Biometrical Model and the Genome and its secrets

Benjamin Neale, PhD

Boulder Workshop

Content warning: eugenicists

Sick individuals and sick populations Rose 1985

Figure 2 Distributions of systolic blood pressure in middle-aged men in two populations ${ }^{2,3}$

Mendelian Genetics

Co-dominance

TT $\quad \mathrm{RR}$
White Red

F1 Gemeration

White

F2 Gemeration

East 1915: Inheritance of Corolla Length in Nicotiana longiflora

Neo-Darwinist Reconciliation

XV.-The Correlation between Relatives on the Supposition of Mendelian Inheritance. By R. A. Fisher, B.A. Communicated by Professor J. Arthur Thomson. (With Four Figures in Text.)
(MS. received June 15, 1918. Read July 8, 1918. Issued separately October 1, 1918.)
CONTENTS.

Several attempts have already been made to interpret the well-established results of biometry in accordance with the Mendelian scheme of inheritance. It is here attempted to ascertain the biometrical properties of a population of a more general type than has hitherto been examined, inheritance in which follows this

Ronald Fisher (1918)

One Coin toss

2 outcomes

Two Coin toss

3 outcomes

Four Coin toss

5 outcomes

Ten Coin toss

11 outcomes

Infinite Outcomes

Liability threshold model Pearson and Lee (1901)

Genotype with an additive effect

 $d=0$ (no dominance)
$a a$
Aa
AA

Additive model

Source of variation

Genotype with an additive and dominance effects $d>0$ (dominance)

Dominant model

How much mean and variance?

\author{

1. Defining the Mean (X)
}

$$
\mu=\sum_{i} x_{i} f\left(x_{i}\right)
$$

e.g. cholesterol levels in the population

Genotypes	AA	Aa	aa
Effect, x	a	d	$-a$
Frequencies,	p^{2}	$2 p q$	q^{2}
$f(x)$			
Mean (X)	$=a\left(p^{2}\right)+d(2 p q)-a\left(q^{2}\right)$	$=a(p-q)+2 p q d$	

How much mean and variance?

2. Contribution of the QTL to the Variance (X)

$$
\text { Var }=\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
$$

Genotypes	AA	Aa	aa
Effect, x	a	d	$-a$
Frequencies,	p^{2}	$2 p q$	q^{2}
$f(x)$			

Heritability of X at this locus $=V_{\text {QLL }} / V_{\text {Total }}$

How much mean and variance?

$$
\begin{aligned}
\operatorname{Var}(X) & =(a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2} \\
m=a(p-q)+2 p q d & =\frac{2 p q[a+(q-p) d]^{2}}{V_{A_{Q T L}}}+\frac{(2 p q d)^{2}}{V_{D_{Q T L}}}
\end{aligned}
$$

Additive effects: the main effects of individual alleles
Dominance effects: represent the deviation from additive effects

Twin and family studies - probability of having schizophrenia conditional on relative

Near continuous fall off of risk proportional to amount of shared genome

What about the genome?

DNA

- Structure

1953 Watson \& Crick

(c) 2007 Encyclopædia Britannica, Inc

Bases: A, C, G, T

DNA

- Sequence

2001

- 10 years
- USD \$3 billion
- Sequence DNA of one single person
~ 3,000,000,000 nucleotides
- Organization

- 23 pairs of chromosomes

- "pairs": one copy from father, one mother
- ~20,000 genes

- Variation

- Sequenced DNA of $>1,000$
individuals
- 5 years
- Less than \$5,000 per individual
~3,000,000,000 bases
~30,000,000 different \downarrow
Contribute to making us different:
how we look behave, diseases,
etc

DNA

$30,000,000$ nucleotides where the base can differ between people

- Single Nucleotide Polymorphism, SNP

Chrom.
DNA sequence

Genotype
SNP 1 SNP 2

Person 1	Mat	GTAACTTGGGATCTAGACCAGATAGAT	A A	
	Pat	GTAACTTGGGATCTAGACCAGATAGAT		
Person 2	Mat	GTAACTTGGGATCTAGACCAGATAGAT	A C	G G
	Pat	GTAACTTGGGATCTCGACCAGATAGAT		
Person 3	Mat	GTAACTTGGGATCTCGACCAGATAGAT	C C	G T
	Pat	GTAACTTGGGATCTCGACCATATAGAT		

- Mutation that arose at some point in evolution
- Typically, each SNP has two alleles (bases)
- Each SNP is eventually given an "rs" number rs214621

