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We thank you for your time spent taking this survey. 
Your response has been recorded.

2022 International Statistical Genetics Workshop 
Polygenic risk score tutorial

Today we'll be working through the some of the tasks involved in running a polygenic risk
score analysis. You'll be working together as a group to help each other with the tasks.
 
In each task you will be asked to work out a solution to a problem and share your solution
using this questionnaire. There is more than one solution to some of these tasks and you can
use whatever method works best for you.
Please spend a couple of minutes introducing yourselves and choose one person from your
group to be the scribe. This person will submit the groups solution(s) using this questionnaire.
 
Remember that you can share screen and also share code or instructions via chat.
 
As you're going through this tutorial we'll call you back into the main room to check in and take
a break.
 
There are hints built into the questionnaire but if you need more help please click the 'Ask for
help' button.
 
Today you will be using both the ssh server and Rstudio.

 
 
To get started ssh into the workshop server.
 
Use mkdir to make a working directory for today's tutorial and copy the files from
/faculty/sarah/2022/Day7/ to your working directory.

cp -r /faculty/sarah/2022/Day7/* .



In your Rstudio window set your working directory to be the directory you have just made.
 

Today's icebreaker question - what was the last TV series or movie you watched (or game you
played or book you read)

What number zoom breakout room are you in?

What are the first names of your group members?

Has anyone in your group run a polygenic risk score analysis

In today's scenario you are a group of analysts working with the data from the twinData data
set that you used last week.

To run these analyses you will work with both the terminal window and Rstudio. Code to be
run in the terminal will be in blue and code for Rstudio will be in black.

You have been asked to replicate some results from another group that you collaborate with.

They are sceptical about the reliability of your height and weight data because they were
collected with self report questionnaires.

To show them that the data are reliable they have asked you to run a polygenic risk score
analysis to check that the self reported height data can be predicted by the GWAS of height
from the UKBiobank.

They have asked you run the analysis using a program called PRSice
(https://www.prsice.info/). PRSice is often used to run analyses to try and find the best
predictor; however, as the aim of this analysis is to make sure that the data are behaving as
expected your collaborators have asked you to run the prs at a series of set thresholds
instead.

You agree to do this, to save some time you download a GWAS of height from the Neale lab

Yes

No



You agree to do this, to save some time you download a GWAS of height from the Neale lab
UKB GWAS (http://www.nealelab.is/uk-biobank) and start running the analyses...

The first step to running the analysis is to set up the files and make sure everything is in the
right format.
 
The PRSice analyses require 6 files: 3 PLINK files, a phenotype file, a covariate file and a file
containing weights you will use to build the polygenic risk score
 
These files have already been created and are in the folder you have just copied, but we'll go
through them anyway.
 
First, the 3 PLINK files: ozbmi.fam ozbmi.bim  ozbmi.bed

ozbmi.fam contains the pedigree information
You can take a look at ozbmi.fam by typing head ozbmi.fam into your ssh terminal
The .fam file has 6 columns: Family ID, Individual ID, Fathers ID (0=missing), Mothers ID
(0=missing), Sex (1=M, 2=F), Phenotype (-9=missing)

 
ozbmi.bim contains the information about the genetic variants that have been genotyped
You can take a look at ozbmi.bim by typing head ozbmi.bim into your ssh terminal
The .bim file has 6 columns: Chromosome Number, Variant Name, cM location (set to 0 as it
is not needed), base pair location, Allele 1, Allele2

ozbmi.bed contains the genotype data. It is a binary file and you can't look at it using head.

Next we'll take a look at the phenotype file by typing head ozht.pheno



Next we'll take a look at the phenotype file by typing head ozht.pheno
This file contains 3 columns: Family ID, Individual ID, Height (in cm)

You can take a look at the covariate file using by typing head ozht.cov
This file contains 8 columns: Family ID, Individual ID, Age, Sex (1=M,2=F), and 4 genetic
principle components which we will use to account for the effects of ethnicity in our analyses

 
The last file contains a weights which you will use to build the polygenic risk score
You can take a look at the covariate file using by typing head weights.prs
This file contains 7 columns: Variant Name, Chromosome Number, base pair location, Allele
1, Allele 2, Beta (from the GWAS in the UK Biobank) and P-values (from the GWAS in the UK
Biobank)

Now that we have checked the files we are ready to run our analyses.
 
