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Linear regression: 𝒀 = 𝑿𝜶 + 𝑮𝜷 + 𝝐
𝑮 = 0, 1, or 2

𝑿: covariates, e.g. age, sex, ancestry, batch…
H0∶ 𝜷 = 0
H1∶ 𝜷 ≠ 0
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To identify genetic variants that are associated with a complex disease/disorder 



Different types of phenotypes require different 
statistical models for association tests

• Quantitative
• eg. LDL cholesterol level, height
• Linear regression

• Binary
• eg. Schizophrenia, Type 2 Diabetes
• Logistic regression

• Ordinal/categorical
• eg. On a scale of 1-10 how much do you like smoking
• Multinomial regression 

• Time-to-event (TTE)
• eg. Age at skin cancer onset, Time of death after diagnosis of lung 

cancer
• Survival analysis model
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• eg. Age at skin cancer onset, Time of death after diagnosis of lung 

cancer
• Survival analysis model



Using linear regression for binary phenotypes (coded 
as 0 and 1) can lead to inflated type I errors

adapted from Chen, H., Wang, C., et. al. (2016)

Linear model assumed 
mean-variance relationship 

True mean-variance relationship 



Genetic association tests

… A C C T A G C T A T C C T …

… A C C T A G C T A T C C T …

… A C C T A G C T A T C C T …

… A C C C A G C T A T C C T …

… A C C T A G C T A T C C T …

… A C C T A G C T A T C C T …

… A C C T A G C T A T C C T …

… A C C C A G C T A T C C T …

… A C C T A G C T A T C C T …

… A C C C A G C T A T C C T …

No
Yes SNP 1 

Frequency of C

Cases  
2/4 = 50%

Controls: 
1/6 = 16.7%

VS.

SNP 1

Logistic regression:  𝒍𝒐𝒈𝒊𝒕(𝝅) = 𝑿𝜶 + 𝑮𝜷
𝝅: probability of being a case given X and G

𝑮 = 0, 1, or 2
H0∶ 𝜷 = 0
H1∶ 𝜷 ≠ 0 9

To identify genetic variants that are associated with a complex disease/disorder 



Standard asymptotic tests 

Test Fit null model (H0) Fit full model (H1)
Likelihood Ratio 1 10M 
Wald 0 10M 
Score 1 0 

In the example of testing 10 million genetic markers, one at a time:
H0∶ 𝜷 = 0
H1∶ 𝜷 ≠ 0

•Clear computational advantage of running score test for GWAS 
•Tradeoff of score test: Cannot provide accurate effect-size estimate for 𝜷
•Solution: Run the GWAS using score test, then only calculate MLE of the effect-sizes for the 
significant SNPs using Wald for Likelihood Ratio test



Genome-Wide Association Study (GWAS) 
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Genome-Wide Association Study (GWAS) 
Genome-wide significant threshold for p-value: 5x10-8
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Visualize GWAS: quantile-quantile (QQ) plot 



Different types of phenotypes require different 
statistical models for association tests

• Quantitative
• eg. LDL cholesterol level, height
• Linear regression

• Binary
• eg. Schizophrenia, Type 2 Diabetes
• Logistic regression

• Ordinal/categorical
• eg. On a scale of 1-10 how much do you like smoking
• Proportional odds logistic regression, Multinomial regression 

• Time-to-event (TTE)
• eg. Age at skin cancer onset, Time of death after diagnosis of lung 

cancer
• Survival analysis model



Optimization strategies

Large scale data 

Sample 
relatedness 1 in 3 has at least one relative up 

to the 3rd degree in UK Biobank
- inflated type I errors

Linear model:
𝒀𝒊 = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 + 𝝐𝒊

Logistic model:
𝒍𝒐𝒈𝒊𝒕(𝝅𝒊) = 𝑿𝒊𝜶 + 𝑮𝒊𝜷

𝝐 ~ 𝑁 0, 𝜎!𝐼
Assumes independent 
observations

Challenges in genetic association studies



Optimization strategies

Large scale data 

Mixed models
Sample 

relatedness

Mixed models are used for genetic association 
tests with related samples

1 in 3 has at least one relative up 
to the 3rd degree in UK Biobank

Linear mixed model:
𝒀𝒊 = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 + 𝒃𝒊 + 𝝐𝒊
Logistic mixed model:

