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We thank you for your time spent taking this survey. 
Your response has been recorded.

Q1.1. As you get started, introduce yourself and let us know your zoom breakout room
number?

Q1.2. What are the first names of your group members?

Q1.3. Has anyone in your group run a sex limitation or GxE analysis before?

Q1.4. Welcome to the heterogeneity practical!  Please use the following commands to copy
the example files into your own directories.

# Create a directory to hold your day's work
mkdir day3
# change into that directory, and then copy over the exercises.
cd day3
cp -R /faculty/hmaes/2022/day3/* ./ 

Make sure you have a space and a period after the star to copy the contents of my day3
directory into yours.  You will be running a set of analyses in RStudio.  Remember to set your
working directory using setwd('day3').  Use examples of the code in practicalDay3.R
as instructed by the questions below.  It might be helpful to  organize your code file by adding
your own comments, so you can easily run/or re-run sections throughout the practical.  It
might also be useful to copy summary tables of goodness-of-fit statistics and estimates into
separate files as you go along.

Hermine

Group members have run a sex limitation analysis
before

Group members have run a GxE analysis
before

Group members have not run either of these types of analyses
before



separate files as you go along.

Q2.1.
Sex limitation Practical

By now, you are familiar with fitting the basic twin model, to estimate the contributions of
additive genetic VA, shared environmental VC (or dominance VD) and unique environmental
VE factors to your phenotype of interest.  We have also shown how confounders/covariates
can impact the results of these twin analyses and that we can correct for their main effect by
including them in the analyses, estimating their effect on the means and partition the
remaining variance into the ACE/ADE variance components.

The data used in previous examples were simulated to have specific properties.  In today’s
practical, we’re analyzing data on body mass index, BMI, a measure of obesity, calculated as
weight (in kg) divided by height squared (in meters).  For most of the behavioral traits we’re
interested in, we know that their distributions might vary by sex and age, and potentially other
confounders.  In addition to mean differences in the trait by sex (or any other covariate), there
might also be differences in the total variance or any of the variance components.
 
Today, we’re focusing on testing for heterogeneity in sources of variance and the magnitude
of their contributions by sex, age or other binary or continuous covariates.  Let’s consider
BMI.  We know from epidemiological studies that there are differences in mean and variance
of BMI by sex.  We have access to reasonably large samples of BMI data collected in MZ and
DZ twin pairs, a dataset that is freely available when installing OpenMx, called twinData,
which one row of data per twin pair, twin 1’s measure of BMI denoted with bmi1 and twin 2’s
with bmi2.
 

Q3.1.
Open the the practicalDay3.R script and run the code in lines 17-44 to inspect the data
and estimate the twin correlations in R.
 
Note that it’s important to know which zygosity code represents which zygosity and sex.  To
get some extra practice with OpenMx, let’s run a basic twin model, separately for young males
and females.  We’ll ignore the opposite sex twins for the time being.  Before we do that, we'll
inspect the correlations to decide which genetic model to run.
 
Based on the twin correlations, which model is likely going to fit the data best?  Is this the
same model for males and females? 

ADE for males and for females



Q4.1.
You can edit code used in previous practicals and change the data, or you can run lines 45-
110 of the practicalDay3.R script for the 2-group saturated model (without any
comments), which tests model assumptions, and then run either the ACE (lines 111-154) or
ADE (lines 154-193) models.  Note that we’ve included age as a covariate, and regressed out
its effect on the means.  Later in the practical, we’ll test whether there are differences in
variance (components) by age.
 
Use the proper zygosity codes and run the code -separately for young females and young
males.  Make sure you write down the -2 log-likelihood and degrees of freedom for each of the
analyses as we'll need them later.
 
Are assumptions about equality of means and variances across twin order and zygosity met
for young males? for young females?  Put a check mark in the boxes if the assumption is met.

Q5.1.
What are the estimates of the additive genetic, shared environmental (or dominance) and
unique environmental variances the same for males and females?  Please list the estimates
below.

Q5.2. Do you think they are different from one another? How would you test this?