The PRSice analysis will go through the following steps

The data in the weights.prs file will be clumped. Across the genome there is a high



amount of autocorrelation (called Linkage disequilibrium or LD). When calculating the
PRS we want to include weights from a set of independent variants. The clumping
process allows us to do this by keeping the strongest result from the GWAS analysis for
each set of correlated variants.
The polygenic risk scores (PRS) will then be calculated
The predictive ability of each PRS would usually then be examined by including it in a
linear regression analysis to try and work out the best threshold - we will not be doing this
The results of these analyses would usually then be plotted - we will not be doing this

 
Copy the following code and paste it into the terminal window

Rscript /usr/local/bin/PRSice.R --dir . --prsice
/usr/local/bin/PRSice  --base weights.prs --target ozbmi  --thread 1 
--snp SNP --chr CHR --bp BP --A1 A1 --A2 A2 --stat BETA --pvalue P  -
-beta --pheno ozht.pheno --score sum --all-score --bar-levels
0.00000005,0.000001,0.0001,0.01,1  --fastscore --quantile 5 --quant-
ref 1 --binary-target F --no-regress

PRSice will run and print a lot of information on the screen - this information will also be
printed to the PRSice.log file and we will look at it step by step...
 
hint: If you are having trouble copying and pasting you can find the code we are using today in
2022day7.txt
 
 

The first section of the output reports back all the options that we included in our PRSice
analysis and let us know what the defaults were for options we did not specify



The next section of reports the process of clumping and PRS calculation

The PRSice analysis made 3 files



The PRSice analysis made 3 files

PRSice.all_score - this contains the PRS that were calculated for each individual. Take a
look at this file using head.
PRSice.prsice - this contains the output from the regression analyses for each PRS.
IGNORE THIS FILE
PRSice.log - this contains a copy of the output that was printed to the screen

To see how well the PRS predicts height we will read the data into R and run a series of
regression models
For this section of the tutorial we are going use Rstudio and you can either copy the code from
qualtrics and paste into R or open the 2022Day7.txt file and run the code from there

We will start by reading the phenotype, covariate and PRS files into R.
# Read in the phenotype covariance and prs files
pheno<-read.table("ozht.pheno", header=T)
covar<-read.table("ozht.cov", header=T)
PRS<-read.table("PRSice.all_score", header=T)

#lets give the PRS variables some more user friendly names
head(PRS)
names(PRS)<-c("FID","IID","PRS1","PRS2","PRS3","PRS4","PRS5")
head(PRS)

#and convert the height to cm
pheno$ht<-pheno$ht*100

We will then merrge the covar and PRS files using the individual ID "IID" as the key.
# Merge the pheno covar and PRS files
# we are using [ ] to subset the columns so that the FID is not duplicated in the merged files
temp=merge(pheno, covar[,2:8], by="IID")
longData=merge(temp, PRS[,2:7], by="IID")

#Take a look at the result to check that it worked
head(longData)

#Next we are going to run a Null model that includes the covariates but it doesn't include any
PRS
nullModel<-lm(ht~age+sex+PC1+PC2+PC3+PC4, data=longData)
summary(nullModel)
 



#Then we are going to run a model that includes the covariates and the first PRS
thresh1<-lm(ht~age+sex+PC1+PC2+PC3+PC4+PRS1, data=longData)
summary(thresh1)

#We can compute the difference in R2 between the 2 models using the following code
summary(thresh1)$r.squared-summary(nullModel)$r.squared

 
Now working together as a group run the a series of regression analyses to predict height
from each of the other PRS and record the results of your analyses in the table below
 
If you need help running the regression analyses take a look at this website
https://www.statmethods.net/stats/regression.html

 

Do you think the PRS predict height well?

You put the results in an email and send it off to your collaborators.
Just after you hit send you have a sinking feeling as you realize that PRSice does not correct
for relatedness and these analyses have assumed that your participants are independent of
each other.
Do you...

I'm going to pretend you didn't say that and that you had picked option C instead.

 Beta SE P R2

PRS1

PRS2

PRS3

PRS4

PRS5

A - Ignore this fact, after all the collaborators asked you to do
this

B - Send one of those annoying recall emails in a futile attempt to turn back
time

C - Email your collaborators and let them know you will rerun the analyses correcting for
relatedness



I'm going to pretend you didn't say that and that you had picked option C instead.
 