𝒍𝒐𝒈𝒊𝒕(𝝅𝒊) = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 + 𝒃𝒊

𝑏: random genetic effect 
𝑏 ~ 𝑁(0, 𝜏 𝜓), 𝝍 is 
genetic relationship 
matrix (GRM)
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Large scale data

Mixed models
Sample 

relatedness

Challenges in genetic association studies
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Optimization 
strategies

Large scale data

Mixed models
Sample 

relatedness

Optimizations were applied for large-scale data
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Colorectal cancer  
• 4,562 Cases
• 382,756 Controls
• Case: Control = 1:84

Linear mixed model

Logistic mixed model



Optimization 
strategies

Large scale data

Mixed models
Sample 

relatedness

Optimizations were applied for large-scale data

?



Unbalanced case-control ratios are commonly 
observed for binary phenotypes in biobanks

1,663 Binary Phenotypes in the UK Biobank
21
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Unbalanced 
case-control 

ratio

Optimization 
strategies

Large scale data

Mixed models
Sample 

relatedness

Test statistics do not converge to Normal distribution, 
leading to inflated type I error rates
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Saddlepoint
Approximation
Unbalanced 
case-control 

ratio

Optimization 
strategies

Large scale data

Mixed models
Sample 

relatedness

Saddlepoint approximation (SPA) is used to account 
for unbalanced case-control ratio

SPA uses the entire 
moment generating 
function -> more 
accurate p-values

vs. 
Normal distribution only 
uses the first two 
moments (mean and 
variance)

Daniels, 1954
Dey et al., 2017



SAIGE 
(Scalable and Accurate Implementation of GEneralized mixed model)

was developed to conduct GWAS in large-scale biobanks

Zhou et al. Nat. Genet. 2018 

Saddlepoint
approximation

Unbalanced 
case-control 

ratio

Optimization strategies

Large scale data 

Mixed models

Sample 
relatedness
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Colorectal cancer  
• 4,562 Cases
• 382,756 Controls
• Case: Control = 1:84

Linear mixed model

Logistic mixed model

Logistic mixed model
+SPA (SAIGE)



26

Thyroid cancer 
• 358 Cases
• 407,399 Controls
• Case: Control = 1:1138
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Thyroid cancer 
• 358 Cases
• 407,399 Controls
• Case: Control = 1:1138

Linear mixed model

Logistic mixed model
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Thyroid cancer 
• 358 Cases
• 407,399 Controls
• Case: Control = 1:1138

Linear mixed model

Logistic mixed model

Logistic mixed model
+SPA



Saddlepoint
approximation
Unbalanced1
case3control1

ratio

Optimization1
strategies

Large1scale1data1

Logistic1mixed1
model
Sample1

relatedness
SAIGE

Step 1: Fit the logistic mixed model under 
the null 𝐻": 𝛽 = 0

𝑙𝑜𝑔𝑖𝑡(𝜋!) = 𝑋!𝛼 + 𝑏!
𝑏~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏 𝜓)

.𝛼 , 0𝑏 , �̂�

Step 2: Perform association test for each genetic marker 
Apply SPA to score tests

Association Results (p-values…)
FASTA (Two-step) 

Chen and Abecasis, 2007



Pan-UKBB: run SAIGE for 7,228 phenotypes, across 6 
continental ancestry groups, for a total of 16,131 GWAS

Konrad Karczewski
Alicia Martin
Hilary Finucane
Benjamin Neale
Mark Daly
Hail Teamhttps://pan.ukbb.broadinstitute.org/