Q6.1. We need to be able to constrain the parameters for males to those for females, to test
whether they are significantly different from one another, thus we need to extend our

males females

equal means by twin
order

equal variances by twin
order

equal means & variances by
zygosity

females males

additive genetic
variance 0.3674 0.1032

shared environmental
variance

unique environmental
variance 0.1690 0.1375

dominance
variance 0.2250 0.3758

Maybe/Probably. By putting the models for males and females together, constrain parameters across sex
and compare the likelihoods of the constrained and unconstrained models.



whether they are significantly different from one another, thus we need to extend our
multigroup 2-group analysis to a 4-group analysis (same-sex female MZ & DZ and same-sex
male MZ & DZ groups), thus doubling up data statements, means matrices statements,
covariance matrices statements, expectation statements, model statements, etc. and combine
them all in one model, as in lines 200-317 of the practicalDay3.R script.

We can use a number of functions that summarize the key goodness-of-fit statistics
(fitGofs()) and the estimated parameters (fitEsts()) in just a few lines. These functions
are sourced from a file called miFunctions.R which can be dowloaded here.

Report the likelihoods of the 2-group saturated models you ran separately for males and
females and the 4-group saturated model ?

Q32. How does the likelihood of the 4-group saturated model compare to the likelihoods of the
2-group saturated models you ran separately for males and females?

Q7.1. Next, we’ll test the significance of age on BMI, and repeat the assumption testing in
lines 318-358.  By now, you are familiar with testing whether means and/or variances can be
equated across twin order and zygosity.

Please edit lines 360-364 of the code which is reproduced below to test whether means and
variances can also be equated by sex.

# Constrain expected Means and Variances to be equal across twin order and zygosity and sex

modelEMVS <- mxModel( fitEMVZ, name="oneEMVSca" )

modelEMVS <- omxSetParameters( modelEMVS, label=c(______,______ free=TRUE, values=svMe, newlabels='mZ' )

modelEMVS <- omxSetParameters( modelEMVS, label=c("vZf","vZm"), free=______, values=______, newlabels='vZ' )

fitEMVS   <- mxRun( modelEMVS, intervals=F )

 
Paste a copy of your completed lines of code into the box below. 

Q8.1. As we established that the means cannot be equated by sex without loss of fit and that
the twin correlations are consistent with the ADE model in lines 374-469 of the
practicalDay3.R script, we will estimate one mean for males and one for females. To test

 females males both sexes

-2 log-likelihood 4015.1185 1883.7212 5898.8396

4-group saturated model log-likelihood is sum of 2-group male and female log-likelihoods

modelEMVS <- mxModel( fitEMVZ, name="oneEMVSca" ) modelEMVS <- omxSetParameters(
modelEMVS, label=c("mZf","mZm"), free=TRUE, values=svMe, newlabels='mZ' ) modelEMVS <-
omxSetParameters( modelEMVS, label=c("vZf","vZm"), free=TRUE, values=svVA, newlabels='vZ' )
fitEMVS <- mxRun( modelEMVS, intervals=F )

https://hermine-maes.squarespace.com/s/miFunctions.R


practicalDay3.R script, we will estimate one mean for males and one for females. To test
whether the variance components estimates vary by sex, we will first fit a model with separate
estimates for males and females, which implies that we have to double up statements again -
see lines 402-407 . Note that we give different labels for the parameters for males and
females - different labels = different parameters.

Please complete the expressions for the expectations of the variances and covariances for the
four zygosity by sex groups in lines 410-415 of the practicalDay3.R script and reproduced
below, and paste a copy of your code into the box below:

# Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins

covPf     <- mxAlgebra( expression= ___________, name="Vf" )

covPm     <- mxAlgebra( expression= ___________, name="Vm" )

covMZf    <- mxAlgebra( expression= ___________, name="cMZf" )

covDZf    <- mxAlgebra( expression= ___________, name="cDZf" )

covMZm    <- mxAlgebra( expression= ___________, name="cMZm" )

covDZm    <- mxAlgebra( expression= ___________, name="cDZm" )

 

Q9.1. How does the -2 log-likelihood of this 4-group ADE model compare with those of the
sex-specific ADE models you ran earlier? What about the degrees of freedom?