Your sample contains MZ and DZ twins and we can rerun these analyses in openMx to
correct for relatedness but we need to add the zygosity information to longData
 
# Read in the zygosity information
zyg<-read.table("ozht.zyg", header=T)

#We will then merge on the zyg data using the individual ID "IID" as the key.
longData1=merge(longData, zyg[,2:5], by="IID")

#Take a look at the result to check that it worked
head(longData1)

#For openMx we need our data to be in a wide format with one line per family so we will need
to reshape the data.
#In this code the variables listed in v.names are present for both twins
#The variable Twin specifies if the person is twin 1 or 2
wideData=reshape(data = longData1, direction = "wide", v.names =
c("IID", "ht", "age", "sex", "PC1", "PC2", "PC3", "PC4", "PRS1",
"PRS2", "PRS3", "PRS4", "PRS5"), idvar = "FID", timevar = "Twin",
sep="_" )

# We will replace all missingness in the definition variables with 0
# the people with missing definition variables don't have phenotypic data so this will not bais
estimates
wideData[,c(6:12,19:25)][is.na(wideData[,c(6:12,19:25)])] <- 0

We are now ready to analyse these data in openMx but before we do, let think about what we
expect.

Do you think the pvalue will...

Do you think the beta will...

Stay the
same

Get bigger (closer to
1)

Get smaller (closer to
0)



Do you think the standard error will...

Next we are going to run the model in openMx to correct for relatedness
You can find the openMx code in the 2022Day7.txt file
We'll walk through some sections of the code to make sure we know what is going on

At the start of the code we'll define the variables and start values so we can pull these in later

# Load Libraries & Options
library(OpenMx)
mxOption( NULL, "Default optimizer", "NPSOL" )
source("miFunctions5272022.R")

# Select Variables for Analysis
vars <- 'ht' # list of variables names
nv <- 1 # number of variables
ntv <- nv*2 # number of total variables
depVar <- c("ht_1","ht_2") # dependent variables
indVar <- c("age_1", "sex_1", "PC1_1", "PC2_1", "PC3_1", "PC4_1",
"PRS1_1",
"age_2", "sex_2", "PC1_2", "PC2_2", "PC3_2", "PC4_2", "PRS1_2") #
independent variables or predictors
selVars <- c(depVar,indVar)

# Select Data for Analysis
mzData <- subset(wideData, MZDZ==1, selVars)
dzData <- subset(wideData, MZDZ==2, selVars)

# Set Starting Values

Stay about the
same

Get
bigger

Get smaller

Stay about the
same

Get
bigger

Get smaller



# Set Starting Values
svMe <- 170 # start value for means
svVa <- 100 # start value for variance
lbVa <- 0.00001 # lower bound for variance
svBe <- 0.0001 # start value for means

# Create Data Objects for Multiple Groups
dataMZ <- mxData( observed=mzData, type="raw" )
dataDZ <- mxData( observed=dzData, type="raw" )

 

Next we'll set up the objects to hold the definition or independent variables and the betas for
the regression
# Objects to hold definition variables for the regression
dPC1 <- mxMatrix( type="Full", nrow=1, ncol=2, free=FALSE,
labels=c("data.PC1_1","data.PC1_2"), name="dPC1" )
dPC2 <- mxMatrix( type="Full", nrow=1, ncol=2, free=FALSE,
labels=c("data.PC2_1","data.PC2_2"), name="dPC2" )
dPC3 <- mxMatrix( type="Full", nrow=1, ncol=2, free=FALSE,
labels=c("data.PC3_1","data.PC3_2"), name="dPC3" )
dPC4 <- mxMatrix( type="Full", nrow=1, ncol=2, free=FALSE,
labels=c("data.PC4_1","data.PC4_2"), name="dPC4" )
dsex <- mxMatrix( type="Full", nrow=1, ncol=2, free=FALSE,
labels=c("data.sex_1","data.sex_2"), name="dsex" )
dage <- mxMatrix( type="Full", nrow=1, ncol=2, free=FALSE,
labels=c("data.age_1","data.age_2"), name="dage" )
dPRS <- mxMatrix( type="Full", nrow=1, ncol=2, free=FALSE,
labels=c("data.PRS1_1","data.PRS1_2"), name="dPRS" )

# Objects to hold betas for the covariates
bPC1 <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE,
values=svBe, label="b1", name="bPC1" )
bPC2 <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE,
values=svBe, label="b2", name="bPC2" )
bPC3 <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE,
values=svBe, label="b3", name="bPC3" )
bPC4 <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE,
values=svBe, label="b4", name="bPC4" )
bsex <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE,



bsex <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE,
values=svBe, label="b5", name="bsex" )
bage <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE,
values=svBe, label="b6", name="bage" )
bPRS <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE,
values=svBe, label="b7", name="bPRS" )

