Family based association

Dorret Boomsma, Mike Neale, Conor Dolan, Jouke Jan Hottenga, Jenny van Dongen

International Statistical Genetics Workshop, Boulder Colorado, 2023

Talk about designs that explicitly take into account that data
(phenotypes & genotypes) were collected in families /

clusters (e.g., pedigrees, families, twin pairs).

NB all papers are in folder Papers




Punnett square

Two genes A and B. Parents
are both heterozygotes
(AaBb).

Their offspring may have
different genotypes.

K Mather, Biometrical
Genetics, Dover Publ, 1949






In the population traits of e.g. ab/ab
individuals differ from the
phenotypes of AB/AB individuals.

Do we see the same differences if
these two individuals are siblings?

l.e., is variation within families equal
to variation between families?

If yes: “true” genetic association
If no: ? (confounding)



Regression model: Phenotype = a + b*QTL + residual




Lindon Eaves
(e.g. Inferring the Causes of Human Variation, 1977)

The genetic and environmental variation
is partitioned into within and between
family components.

G1=within - family genetic component

G2=between - family genetic component || G =% Dr+ % Hr

El=within-family environment (“E”)
(Vg = Va + Vd)

E2=between-family environment (“C”)

El+E2=E

In the absence of GE interaction or GE G1+G2=G,and

correlation total variance is partitioned
into: 0%t = o°w + o2b, and familial

resemblance is: ICC = o2b / (0?w + 62b) G1 = G2 if there is random

mating / no dominance




Genotype AA Aa aa
Effect d, By, —d,

Mather and Jinks (1971) define
Dp=4>u,v,fd,+(v,—uy)h )2,
L
Hp =16 u20v2 12,

where > indicates summation over all loci affecting the trait and, at a
given locus; u,, v, are the population frequencies of the two alleles, d, is the
absolute deviation of a homozygote from the mean of the two hormozy-
gotes, and A, is the deviation of the heterozygote from the mean of the two
homozygotes.

The total genetic variance Vg 18
3Dg + {Hr




One locus model: gene with 2 alleles A and a and
3 genotypes AA, Aa and aa

d
aa Aa m AA

The deviation from m (middle) of the heterozygote Aa is d

V,=V,+V,= 2pg[a+d(g-p)]* + (2pqd)




Punnett square: Within family genetic differences

Haseman-Elston: Sib-pair analysis (linkage analysis based on IBD)
Fulker / Posthuma / Neale: combined linkage & B-W association
Selzam et al.: Within- & Between-Family Polygenic Score Prediction
Howe et al.: within sib-pair GWAS

Van Dongen et al.: BMI discordant twins (practical)



Family based association. Will not talk about analyses that estimate

population association (given clustered data). In such cases:
*lgnore clustering

*Run analyses per group

*Robust standard errors (sandwich)

*GEE (generalized estimating equations)

*Mixed models / multi-level

*SEM (structural equation model; ‘case = family’)



-Hippocrates (5th century BCE) attributed different diseases in
twins to different material circumstances.

-Posidonius (1st century BCE) attributed similarities to shared
astrological circumstances.

-Augustinus (354-430): If twins are born at the same time how can
some twins become so different from each other?

DISCORDANT MZ TWIN DESIGN

Gustav lll, King of Sweden: study of dangers of tea and
coffee consumption. He commuted death sentences of
a pair of twin murderers if they participated in a trial.

They spent the rest of their lives in prison: one twin
drank 3 pots of coffee and the other 3 pots of tea
each day. The tea drinking twin died first at the age of
83, long after Gustav Ill, who was assassinated in 1792.
The age of death of the coffee-drinking twin is not
known, as both doctors assigned by the king to
monitor this study predeceased him.




Color coding identifies origin of alleles




IDENTITY BY DESCENT (IBD)
Sib 1

.
. I
Sib 2
N
KRR

4/16 = 1/4 sibs share BOTH parental alleles IBD = 2
- 8/16 = 1/2 sibs share ONE parental allele IBD = 1
- 4/16 = 1/4 sibs share NO parental alleles IBD = 0
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IBD, number= IBS

Color




IBD mapping: Sib-pair design to localize QTLs

(QTL = Quantitative Trait Locus)

* Multiple ‘families’” of two (or more) siblings
* Phenotypes on siblings
* Marker genotypes on sibs (& parents)



Haseman-Elston regression (1972)

The more alleles pairs of relatives share at a QTL, the greater
their phenotypic similarity (IBD 2 more similar than IBD 1 or 0).

Or

The more alleles they share IBD, the smaller the difference in
their phenotype.