Other kinds of variation

Deletion

Tandem duplication

Novel sequence insertion

Interspersed duplication

Translocation

Mobile-element insertion
nature reviews genetics
Explore content \checkmark About the journal \vee Publish with us \vee Subscribe
nature > nature reviews genetics > review articles > article
Published: 01 March 2011
Genome structural variation discovery and genotyping
Can Alkan, Bradley P. Coe \& Evan E. Eichler \quad.
Nature Reviews Genetics 12, 363-376 (2011) Cite this article
35k Accesses | $\mathbf{9 2 9}$ Citations | $\mathbf{4 5}$ Altmetric \mid Metrics

2020
The Genome Aggregation Database (gnomAD) has aggregated 15,708 whole genomes and 125,748 exomes

Ways to assay genetic variation

Arrays

Upside Downside

Hits + epi
Hit interpretation

Exomes

Gene identification Limited Scope

Genomes

Comprehensive capture Cost (small N)

Other interesting things about our genome

The genome is dynamic

DNA is chemically modified
-e.g. methylation

It acquires somatic mutations
-particularly in response to mutagens

Example of epigenetic assay - ATAC-Seq

 chromatin (ATAC-Seq)

Open DNA

Tn5 Transposome

Insert in regions of open chromatin

Fragmented and primed

DNA purification Amplification

DNA

Open Chromatin -> genes in the region might be expressed

Dynamic process in the cell - changes in response to stimulus

Finding and quantifying the impact of genetic variation on traits

Linkage analysis - fruit flies and simple traits

h/t Wikipedia entry on genetic linkage

Building linkage maps

Classic BRCA2 Pedigree

Basic approach
Collect families
Genotype 'microsatellites' - variable length polymorphisms Trace the inherited chunks of chromosomes Find identity-by-descent

Linkage found the gene for many single gene disorders

Table 1: Examples of Human Diseases, Modes of Inheritance, and Associated Genes

Disease	Type of Inheritance	Gene Responsible	
Phenylketonuria (PKU)	Autosomal recessive		
Cystic fibrosis			ch as BRCA example
Sickle-cell anemia Howe	However, linkage basically did not work for most complex traits with		tance in families
Albinism, oculocutan	a handful of counterexamples including:		
Huntington's disease	APOE for Alzheimer's Disease		
Myotonic dystrophy t	BRCA for breast cancer		
Hypercholesterolemi dominant, type B	NOD2 in Crohn's Disease		
Neurofibromatosis, th,			
Polycystic kidney disease 1 and 2	Autosomal dominant	Polycystic kidney disease 1 (PKD1) and polycystic kidney disease 2 (PKD2), respectively	
Hemophilia A	X-linked recessive	Coagulation factor VIII (F8)	
Muscular dystrophy, Duchenne type	X -linked recessive	Dystrophin (DMD)	
Hypophosphatemic rickets, Xlinked dominant	X-linked dominant	Phosphate-regulating endopeptidase homologue, X -linked (PHEX)	
Rett's syndrome	X-linked dominant	Methyl-CpG-binding protein 2 (MECP2)	
Spermatogenic failure, nonobstructive, Y -linked	Y-linked	Ubiquitin-specific peptidase 9Y, Y-linked (USP9Y)	

Common variant discovery in schizophrenia

PGC schizophrenia working group

Schizophrenia exome meta-analysis (SCHEMA) data and definitions

TJ Singh

Stage 1
Case-control discovery

Article
Rare coding variants in ten genes confer substantial risk for schizophrenia

Known genetic architecture of schizophrenia

Polygenes!

Many small genetic effects
Can we develop a little further?

We can assume a distribution of SNP effects and now generate estimates of heritability

REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang, ${ }^{1, *}$ S. Hong Lee, ${ }^{1}$ Michael E. Goddard, ${ }^{2,3}$ and Peter M. Visscher ${ }^{1}$

LD Score regression distinguishes confounding from polygenicity in genome-wide association studies

Brendan K Bulik-Sullivan ${ }^{1-3}$, Po-Ru Loh ${ }^{1,4}$, Hilary K Finucane ${ }^{4,5}$, Stephan Ripke ${ }^{2,3}$, Jian Yang ${ }^{6}$, Schizophrenia Working Group of the Psychiatric Genomics Consortium ${ }^{7}$, Nick Patterson ${ }^{1}$, Mark J Daly ${ }^{1-3}$, Alkes L Price ${ }^{1,4,8} \&$ Benjamin M Neale ${ }^{1-3}$

The rise of the polygenic score

Polygenic risk score: risk prediction of an individual's phenotype from DNA

The rise of the polygenic score

Some questions that you might learn how to answer over the course

```
Can we quantify the impact genetic variation has on trait variation?
```

What genes and variants
matter?

How do we protect against artifacts and confounds in genetic analysis?

How do we analyze unrelated individuals?

How do we analyze family
data?

What do associated variants do biologically?

Is it possible to estimate individual genetic risk?

Can we find causal relationships using genetics?

How do we analyze rare genetic variation?