Then we will build the model for the means that includes the regression tems
(we are using Kronecker products here to mutliply the values of the independent variables by
the betas)
meanG <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE,
values=svMe, labels=labVars("mean",vars), name="meanG" )
ExpMean <- mxAlgebra( expression= (meanG + bPC1%x%dPC1 + bPC2%x%dPC2
+ bPC3%x%dPC3 + bPC4%x%dPC4 + bsex%x%dsex + bage%x%dage +
bPRS%x%dPRS) , name="expMean" )

and do some house keeping (making a list of the objects so we can pull these into the model
later)
pars<- c(bPC1, bPC2, bPC3, bPC4, bsex, bage, bPRS, meanG)
defs<- c(dPC1, dPC2, dPC3, dPC4, dsex, dage, dPRS)

 

The covariance model in this script is very simple as we are only trying to correct for
relatedness
We are specifying 1 variance for all individuals, an MZ covariance and a DZ covariance
# Create Algebra for expected Variance/Covariance Matrices
covMZ <- mxMatrix( type="Symm", nrow=ntv, ncol=ntv, free=TRUE,
values=c(.1,.05,.1),
lbound=valDiag(lbVa,ntv),labels=c("var","cMZ21","var"), name="covMZ"
)
covDZ <- mxMatrix( type="Symm", nrow=ntv, ncol=ntv, free=TRUE,
values=c(.1,.05,.1), lbound=valDiag(lbVa,ntv),
labels=c("var","cDZ21","var"), name="covDZ" )

Next we build the expection and model objects
# Create Expectation Objects for Multiple Groups
expMZ <- mxExpectationNormal( covariance="covMZ", means="expMean",
dimnames=depVar )
expDZ <- mxExpectationNormal( covariance="covDZ", means="expMean",
dimnames=depVar )
funML <- mxFitFunctionML()



funML <- mxFitFunctionML()

# Create Model Objects for Multiple Groups
modelMZ <- mxModel( pars, defs, ExpMean, covMZ, dataMZ, expMZ, funML,
name="MZ" )
modelDZ <- mxModel( pars, defs, ExpMean, covDZ, dataDZ, expDZ, funML,
name="DZ" )
multi <- mxFitFunctionMultigroup( c("MZ","DZ") )

# Build Saturated Model
model_wPRS <- mxModel( "wPRS", pars, modelMZ, modelDZ, multi )
 

We run the model
# RUN MODEL
# Run Saturated Model
fit_wPRS <- mxRun( model_wPRS )
(sum_wPRS <- summary( fit_wPRS ))

And then run a submodel whic drops the PRS effect from the model
# Drop the PRS from the model (running the null model)
model_Null <- mxModel( fit_wPRS, name="noPRS" )
model_Null <- omxSetParameters( model_Null, labels="b7", free=FALSE,
values=0 )
fit_Null <- mxRun( model_Null)
(sum_Null <- summary( fit_Null ))

We can work out the significance of the PRS effect by comparing the fit of the models
mxCompare( fit_wPRS, fit_Null )

and calculate r2 as the difference in variance between the models gives variance explained by
PRS, divided by total variance
(fit_Null$MZ$covMZ$values[1,2]-
fit_wPRS$MZ$covMZ$values[1,2])/fit_Null$MZ$covMZ$values[1,2]

Now working together as a group run the a series of openMx analyses to predict height from
each of the other PRS and record the results of your analyses in the table below

 Beta SE P r2

PRS1

PRS2

PRS3



 

You will need to update the name of the PRS variable being included in the model in two
places within the script
1. In the list of variables being included in the model
2. In the matrix that holds the PRS definition variable

How do the openMx results (correcting for relatedness) compare to those from the lm
regression (that assume independence)?
 
Consider your results from PRS2.

 Beta SE P r2

lm     

openMx     

 
 

You have just finished running all the analyses and are ready to send the results off to the
collaborators when your colleague asks how your openMx analysis accounts for the fact that
some of your twins might be related (ie twins in family 1 are cousins of twins in famly 2).

By this stage you are very frustrated and you decide to reanalyse the data again this time
using a method that doesn't require you to know about the relatedness between participants
before you run the analyses.

After doing some searching online you decide to use a program called gcta
(https://yanglab.westlake.edu.cn/software/gcta/#Overview)

gcta is usually used to estimate heritability in unrelated individuals BUT if you run this in a
sample that includes close relatives it produces heritability estimates that match a twin/family
AE model.
Today we are going to exploit this capability to use gcta to run regressions that correct for
relatedness. The advantage of using gcta in this case is that as we will be calculating the
relatedness from genotype data we do not need to know family structure before we the

PRS4

PRS5
 Beta SE P r2

I'm stuck please give me a
hint



relatedness from genotype data we do not need to know family structure before we the
analyses.

As a reminder code to be run in the terminal will be in blue and code for Rstudio will be in
black.