Sequencing data are being generated by biobanks allow 
for studying rare variant associations for complex diseases

31

Why studying rare variations? 
• Unexplained heritability 
• Precision medicine
• Rare coding variants
• function
• therapeutic targets 



Single-variant association tests are 
underpowered for rare variants

Saddlepoint
Approximation

Unbalanced case-
control ratio

underpowered for
rare variants 

Optimization 
strategies

Large scale data 

Mixed models
Sample 

relatedness



Solution: Test the joint effects of rare variants

• Grouping rare variants into functional units, i.e. genes, epigenetic features..
• Set-based tests

• Gene-based tests, group-based tests
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Logistic regression:  𝒍𝒐𝒈𝒊𝒕 𝝅 = log =
>?=

= 𝑿𝜶 + 𝑮𝟏𝜷𝟏 + 𝑮𝟏𝜷𝟐 +…+ 𝑮𝒒 𝜷𝒒
𝝅: probability of having disease given X and G

H0∶ 𝜷𝟏 = 𝜷𝟐 = … = 𝜷𝒒 = 0
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𝒍𝒐𝒈𝒊𝒕 𝝅 = log =
>?=

= 𝑿𝜶 + 𝑮𝟏𝒘𝟏𝜷𝟏 + 𝑮𝟐𝒘𝟐𝜷𝟐 +…+ 𝑮𝒒𝒘𝒒𝜷𝒒
𝝅: probability of having disease given X and G

H0∶ 𝜷𝟏 = 𝜷𝟐 = … = 𝜷𝒒 = 0

𝒘 ~ Beta(MAF, 1,25)

Incorporating weight for each variant

Wu et al., 2011



Set-based association tests:
grouping rare variants to test (by genes, epigenetic 

features…)

Wu et al., 2011𝑆! = ∑"#$% 𝑔"! 𝑦" − +𝜋" is the score statistic for the variant 𝑗
Under the null 𝐻&: 𝛽! = 0



SKAT-O is more powerful than Burden and SKAT

Lee et al., 2012



We first introduce the statistical model for various rare-
variant tests. Assume n subjects are sequenced in a region
withm variant sites. For subject i, let yi denote a phenotype
with mean mi, Xi ¼ (Xi1, ., Xiq)0 covariates, and Gi ¼
(Gi1,.,Gim)0 allele counts (zero, one, or two variant alleles)
for m variants of interest. We assume that yi follows a dis-
tribution in the quasi-likelihood family and consider the
following generalized linear model:71

hðmiÞ ¼ a0 þ a0Xi þ b0Gi; (Equation 1)

where h(m) ¼ m for a continuous trait, h(m) ¼ logit(m) for a
binary trait, a0 is an intercept, and a ¼ (a1,., aq)0 and
b ¼ (b1,., bm)0 are the regression coefficients for the cova-
riates Xi and allele counts Gi, respectively. We define the
score statistic of the marginal model for variant j as

Sj ¼
Xn

i¼1

Gij

!
yi % bmi

"
;

where bmi is the estimatedmean of yi under the null hypoth-
esis (H0: b ¼ 0) and is obtained by application of the null
model hðmiÞ ¼ a0 þ a0Xi. Note that Sj is positive when
variant j is associated with increased disease risk or trait
values and negative when variant j is associated with
decreased risk or trait values.

Burden Tests

One class of aggregation tests can be termed burden tests:
they collapse information for multiple genetic variants
into a single genetic score50–54,72 and test for association
between this score and a trait. A simple approach summa-
rizes genotype information by counting the number of
minor alleles across all variants in the set. The summary
genetic score is then

Ci ¼
Xm

j¼1

wjGij; (Equation 2)

where wj is a threshold indicator or weight for variant j.
This approach is identical to assuming bj ¼ wjb in the
regression model in Equation 1 and testing H0: b ¼ 0 in
the simplified model hðmiÞ ¼ a0 þ a0Xi þ bCi. The corre-
sponding score statistic to test H0: b ¼ 0 is then

Qburden ¼
 
Xm

j¼1

wjSj

!2

: (Equation 3)

A p value can be obtained by comparison to a chi-square
distribution with 1 degree of freedom.
The summary genetic score Ci can be defined to accom-

modate different assumptions about disease mechanism.