Sib1-Sib2 distributions for a quantitative phenotype
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Haseman-Elston regression

3

y =-1.3577x + 3.1252

A significant
negative slope in a
regression
analysis (as
shown) indicates
linkage to a QTL

|

0 0.5

(single marker)

- *“ 2 2 2

IBD / 2 (assuming completely informative marker)

B= -2(1-2r)? qu )
a= 2[1-2(1-rr]lc,>+0c,’

r = recombination fraction between
Test: <07

qz = variance due to QTL

marker & QTL




QTL (quantitative trait locus) as a random effect
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y; = phenotype (for person i)

m = mean

Q, = QTL genotype contribution for a chromosomal segment
A. = Contribution from rest of genome

E. = residual

var(y) 5.2+ s?2 + s 2



Genetic covariance between relatives

covly,y;) = PS> t+  @;s,’

a. = average prop. of alleles shared in genome
(kinship coefficient (e.g. 0.5 for DZ twins))

p; = proportion of alleles IBD at QTL (0, %2 or 1) (pi-hat)

= Pr(2 alleles IBD) + %:Pr(1 allele IBD)

= proportion of alleles IBD in non-inbred pedigree

Estimate with genetic markers (advantageous to have parental genotypes)




Combined Linkage and Association Sib-Pair Analysis for Quantitative Traits

D. W. Fulker,"* S. S. Cherny,"* P. C. Sham,” and J. K. Hewitt'

'Institute for Behavioral Genetics, University of Colorado, Boulder; and *Social, Genetic and Developmental Psychiatry Research Centre,

Institute of Psychiatry, University of London, London

Summary

An extension to current maximum-likeliho
components procedures for mapping quan
loci in sib pairs that allows a simultancous |
association is proposed. The method involv
of the allelic means for a test of associati
multaneous modeling of the sib-pair covai
ture for a test of linkage. By partitioning

effect of a locus into between- and within-¢
ponents, the method controls for spurious
due to population stratification and adm
power and efficacy of the method are illustr:
simulation of various models of both real ¢
association.

has been due to their perceived importance within the

An extension to current maximume-likelihood variance-
components procedures for mapping quantitative-trait
loci in sib pairs that allows a simultancous test of allelic
association is proposed. The method involves modeling
of the allelic means for a test of association, with si-
multaneous modeling of the sib-pair covariance struc-
ture for a test oftrkager By partisiening of the mean
cffecpof a locus into between- and within-sib3hp com-
pghents, the method controls for spurious associatyons
die to population stratification and admixture. Jhe
power_and efficacy of the method are illustrated ghfough
simulation™o lous models of both reatand spurious
association.
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Behavior Genetics, Vol. 29, No. 4, 1999

Distinguishing Population Stratification from Genuine
Allelic Effects with Mx: Association of ADH2
with Alcohol Consumption

M. C. Neale,' S. S. Cherny,>? P. C. Sham, J. B. Whitfield,* A. C. Heath,” A. J. Birley,®
and N. G. Martin®

Combined Linkage and Association Sib-Pair Analysis for Quantitative Traits
D. W. Fulker,'* S. S. Cherny,'* P. C. Sham,* and J. K. Hewitt

'Institute for Behavioral Genetics, University of Colorado, Boulder; and “Social, Genetic and Developmental Psychiatry Research Centre,
Institute of Psychiatry, University of London, London

Behavior Genetics, Vol. 34, No. 2, March 2004 (© 2004)

Combined Linkage and Association Tests in Mx

D. Posthuma,'* E. J. C. de Geus,! D. I. Boomsma,' and M. C. Neale?




Neale / Fulker / Posthuma: Expected Sib-Pair Means (=between effect)
and Differences (=within effect) and Their Frequencies for a Single

Additive Two-Allele Locus

Table I. Expected Sib-Pair Means and Differences and Their Frequencies for a Single Additive

Two-Allele Locus

Genotype Additive effects
Sib 1 Sib 2 Sib 1 Sib 2 Mean Difference/2 Frequency
A;A} AIAI a a a 0 p4 +p3q + (p2q2/4)
AA, AA, a 0 al2 ar2 p*q + (P’q*12)
A;A 1 AgAg a —qa 0 a p2q2/4
AA, AA; 0 a al2 —al2 plq + (p’q*2)
AA,; A A, 0 0 0 0 psq + 3p2q2 +pq3
AA, AA, 0 —a —af2 al2 (P*g*) + pg’
AsA, AJA; —a a 0 —a pq*/4
AA, AA, -a 0 —al2 -al2 (p*q*2) + pg’
AA, AA; —a —a —a 0 (p*q*/4) + pg* + ¢*

For classic Mx script see: Posthuma paper (appendix)
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Within-sibship genome-wide association
analyses decrease bias in estimates of direct
genetic effects

Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation
(direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects).
Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets

have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and
within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than
population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive
symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and
Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and
body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density
lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller
height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect

genetic effects.