Q9.2. This statement below prints the unstandardized and the standardized variance
components, which were combined in one matrix using the cbind function. Comment on
which of these sets of estimates is more relevant to compare across sex.

round(fitADEq$US$result,2)

Q10.1. Complete the following code statements of lines 474-482 of the practicalDay3.R
script, paste it in the box below and evaluate whether the magnitude of the contributions of
genetic and environmental factors on BMI differs by sex. Remember, same label = same

covPf <- mxAlgebra( expression= VAf+VDf+VEf, name="Vf" ) covPm <- mxAlgebra( expression=
VAm+VDm+VEm, name="Vm" ) covMZf <- mxAlgebra( expression= VAf+VDf, name="cMZf" ) covDZf <-
mxAlgebra( expression= 0.5%x%VAf+ 0.25%x%VDf, name="cDZf" ) covMZm <- mxAlgebra(
expression= VAm+VDm, name="cMZm" ) covDZm <- mxAlgebra( expression= 0.5%x%VAm+
0.25%x%VDm, name="cDZm" )

females males both sexes

-2 log-likelihood 4022.7885 1899.3977 5922.1862

degrees of
freedom 1770 905 2675

Unstandardized variance components, as they give an indication of which of the variance components
might be different across sex.



genetic and environmental factors on BMI differs by sex. Remember, same label = same
parameter.
  

# Run ADE model - Test for Quantitative Sex Differences of ADE model

modelADE  <- mxModel( fitADEq, name="oneADE4vca" )

modelADE  <- omxSetParameters( modelADE, labels=c(___________), free=___________, values=svPa,

newlabels='___________' )

modelADE  <- omxSetParameters( modelADE, labels=c("VDf11","VDm11"), free=TRUE, values=svPa, newlabels='VD11' )

modelADE  <- omxSetParameters( modelADE, labels=c("VEf11","VEm11"), free=TRUE, values=svPa, newlabels='VE11' )

fitADE    <- mxRun( ___________, intervals=T ) fitGofs(fitADE); fitEsts(fitADE)

mxCompare( ___________, ___________)

round(rbind(fitADEq$US$result,fitADE$US$result),4)

Note that fully executable scripts are available in the hmaes/2022/day3/scripts directory.
These scripts (and many more) are also downloadable from the OpenMx scripts library:
hermine-maes@squarespace.com.

Q11.1. Let’s move on and explore what extra information we can obtain when we include data
of opposite-sex twins (DZO), so look for lines 488-629 of the  practicalDay3.R script.
 Here we highlight lines pertaining to the DZO twins. It is critical that they are organized such
that twin 1 is one sex (i.e. female) and twin 2 the other sex (i.e. male), or alternatively you can
create two groups, one group where twin 1 is female and a group where twin 1 is male. We
have re-ordered DZO pairs such that twin 1 is female and twin 2 is male.

meanGo     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svMe, labels=c("mZf","mZm"),

name="meanGo" )

Note that we equated the mean for twin 1 in DZO pairs to that of the same-sex female pairs,
and correspondingly equated the mean for twin 2 in DZO pairs to that of the same-sex male
pairs.

With the additional observed statistic (the DZO correlation), we can estimate one additional
parameter; either the correlation between additive genetic factors across sex (rg, see next
page) - or a sex-specific source of additive genetic variance (VAms) from which we calculate
the genetic correlation across sex. Alternatively, one can estimate the correlation between
shared environmental or dominance effects across sex.

modelADE <- mxModel( fitADEq, name="oneADE4vca" ) modelADE <- omxSetParameters( modelADE,
labels=c("VAf11","VAm11"), free=TRUE, values=svPa, newlabels='VA11' ) modelADE <-
omxSetParameters( modelADE, labels=c("VDf11","VDm11"), free=TRUE, values=svPa,
newlabels='VD11' ) modelADE <- omxSetParameters( modelADE, labels=c("VEf11","VEm11"),
free=TRUE, values=svPa, newlabels='VE11' ) fitADE <- mxRun( modelADE, intervals=T )
fitGofs(fitADE); fitEsts(fitADE) mxCompare( fitADEq, fitADE )



shared environmental or dominance effects across sex.

covAms    <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=TRUE, values=0, label="VAms11", lbound=.0001,

name="VAms" )