Table 2. Summary of Statistical Methods for Rare-Variant Association Testing

Description Methods Advantage Disadvantage Software Packagesa

Burden tests collapse rare variants
into genetic scores

ARIEL test,50 CAST,51

CMC method,52

MZ test,53 WSS54

are powerful when a
large proportion of
variants are causal and
effects are in the same
direction

lose power in the presence
of both trait-increasing and
trait-decreasing variants or a
small fraction of causal
variants

EPACTS, GRANVIL,
PLINK/SEQ, Rvtests,
SCORE-Seq, SKAT, VAT

Adaptive burden tests use data-adaptive
weights or thresholds

aSum,55 Step-up,56

EREC test,57 VT,58

KBAC method,59

RBT60

are more robust than
burden tests using fixed
weights or thresholds;
some tests can improve
result interpretation

are often computationally
intensive; VT requires the
same assumptions as burden
tests

EPACTS, KBAC,
PLINK/SEQ, Rvtests,
SCORE-Seq, VAT

Variance-component
tests

test variance of genetic
effects

SKAT,61 SSU test,62

C-alpha test63
are powerful in the
presence of both trait-
increasing and trait-
decreasing variants or a
small fraction of causal
variants

are less powerful than
burden tests when most
variants are causal and
effects are in the same
direction

EPACTS, PLINK/SEQ,
SCORE-Seq, SKAT, VAT

Combined tests combine burden and
variance-component
tests

SKAT-O,64 Fisher
method,65 MiST66

are more robust with
respect to the percentage
of causal variants and
the presence of both
trait-increasing and trait-
decreasing variants

can be slightly less
powerful than burden
or variance-component
tests if their assumptions
are largely held; some
methods (e.g., the
Fisher method) are
computationally intensive

EPACTS, PLINK/SEQ,
MiST, SKAT

EC test exponentially combines
score statistics

EC test67 is powerful when a very
small proportion of
variants are causal

is computationally
intensive; is less powerful
when a moderate or large
proportion of variants are
causal

no software is available
yet

Abbreviations are as follows: ARIEL, accumulation of rare variants integrated and extended locus-specific; aSum, data-adaptive sum test; CAST, cohort allelic sums
test; CMC, combined multivariate and collapsing; EC, exponential combination; EPACTS, efficient and parallelizable association container toolbox; EREC, esti-
mated regression coefficient; GRANVIL, gene- or region-based analysis of variants of intermediate and low frequency; KBAC, kernel-based adaptive cluster;
MiST, mixed-effects score test for continuous outcomes; MZ, Morris and Zeggini; RBT, replication-based test; Rvtests, rare-variant tests; SKAT, sequence kernel
association test; SSU, sum of squared score; VAT, variant association tools; VT, variable threshold; and WSS, weighted-sum statistic.
aMore information is given in Table 3.

10 The American Journal of Human Genetics 95, 5–23, July 3, 2014

Lee et al., 2014



Saddlepoint
approximation

Unbalanced case-
control ratio

Region/gene-
based test

underpowered for
rare variants 

Optimization 
strategies

Large scale data 

Linear/Logistic 
mixed model

Sample 
relatedness

SAIGE-GENE was the first method for rare variant 
associations tests of binary phenotypes in large-scale data

Zhou* and Zhao* et al, Nat Genet, 2020

Burden, SKAT, and SKAT-O 
(Lee et al., 2012)