Our first step is to calculate a genetic relatedness matrix or GRM
# Make GRM using GCTA
gcta64 --bfile ozbmi --make-grm --out ozGRM

We can take a look at the contents of the GRM using the following code
#  Open GRM and visualise off-diagonal distribution
ReadGRMBin=function(prefix, AllN=F, size=4){
  sum_i=function(i){
    return(sum(1:i))
  }
  BinFileName=paste(prefix,".grm.bin",sep="")
  NFileName=paste(prefix,".grm.N.bin",sep="")
  IDFileName=paste(prefix,".grm.id",sep="")
  id = read.table(IDFileName)
  n=dim(id)[1]
  BinFile=file(BinFileName, "rb");
  grm=readBin(BinFile, n=n*(n+1)/2, what=numeric(0), size=size)
  NFile=file(NFileName, "rb");
  if(AllN==T){
    N=readBin(NFile, n=n*(n+1)/2, what=numeric(0), size=size)
  }
  else N=readBin(NFile, n=1, what=numeric(0), size=size)
  i=sapply(1:n, sum_i)
  return(list(diag=grm[i], off=grm[-i], id=id, N=N))
}

GRM=ReadGRMBin(prefix = "ozGRM")

We can look at the distribution of diagonal values (ie the covariation of a person with
themselves) using the following code.

hist(GRM$diag, breaks=100) # Large values can indicate data problems
or outstanding homozygosity rate 

Usually we would expect the values to be close to 1. This teaching example only includes



~10,000 snps so there is more variation here than we would usually expect.

How many off diagonal elements are in this matrix (ie covarations between people)?

Use length(GRM$off) to find out and report the number in the box below

We can look at the off diagonal elements using the following code

hist(GRM$off, breaks = 100)

This plot isn't very informative as most relationship coefficients are close to 0. We can update
our plot to only show relationship coefficients greater than 0.05 using the following code

hist(GRM$off[which(GRM$off>0.05)], breaks=100) 

This plot clearly shows we have a lot of siblings and MZ twin pairs. If we zoom in even further
we might spot those cousins

hist(GRM$off[which(GRM$off>0.05)], breaks=100, xlim=c(0.05,0.3)

 

We will use R to write out the files to run GCTA

#We'll start by reading in the data files again in case they have been lost
prs=read.table("PRSice.all_score", header=T)
covar<-read.table("ozht.cov", header=T)
pheno<-read.table("ozht.pheno", header=T)

#Then rescaling and renaming
pheno$ht<-pheno$ht*100
names(prs)<-c("FID","IID","PRS1","PRS2","PRS3","PRS4","PRS5")
 
#Then merging the data into 1 dataframe
all=merge(covar, prs, by=c("IID", "FID"))
all=merge(all, pheno, by=c("IID", "FID"))

# Then we'll write out the covariate files for the continuous covariates that we want to include
in the GCTA model
# It's important that the PRS is in the last column of this file



write.table(all[,c("FID", "IID", "age", "PC1", "PC2", "PC3", "PC4",
"PRS1")], "ozht.prs1.qcovar", quote = F, row.names = F)
write.table(all[,c("FID", "IID", "age", "PC1", "PC2", "PC3", "PC4",
"PRS2")], "ozht.prs2.qcovar", quote = F, row.names = F)
write.table(all[,c("FID", "IID", "age", "PC1", "PC2", "PC3", "PC4",
"PRS3")], "ozht.prs3.qcovar", quote = F, row.names = F)
write.table(all[,c("FID", "IID", "age", "PC1", "PC2", "PC3", "PC4",
"PRS4")], "ozht.prs4.qcovar", quote = F, row.names = F)
write.table(all[,c("FID", "IID", "age", "PC1", "PC2", "PC3", "PC4",
"PRS5")], "ozht.prs5.qcovar", quote = F, row.names = F)

# Then we'll write out the covariate files for the binary covariates that we want to include in the
GCTA model
write.table(all[,c("FID", "IID", "sex")], "ozht.covar", quote = F,
row.names = F)

# Then we'll write out the phenotype files for the GCTA model
write.table(all[,c("FID", "IID", "ht")], "ozht.phen", quote = F,
row.names = F)

 

