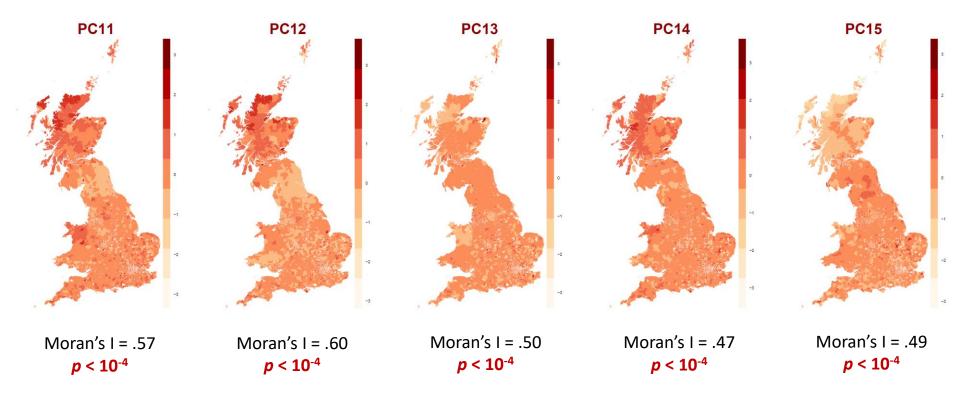
Local authorities (378 areas) – evenly spaced cut-offs