Comparing Within- and Between-Family
Polygenic Score Prediction

Saskia Selzam,!”* Stuart J. Ritchie,! Jean-Baptiste Pingault,’.2 Chandra A. Reynolds,* Paul F. O'Reilly,!*
and Robert Plomin'!

Polygenic scores are a popular tool for prediction of complex traits. However, prediction estimates in samples of unrelated participants
can include effects of population stratification, assortative mating, and environmentally mediated parental genetic effects, a form of ge-
notype-environment correlation (rGE). Comparing genome-wide polygenic score (GPS) predictions in unrelated individuals with pre-
dictions between siblings in a within-family design is a powerful approach to identify these different sources of prediction. Here, we
compared within- to between-family GPS predictions of eight outcomes (anthropometric, cognitive, personality, and health) for eight
corresponding GPSs. The outcomes were assessed in up to 2,366 dizygotic (DZ) twin pairs from the Twins Larly Development Study from
age 12 to age 21. To account for family clustering, we used mixed-effects modeling, simultaneously estimating within- and between-fam-
ily effects for target- and cross-trait GPS prediction of the outcomes. There were three main findings: (1) DZ twin GPS differences pre-
dicted DZ differences in height, BMI, intelligence, educational achievement, and ADHD symptoms; (2) target and cross-trait analyses
indicated that GPS prediction estimates for cognitive traits (intelligence and educational achievement) were on average 60% greater be-
tween families than within families, but this was not the case for non-cognitive traits; and (3) much of this within- and between-family
difference for cognitive traits disappeared after controlling for family socio-economic status (SLS), suggesting that SES is a major source of
between-family prediction through rGE mechanisms. These results provide insights into the patterns by which rGE contributes to GPS
prediction, while ruling out confounding due to population stratification and assortative mating.

W) Check for updates




Y; =a, +by, (GPS; - meanGPS)) + by meanGPS; +g; +¢;

Y = the outcome, GPS = polygenic score, meanGPS = mean GPS in
family j, i = {1,2} = individual twin within family |

a, = intercept
g; = random effect: change in intercept for twins in family j
€ = the independent random error for each individual i in family |

b, = between-family effect: expected change in Y given one unit
change in meanGPS

b,, = within-family effect: expected change given one unit change in
the difference between the individual GPS and the meanGPS.



Y; =a, +by, (GPS; - meanGPS)) + by meanGPS; +g; +¢;

A random effect term o?(g) estimates the difference between each
group intercept g;and the overall intercept a,, accounting for
residual structure in the data (genetic and environmental) that lead
to trait similarity of twins.

The use of a mixed-effects model is justified if co-twins correlate in
the outcome. This can be estimated by ICC (intraclass correlation):

ICC = cor (Yy;, Y,;) = 0%g / (0°g + 0% €)



Y; =3y + by (GPS; - meanGPS;) + by meanGPS; +g; +g;

g; = the independent random error for each individual i in family

GPS;; - GPS; -
meanG PSj meanG PSj




These are equivalent models.

The model on the left includes epsilon, which includes
genetic and environmental effects.

The model right is the traditional twin model where A, C
and E feature explicitly.

The terms (left) "random error" is perhaps confusing as
the epsilon includes 1) measurement error, 2) unshared
environmental effects and genetic effect (mendelian
segregation). The term gj (left) can include shared
environmental effects in addition to the average
breeding value (of parents).



Ulcerative colitis - MZ discordant design
Type 2 diabetes 4
Type 1 diabetes 1

Schizophrenia 1

Rheumatoid arthritis

Psoriasis 1

Prostate cancer 1

Parkinsons disease 1

Zygosity
Multiple sclerosis 1
M
Major depressive disorder 4 DZ

Crohns disease -

Colorectal cancer 1

Breast cancer 1
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Attention deficit hyperactivity disorder (males) -
Attention deficit hyperactivity disorder (females)