Set-based tests help identify genetic associations 
that are missed by single-variant tests

https://ukb-200kexome.leelabsg.org/pheno/20001_1002



Set-based tests help identify genetic associations 
that are missed by single-variant tests

https://ukb-200kexome.leelabsg.org/pheno/20001_1002



Set-based tests help identify genetic associations 
that are missed by single-variant tests

https://ukb-200kexome.leelabsg.org/pheno/20001_1002

None of the single variants in BRCA1 have significant p-values



Karczewski et al., Cell Genomics, 2022

SAIGE-GENE was used to analyze 4,529 
phenotypes on 394,841 exomes in UKBB



SAIGE-GENE+ improves the efficiency and accuracy of set-
based rare variant association tests

Zhou*, Bi*, Zhao* et al, Nat Genet, 2022

• Improved computational efficiency 
• Improved type I error
• Improved power

Ø multiple functional annotations
Ø LoF
Ø LoF+nonsynonymous
Ø LoF+nonsynonymous+synonymous

Ø multiple max MAF cutoffs 
Ø 0.01%
Ø 0.1%
Ø 1%

Combined p-values using Cauchy 
combination method

Saddlepoint
approximation

Unbalanced case-
control ratio

Region/gene-
based test

Collapsing ultra-
rare variants

underpowered for
rare variants 

Optimization 
strategies

Large scale data 

Linear/Logistic 
mixed model

Sample 
relatedness



Rare variant associations can aggregate 
in different annotation and MAF groups 

https://ukb-200kexome.leelabsg.org/assoc/GCK/250.2https://ukb-
200kexome.leelabsg.org/assoc/BRCA1/20001_1002



Quantitative traits 
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Different types of phenotypes require different 
statistical models for association tests

• Quantitative
• eg. LDL cholesterol level, height
• Linear regression

• Binary
• eg. Schizophrenia, Type 2 Diabetes
• Logistic regression

• Ordinal/categorical
• eg. On a scale of 1-10 how much do you like smoking
• Proportional odds logistic regression, Multinomial regression 

• Time-to-event (TTE)
• eg. Age at skin cancer onset, Time of death after diagnosis of lung 

cancer
• Survival analysis model



Mixed model method for other phenotype types
• Ordinal phenotypes

• Common variants: 
• POLMM: Proportional Odds Logistic Mixed Model
• Bi, Wenjian, Wei Zhou, Rounak Dey, Bhramar Mukherjee, Joshua N. Sampson, and 

Seunggeun Lee. "Efficient mixed model approach for large-scale genome-wide association 
studies of ordinal categorical phenotypes." The American Journal of Human Genetics 108, 
no. 5 (2021): 825-839.

• Rare variants: 
• POLMM-GENE (under development)

• Time-to-event phenotypes 
• Common variants: 

• GATE: Genetic Analysis of Time-to-Event phenotypes
• R library: https://github.com/weizhou0/GATE
• Common variants: Dey, Rounak*, Wei Zhou*, Tuomo Kiiskinen, Aki Havulinna, Amanda 

Elliott, Juha Karjalainen, Mitja Kurki et al. "Efficient and accurate frailty model approach for 
genome-wide survival association analysis in large-scale biobanks." Nature 
Communications 13, no. 1 (2022): 5437.

https://github.com/weizhou0/GATE


Analyzing X Chromosome

• Complex diseases/traits present sexual dimorphic prevalence which points 
toward a potential contribution of the X-chromosome.

• Quality control and imputation of X-chromosome genetic data require special 
attention to account for its unique properties.

• Selection of statistical tests to identify associations with X-chromosome loci 
depends on the underlying X-chromosomal inactivation (XCI) model, HWE, sex-
specific alleles and confounding variables.
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Hands-on
• https://github.com/weizhou0/ISGW_rare_SAIGE_hands_on/wiki/Day-

1-genetic-association
• Questions: https://isgw-forum.colorado.edu/t/about-the-common-

rare-variant-association-category/29/1

https://github.com/weizhou0/ISGW_rare_SAIGE_hands_on/wiki/Day-1-genetic-association
https://isgw-forum.colorado.edu/t/about-the-common-rare-variant-association-category/29/1