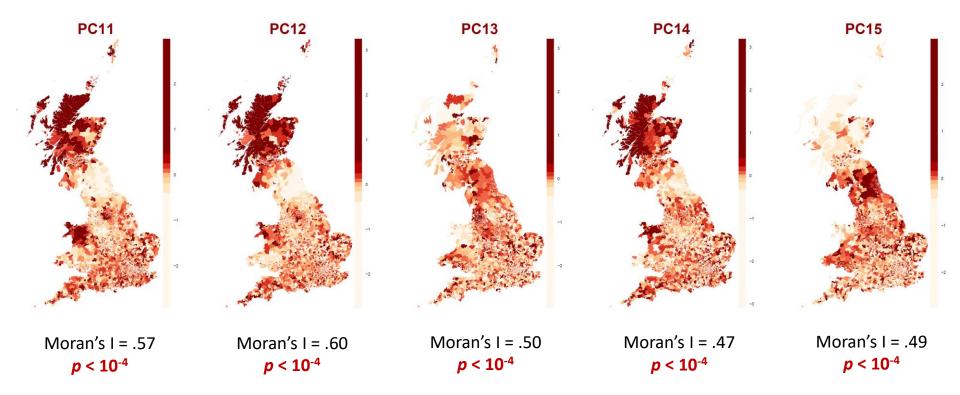

MSOA: 8,436 areas – evenly spaced cut-offs

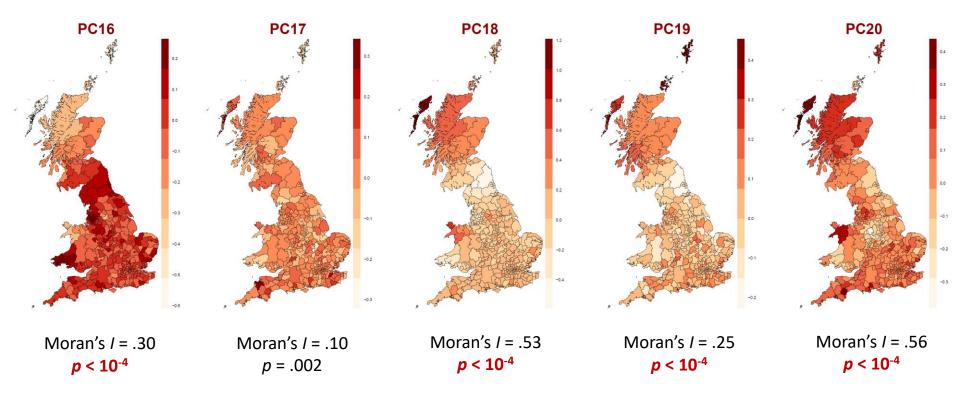

MSOA: 8,436 areas – class-interval cut-offs

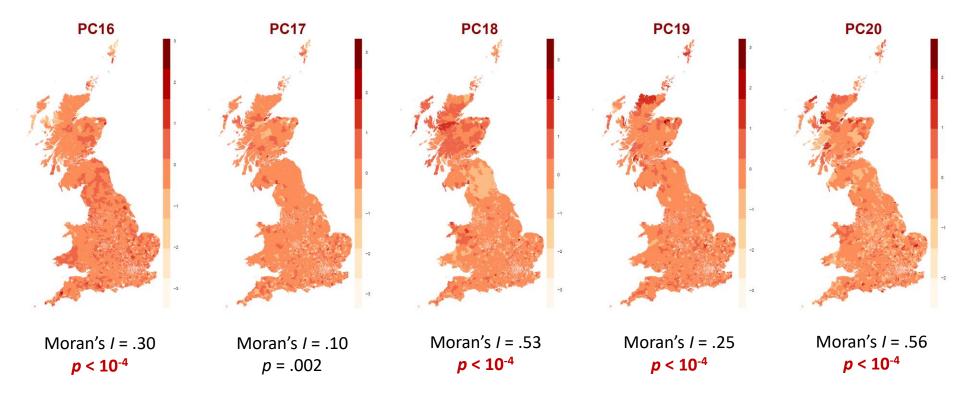

Local authorities: 378 areas – evenly spaced cut-offs

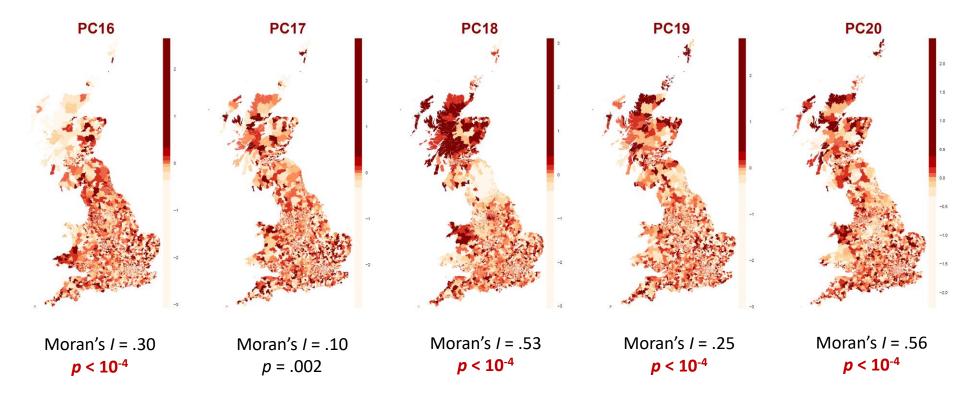

MSOA: 8,436 areas – evenly spaced cut-offs

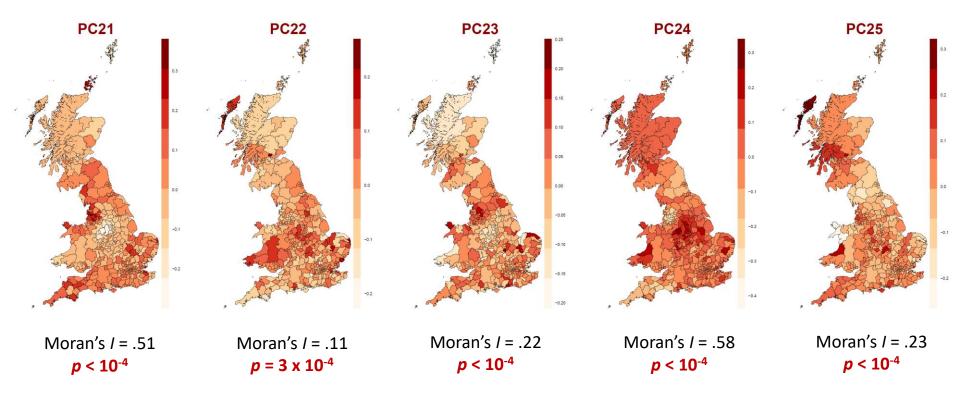

MSOA: 8,436 areas – class-interval cut-offs

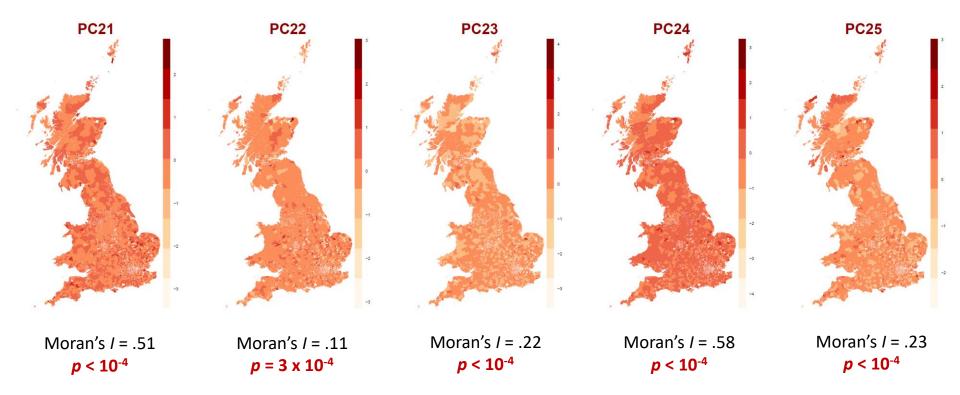

Local authorities: 378 areas – evenly spaced cut-offs

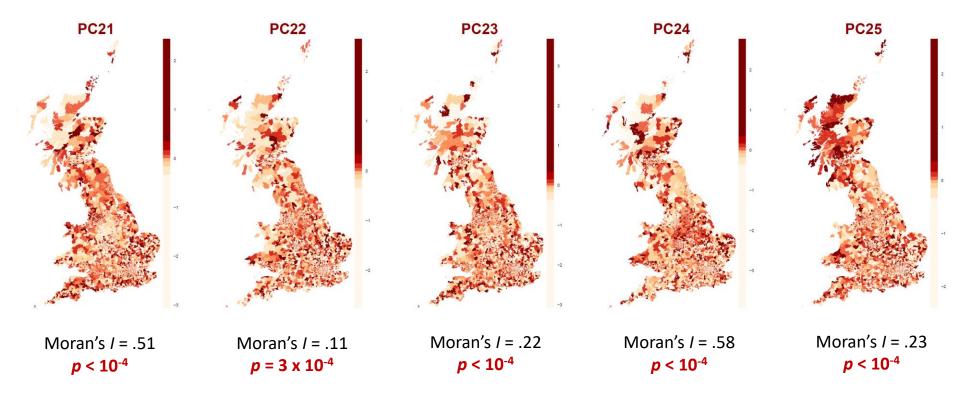

MSOA: 8,436 areas – evenly spaced cut-offs

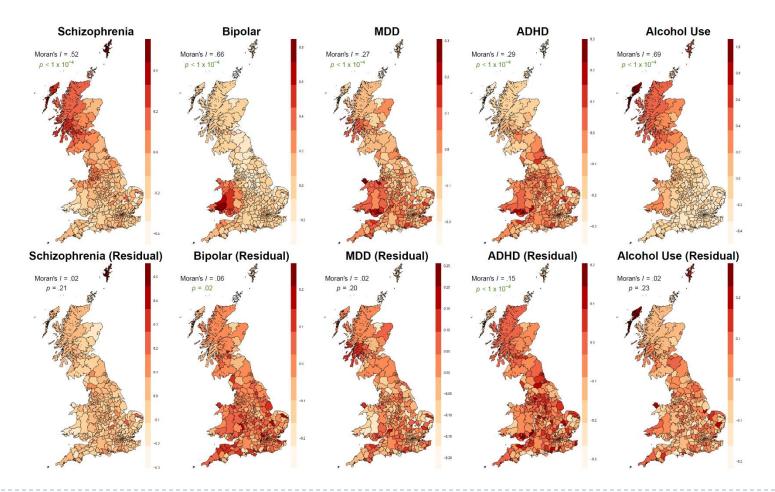

MSOA: 8,436 areas – class-interval cut-offs

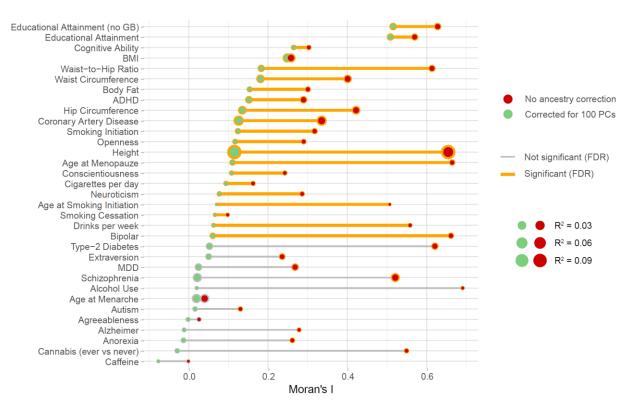