Now we are ready to run our gcta analyses. As a reminder you will run these analyses by
pasting this code into the ssh terminal

gcta64 --pheno ozht.phen --qcovar ozht.prs1.qcovar --covar ozht.covar
--grm ozGRM --out ozhtPRS1 --reml --reml-est-fix
gcta64 --pheno ozht.phen --qcovar ozht.prs2.qcovar --covar ozht.covar
--grm ozGRM --out ozhtPRS2 --reml --reml-est-fix
gcta64 --pheno ozht.phen --qcovar ozht.prs3.qcovar --covar ozht.covar
--grm ozGRM --out ozhtPRS3 --reml --reml-est-fix
gcta64 --pheno ozht.phen --qcovar ozht.prs4.qcovar --covar ozht.covar
--grm ozGRM --out ozhtPRS4 --reml --reml-est-fix
gcta64 --pheno ozht.phen --qcovar ozht.prs5.qcovar --covar ozht.covar
--grm ozGRM --out ozhtPRS5 --reml --reml-est-fix
 
GCTA will make a .log file and an .hsq file for each model. 
The beta and SE of the PRS effect can be found in the line labeled X_7 in the log files.
We can pull these out of the log files and save them to a file with the following code
 



grep X_7 *.log > gcta_results.txt
 
An important note:
The beta and se from the PRS are in the line labeled X_7 because X_1 is the mean and the
covariates are included in the model based on the column order (continuous covariates are
listed before binary covariates) with the first covariate in the line labeled X_2.
The PRS is the 6th continuous covariate included in the analysis so it ends up in the line
labeled X_7.
If you were to remove age from continuous covariate file so that the PRS was now in column 5
the beta and se for the PRS would now be labeled X_6

Moving back to R we can process the output from the gcta analyses

# We can read in the gcta results
res<-as.data.frame(read.table("gcta_results.txt"))
names(res)<-c("Model","beta","se")

# To calculate R2 we scale beta into a marginal correlation and then
square it
# We are calculating this and adding it to the res object
res$r2<-rbind((res[1,2]/sd(all$ht, na.rm = T)*sd(all$PRS1 , na.rm =
T))**2,
    (res[2,2]/sd(all$ht, na.rm = T)*sd(all$PRS2 , na.rm = T))**2,
    (res[3,2]/sd(all$ht, na.rm = T)*sd(all$PRS3 , na.rm = T))**2,
    (res[4,2]/sd(all$ht, na.rm = T)*sd(all$PRS4 , na.rm = T))**2,
    (res[5,2]/sd(all$ht, na.rm = T)*sd(all$PRS5 , na.rm = T))**2)

 
# To test the significance of the betas we can use t-tests
# We are calculating this and adding it to the res object
 
res$tStat<-res$beta/res$se # Follows a student distribution
res$pval<-(1-pt(q=res$tStat, df = 1887, lower.tail = T))*2

# Now we can look at the results
res

 

How do these results compare to those from lm and openMx?
 



 
Consider your results from PRS2.

 Beta SE P r2

lm     

openMx     

 
 

Our last job in this section of the practical is to make some plots. First we will plot the R-
squared by threshold.
 
# Data
r2 <- data.frame(
  name = c("5e-08", "1e-06", "0.0001", "0.01", "1"),
  R2 = c(1.236,1.913,2.218,2.340,2.561 ),
  P=c(0.000195,5.04e-06,6.91e-07,2.67e-07, 6.12e-08)
)
# Increase bottom margin
par(mar=c(4,4,4,4))
# Barplot
jpeg("height.R2.jpg", width = 800, height = 800, quality=75, bg =
"white", type = "cairo")
my_bar <- barplot(r2$R2 , border=F , names.arg=r2$name ,
                  las=2 ,
                  col=c('skyblue1','skyblue2','skyblue3','skyblue4')
,
                  ylim=c(0,3) ,
                  main="Predicting height from height PRS",
                  ylab="% variance explained", xlab="PRS Thresholds")
# Add P values to the bars
text(my_bar, r2$R2+0.04 , paste("P=", r2$P, sep="") ,cex=1)
dev.off()

Next we'll plot height by quintile of PRS (often these plots are made with deciles but the
sample is small so we're going to use quintiles here)
library(Hmisc)
library(gplots)
# the following command divides the data into quintiles.
longData$percentiles <- factor(cut2(longData$PRS5, g=5,



levels.mean=TRUE))

# Plot the mean of height by precentile with 95% CIs
jpeg("Quintile.jpg", width = 800, height = 800, quality=75, bg =
"white", type = "cairo")
plotmeans(ht ~ percentiles, data = longData, xlab="Quintile of
PRS", ylab="Height in Cm",legends = c("1","2","3","4","5"))
dev.off()
 

Do the plots tell us anything about the genetic architecture of height in this sample?

Discussion point 1

Your group presents these results at a conference. After your talk you are approached by a
researcher who would like to join the project and replicate the results.  They have access to
the variables you need in a cohort of 10,000 individuals from a non-European ancestry cohort.