Alzheimers disease (males) 1

Alzhemers disease (females) | G -
0 25 50 75
Concordance rate

Hagenbeek et al.: Twin Studies in Rapidly Changing Times. https://osf.io/rne4s/
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Figure 1. Flowchart of the selection procedure of MZ twin pairs included in each analysis. All numbers in this figure represent the numbers of
MZ twin pairs. GE=gene expression. Each row (a-f) illustrates the available data and selection criteria for MZ pairs included in a particular
analysis. (@) Frequency of BMI discordance at one, two or more longitudinal time points in MZ pairs with longitudinal BMI data. (b) Number of
MZ pairs who are discordant across all projects and number of pairs who are still discordant at the first next available follow-up time point. (c)
Discordant pairs included in the analyses of lifestyle data. (d) MZ pairs who were discordant at blood draw and were included in the analyses
of biomarkers and gene expression. (e) MZ pairs who were discordant at all time points of participation and were included in the analyses of
biomarkers and gene expression. (f) MZ pairs who became discordant after blood draw and who were studied to examine biomarkers and
gene expression difference before BMI discordance onset.

MZ discordant designs
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Longitudinal weight differences, gene expression and blood

biomarkers in BMI-discordant identical twins
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Frequency

-10.00 0.00 15.00

Difference BMI

17 longitudinally discordant pairs




Studying biomarkers in BMI-discordant twins rules out genetic
pleiotropy as an explanation for the association by design:

If the association would solely exist because genetic variants that
predispose to a high BMI also cause changes in biomarkers, MZ
twins who are discordant for BMI should have similar biomarker
levels because MZ twins have the same genetic vulnerability.

In NTR we had longitudinal BMI data on 2775 MZ pairs, in
NTR_biobank there were 1055 pairs with biomarker data.

There were 17 pairs who were longitudinally discordant
(> 3 BMI points, differences in body weight 80 vs 63 kg.)

BMI discordant MZ twin pairs had differences in all metabolic markers
with the heavier twin having an unfavorable metabolic profile.

The heavier twins also had higher blood levels of IL-6, soluble IL-6
receptor, C-reactive protein and GGT( gamma glutamyl transferase).




Heavier twin Leaner twin Mean difference P-value
(heavier — leaner twin)

N 17 17
N, male/female pairs 1/16 1/16
Age (years) 456 (11.6)
Birth weight (q) 2366 (742) 2538 (752) - 172 0.27
BMI (kg m~?) 286 (2.7) 22.5 (2.4) 6.1 51%10°7
Weight (kg) 80.1 (9.6) 63.1 (9.2) 17.0 1.9%x10°7
Height (cm) 167.4 (5.6) 167.3 (5.3) 0.1 0.84
Waist (cm) 92.2 (10.3) 76.6 (8.5) 15.6 39%x10°8
Hip (cm) 109.7 (5.8) 98.6 (6.9) 11.1 8.1x10°1°
WHR (cmcm ™) 0.84 (0.08) 0.78 (0.07) 0.06 6.6x10°
Glucose (mmol |~ ") 5.4 (0.6) 5.1 (0.4) 0.3 0.06
Insulin (pIU ml~") 10.1 (6.0) 5.3 (2.6) 4.8 0.03
Total Chol (mmoll™") 5.9 (1.5) 5.2 (1.4) 0.7 0.03
LDL (mmol I77) 3.6 (1.4) 3.2 (1.5) 0.4 0.15
HDL (mmol 1) 1.5 (0.3) 1.6 (0.3) -0.1 0.20
Triglycerides (mmol =1 1.5 (0.9) 0.9 (0.4) 0.6 92x10"%
CRP (mg 1™ ") 4.4 (4.6) 1.2 (1.4) 3.2 49%x10™ 4
TNF-o (pg ml~") 1.95 (3.7) 1.05 (1.3) 0.9 0.86
IL-6 (pg ml~") 23 (1.9 1.4 (0.8) 0.9 0.12
sIL-6R (pg ml™") 42645 (13375) 38672 (13340) 3973 0.14
Fibrinogen (g!~") 3.3 (0.7) 2.6 (0.6) 0.7 1.3x107°
AST (U171 229 (6.9) 22.4 (10.0) 0.5 0.32
ALT (UI7T) 12.6 (6.6) 12.0 (5.4) 0.6 0.90
GGT (Ul 29.4 (18.0) 20.6 (10.6) 8.8 19x1073
N (%) using lipid-lowering medication 1 (5.9%) 1 (5.9%) 0 0.99
N (%) using diabetes medication 0 (0%) 0 (0%) 0 0.99
N (percentage of female twins) menop4 6 (37.5) 6 (37.5%) 0.99
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Dataset: 17 twin MZ pairs, longitudinally discordant for BMI

File 1: twin = case (twin 1/ 2 is not leaner/heavier)
file 2: pair = case (one twin (recoded 3 and 4) is the heavier twin.

Variables: Bmi, weight, hip, waist, glucose
Reproduce the results in table 3.