Local authorities: 378 areas – evenly spaced cut-offs


MSOA: 8,436 areas – evenly spaced cut-offs

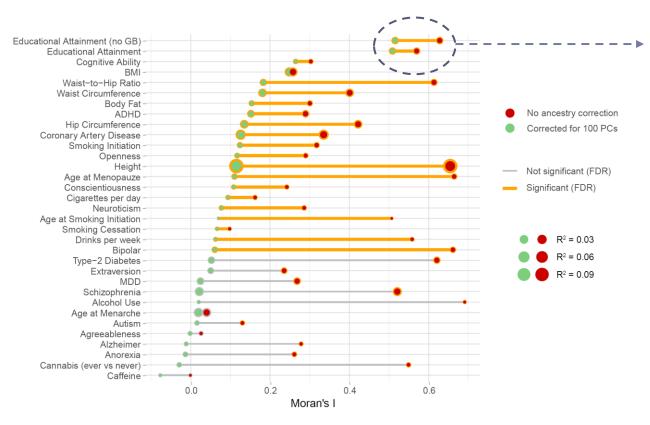

MSOA: 8,436 areas – class-interval cut-offs


Local authorities: 378 areas – evenly spaced cut-offs


MSOA: 8,436 areas – evenly spaced cut-offs


MSOA: 8,436 areas – class-interval cut-offs

Polygenic scores, before and after regressing out 100 PCs



Polygenic scores, before and after regressing out 100 PCs

Moran's I = measure for geographic clustering

Polygenic scores, before and after regressing out 100 PCs

More on this tomorrow at 8 AM (optional geneenvironment correlations session)

Moran's I = measure for geographic clustering

Next up: Family-Based Association with Dorret Boomsma & Mike Neale