In your group discuss the ways in which these data could be included in the project. What are
the advantages of including this cohort? 
Summarize the main points of your discussion in the box below.

Discussion point 2

You've now completed all your analyses and you're finalizing the draft of the paper.
Unfortunately you realize that the author list is probably incomplete and you need to provide
extra authors from your group.

How will you decide who has contributed enough to be an author?
Can a paper have too many authors?
If you place a limit on the number of authors a cohort can have who is most likely to be
left off the list?

Discuss these questions within your group.

Summarise the main points of your discussion in the box below.

 

 Yes No It depends...



Stretch goal 1!

Awesome work - congratulations on getting to this point

So far we have been running saturated or AE models. We can also include PRS in an ACE or
ADE model. Intuitively you might think that adding a PRS will only change your A estimates
but this is not necessarily the case. (There is a paper by Conor Dolan et al in the folder which
might shed some light on this).

In this stretch goal we're going to run an ACE model with a PRS in GCTA (this is another hack
and not a built in option). To do this we are going to add a second relatedness matrix that
summarises the common environmental relatedness (a CRM).

If we take another look at the contents of the GRM we can see that the sample contains a
large amount of siblings
hist(GRM$off[which(GRM$off>0.20)], breaks=100) 

We are going to reformat the GRM and turn it into an NxN table
# Format GRM into a NxN matrix
asNxNGRM<-function(BRMbin){
  mat<-matrix(0, nrow = length(BRMbin$diag), ncol =
length(BRMbin$diag))
mat[upper.tri(mat)]<-BRMbin$off
mat<-mat+t(mat)
diag(mat)<-BRMbin$diag
colnames(mat)<-BRMbin$id[,2]

 Yes No It depends...

Should someone who
processed the biological
samples, extracted DNA
and organised the
genotyping be an
author?

Should someone who
collected phenotypes be
an author?

Should someone who
ran the PRS analyses be
an author?

Should someone who
wrote the grant that
funded the study and
designed the study be
an author?

 Yes No It depends...



rownames(mat)<-BRMbin$id[,2]
  return(mat)
}

# convert GRM into NxN matrix
GRMmat=asNxNGRM(GRM)

Next we are going to hack the GRM to produce a CRM
CRM=GRMmat
CRM[which(CRM> 0.20, arr.ind = T)]=1 # we assume that individuals
with GRM>0.2 have grown up together -> C=1
CRM[which(CRM< 0.20, arr.ind = T)]=0 # other less related individuals
have no shared environment -> C=0

We can check how many 0s and 1s (families) we have with the following code - how many
families did you get?
table(CRM[upper.tri(CRM)])
 

We can check how many individuals are in the CRM with the following code - how many did
you get?

table(diag(CRM)) # check diagonal

Next we will format and write out the CRM

# We get the info about family ID and IID - needed to create the 
.grm.id file
fam=GRM$id
colnames(fam)=c("fam", "id")

# The genio package allows the writing of a GRM
library(genio) # needed to write_grm

genio::write_grm(kinship = CRM, name = "ozCRM", fam = fam )

# We will also write out a continuous covariate file that does not include a PRS
write.table(all[,c("FID", "IID", "age", "PC1", "PC2", "PC3", "PC4")],
"ozht.noprs.qcovar", quote = F, row.names = F)



"ozht.noprs.qcovar", quote = F, row.names = F)

 

Now we are going to switch to the ssh terminal window to run the gcta analyses

We need to create a text file, which stores the name of the different GRM/CRM matrices so
GCTA knows which to open
echo "ozGRM" > GRM-CRM.txt
echo "ozCRM" >> GRM-CRM.txt
head GRM-CRM.txt

Then we can run the gcta analyses
gcta64 --pheno ozht.phen --qcovar ozht.prs1.qcovar --covar ozht.covar
--mgrm GRM-CRM.txt --out ozhtPRS1.ACE --reml --reml-est-fix
gcta64 --pheno ozht.phen --qcovar ozht.prs2.qcovar --covar ozht.covar
--mgrm GRM-CRM.txt --out ozhtPRS2.ACE --reml --reml-est-fix
gcta64 --pheno ozht.phen --qcovar ozht.prs3.qcovar --covar ozht.covar
--mgrm GRM-CRM.txt --out ozhtPRS3.ACE --reml --reml-est-fix
gcta64 --pheno ozht.phen --qcovar ozht.prs4.qcovar --covar ozht.covar
--mgrm GRM-CRM.txt --out ozhtPRS4.ACE --reml --reml-est-fix
gcta64 --pheno ozht.phen --qcovar ozht.prs5.qcovar --covar ozht.covar
--mgrm GRM-CRM.txt --out ozhtPRS5.ACE --reml --reml-est-fix
gcta64 --pheno ozht.phen --qcovar ozht.noprs.qcovar --covar
ozht.covar --mgrm GRM-CRM.txt --out ozht.ACE.noPRS --reml --reml-est-
fix

