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In Memoriam



• GCTA / G-REML
• What is GCTA / G-REML?

• Describing Genetic Relationship Matrices (GRMs)

• Describing the model

• M-GCTA
• Describing the model

• Deriving the expected variance

• Deriving the expected covariance

This Session



• Provides an estimate of the amount of
phenotypic variance explained by genetic
markers on a SNP microarray (“SNP
heritability”)

• Uses unrelated individuals

• Originally devised to investigate the
missing heritability conundrum in human
genetics

What is “GCTA” / G-REML?



• Unrelated individuals

• If a trait is genetically 
influenced, then 
individuals who are 
more genetically similar 
should be more 
phenotypically similar

• Can be thought of like a 
regression*

• Slope of regression line 
is proportional to 
heritability

GCTA Intuition

*This is not how the model is fit though!



Classical Twin Design
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Sibling Pairs and IBD sharing
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Unrelated Pairs and IBS sharing
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• Two step process

• Estimate Genetic relatedness matrix (GRM)
• Exclude one from each pair of individuals who are >2.5% IBS (genetically 

related individuals more likely to share common environments; individuals 
who are more genetically similar dominate analysis)

• Estimate variance components (via “REML” or via “FIML”)

GCTA Process



Ajk is the genomic relatedness between individuals j and k

xij is the dosage {xij = 0,1,2} of the reference allele for SNP i for individual j

xik is the dosage {xik = 0,1,2} of the reference allele for SNP i for individual k

pi is the frequency of the reference allele for SNP i

M is the number of markers across the genome

Think of Ajk as like an average genetic correlation across the genome for individuals  j and k

(1) GCTA- Genetic Relationship Matrix

M
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(1) GCTA- Genetic Relationship Matrix

𝑟 =
1

𝑁

σ(𝑋 − ത𝑋)(𝑌 − ത𝑌)

𝑆𝐷𝑋𝑆𝐷𝑌

Recall the formula for a Pearson correlation coefficient:

The formula for the elements of the GRM is analogous
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(2) Estimate Variance Components
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∑ is the expected phenotypic covariance matrix

σ2
a is the additive genetic variance

σ2
e is the unique environmental variance

A is a GRM containing pairwise genome-wide genetic “correlation” between individuals

I is an identity matrix
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• σA
2/(σA

2 + σE
2 ) is the estimated “SNP heritability” of the trait

• The proportion of phenotypic variance explained by SNPs on the
microarray

• Since most markers on arrays are common, this will primarily reflect
common genetic variation, but will also include rare variation that
happens to be tagged by the array.

• SNP heritability is different from “heritability” which is typically 
estimated from twin studies

Interpretation of Parameter Estimates



M-GCTA
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Eaves et al., 2005,
In Kendler and Eaves, 2005.

Extending the Phenotype



• An extension of GCTA to estimate the proportion of offspring 
phenotypic variance explained by the maternal (and child’s) genomes

• Requires genome-wide genotyped mother-offspring pairs (“dyads”) 
where the offspring has been phenotyped

• Dyads should be “unrelated” to one another

M-GCTA
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Deriving the Phenotypic 
Variance
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Deriving the Phenotypic 
Covariance
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Estimate Path Coefficients*

Σ =  Am2 + B(c2+h2) + Δmc + Ie2

∑ is the expected phenotypic covariance matrix for the offspring

m2 is the additive genetic variance from the maternal genome

e2 is the residual variance (includes environmental variance)

A is a GRM containing pairwise genome-wide genetic correlation between mothers

I is an identity matrix

B is a GRM containing pairwise genome-wide genetic correlation between children

Δ is a GRM containing pairwise (twice) the genome-wide genetic correlation between mothers and children

c2+h2 is the additive genetic variance from the child’s genome

mc is the covariance arising because of the same genes with (indirect) maternal and (direct) fetal effects

*Note the implicit constraint in that the covariance mc can only be != 0 if both m and c are non-zero



Formulating the Delta Matrix
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Estimate Variance Components (Alternative Formulation)*

Σ =  Aσ2
m + Bσ2

g + Δσ2
q + Iσ2

e

∑ is the expected phenotypic covariance matrix

σ2
m is the additive genetic variance from the maternal genome

σ2
e is the residual variance (includes environmental variance)

A is a GRM containing pairwise genome-wide genetic “correlation” between mothers

I is an identity matrix

B is a GRM containing pairwise genome-wide genetic “correlation” between children

Δ is a GRM containing pairwise (twice) the genome-wide genetic “correlation” between mothers and children

σ2
g is the additive genetic variance from the child’s genome

σ2
q is the covariance arising because of the same genes with (indirect) maternal and (direct) fetal effects

*This model could be fitted in e.g. the GCTA software package, but it contains no implicit constraint



Some Empirical Results
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Trio GCTA and the Future