The we will pull out the results - remember the result is in the line labeled X_7 because of the
order of the variables in the analysis (see the note above for more information)
grep X_7 *ACE.log > gcta_results_ACE.txt

 

Now we are going back to R



Now we are going back to R
 
# First we can read in the gcta results
resACE<-as.data.frame(read.table("gcta_results_ACE.txt"))
names(resACE)<-c("Model","beta","se")

# To calculate R2 we scale beta into a marginal correlation and then square it
# We are calculating this and adding it to the resACE object
resACE$r2<-rbind((resACE[1,2]/sd(all$ht, na.rm = T)*sd(all$PRS1 ,
na.rm = T))**2,
    (resACE[2,2]/sd(all$ht, na.rm = T)*sd(all$PRS2 , na.rm = T))**2,
    (resACE[3,2]/sd(all$ht, na.rm = T)*sd(all$PRS3 , na.rm = T))**2,
    (resACE[4,2]/sd(all$ht, na.rm = T)*sd(all$PRS4 , na.rm = T))**2,
    (resACE[5,2]/sd(all$ht, na.rm = T)*sd(all$PRS5 , na.rm = T))**2)

# To test the significance of the betas we can use t-tests
# We are calculating this and adding it to the resACE object
resACE$tStat<-resACE$beta/resACE$se # Follows a student distribution
resACE$pval<-(1-pt(q=resACE$tStat, df = 1887, lower.tail = T))*2

# Now we can look at the results
resACE

How do these results compare to your earlier results which are located in the object res ?
 

Take a look at the estimates of A and C from the model with no PRS - do this in the terminal
cat ozht.ACE.noPRS.log

This section contains the estimates
V(G1) is the variance explained by the first relatedness matrix in the GRM-GRM.txt file. This is
the GRM and this is the unstandadised estimate of A with the SE of the estimate.
V(G2) is the variance explained by the second relatedness matrix in the GRM-GRM.txt file.
This is the CRM and this is the unstandadised estimate of C with the SE of the estimate.
V(e) is the unstandardised estimate of E and Vp is the total phenotypic variance (A+C+E).
The standardised estimates of A and C are also provided.



What is the standardised estimate of E?

Now take a look at the unstandardised estimates of A, C and E from the models with PRS.
These values are also in the .hsq files so to make this easier you can look at the values from
all the models with the following code

grep "V(G1)" *hsq | grep -v Vp
grep "V(G2)" *hsq | grep -v Vp
 
How do the results compare - do both A and C change?
 

Now take a look at the standardised estimates of A, C and E from the models with PRS.
These values are also in the .hsq files so to make this easier you can look at the values from
all the models with the following code

grep "V(G1)" *hsq | grep Vp
grep "V(G2)" *hsq | grep Vp
 
Does looking at the standardised estimates tell you what is really happening in these models?
 

CONGRATULATIONS you have reached the end of stretch goal 1

Stretch goal 2!

If you made it this far and would like to do more PRS analyses you can.

In the files you copied there is one called ozMass.txt
This file contains the twinData in a long format (1 line per person) and 5 PRS calculated
from a GWAS of Whole Body Fat Mass (WBFM) and 5 PRS calculated from a GWAS of
Whole Body Fat Free Mass (WBFFM)
The PRS were calculated for the following thresholds 0.00000005, 0.000001, 0.0001, 0.01, 1
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The PRS were calculated for the following thresholds 0.00000005, 0.000001, 0.0001, 0.01, 1

Read the data into R.
Reshape the data to make it wide (you can borrow the code we used in the height example)
Analyze the data in openMx or gcta and record the beta, se, p and r2 for each of the 10 PRS.
Make a plot of the r2 - see if you can put both WBFM and WBFFM on the same plot

What predicts better Fat Mass or Fat Free Mass?
 

CONGRATULATIONS you have reached the end of stretch goal 2

Super Stretch Goal!

Check to see if there is an interaction between sex and the PRS

There is a catch here as to model this correctly you actually need to include all possible
interaction terms not just the sex*PRS term.
You can find out more about this by reading the Keller_2014_GxE.pdf that is included in the
files you copied today

Did you find an interaction?

You are AMAZING and you have made it all the way through the practical!

You can find a copy of all the files made in the tutorial in /faculty/sarah/2022/Answers 
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