Given we’re using the direct variance estimation approach, we’ll need some extra algebra
(copied below) that will allow the variance components to go negative. Remember that if you
obtain a negative variance component, your model may not provide a good representation of
the data.

signA     <- mxAlgebra( ((-1)^omxLessThan(VAf,0))*((-1)^omxLessThan(VAm,0)), name="signA")

covAos    <- mxAlgebra( signA*(sqrt(abs(VAf))*t(sqrt(abs(VAm)))), name="VAos")

pathRg    <- mxAlgebra( signA*(sqrt(abs(VAf))*t(sqrt(abs(VAm))))/sqrt(VAf*(VAm+VAms)), name="rg")

Please complete the lines 570-571 of code reproduced below for the expected DZm and DZo
covariance.

covMZm    <- mxAlgebra( expression= VAm+VDm+VAms+VDms, name="cMZm" )

covDZm    <- mxAlgebra( expression= 0.5%x%VAm+0.25%x%VDm+________+________, name="cDZm" )

covDZo    <- mxAlgebra( expression= 0.5%x%_____+0.25%x%VDos, name="cDZo" )

 

Q12.1. The general non-scalar sex-limitation model fitted to 5 groups of data estimates one
additional parameter which allows us to test whether different sets of genes contribute to the
variability of BMI in males versus females - which we also call qualitative sex differences. We
can test the significance of these differences by dropping the sex-specific variance component
or by fixing the genetic correlation across sex to 1. If this test is significant, in other words if
there are qualitative sex differences, then it becomes unnecessary to evaluate further whether
there are quantitative sex differences in the magnitude of the variance components. If
 different genes are operating in males and in females, it seems unlikely that they would
explains the exact same amount of variance in both sexes. If you prefer to estimate rg (or rd)
directly, the lines defining VAms &  VDms need to be deleted and the following lines of code
have to be changed.

pathRg    <- mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=1, label="rg11", lbound=0, ubound=1,

name="rg" )

pathRd    <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, values=1, label="rd11", lbound=0, ubound=1,

name="rd" )

covDZo    <- mxAlgebra( expression= 0.5%*%rg%x%VAos+ 0.25%*%rd%x%VDos, name="cDZo" )

covDZm <- mxAlgebra( expression= 0.5%x%VAm+ 0.25%x%VDm+0.5%x%VAms+0.25%x%VDms,
name="cDZm" ) covDZo <- mxAlgebra( expression= 0.5%x%VAos+0.25%x%VDos, name="cDZo" )



To test the significance of qualitative sex differences - please edit lines 636 and 644 of the
practicalDay3.R script, 

Q13.1. Based on the results obtained after fitting these three submodels, please summarize
what this means for your hypotheses about heterogeneity. 

Q13.2. Congratulations, you have finished the sex limitation practical! 

For those of you with more experience with OpenMx, you might try to re-specify the 2-group or
4-group models with definition variables for zygosity (and sex), thus reducing the number of
groups.  You might find the scripts from day 2's session that include zygosity as a definition
variable helpful to get started.

Q14.1.
G x E Interaction Practical

Now we’ll move on to a GxE example which tests another version of heterogeneity. Even
though we have so far in this workshop strongly advocated for using the direct variance
estimation approach as it provides more accurate tests of significance, the approach does not
generalize easily to all scenario’s, and it’s not always possible to generate equivalent code
using path versus variance estimation. One such case is GxE, and in particular when we’re
dealing with a covariate that is shared across twin pairs, which only allows for scalar GxE or
testing for quantitative differences in the variance components by a covariate/moderator.

ps. We have not found a direct variance estimation of this model that is completely equivalent
to the path coefficients version. If you can come up with one, please share with us!

Note, we’re using BMI data in twinData on the adult female twins (both young and older)who
range in age from 17 to 88 years, as indicated in lines 667-819 of

 

we fix the sex-specific parameter (VAms11)
to 0

or alternatively, we fix the genetic correlation (rg) across sex
to 1

In our analysis of the causes of variation in BMI in males and females, we conclude that the model fitting
results are consistent with quantitative differences in the magnitude of the variance explained by additive
genetic and dominance variance and unique environmental variance, but not with qualitative differences,
thus the same factors contribute to variation in BMI in males and females, with both the amount of
variance explained by genetic and environmental factors being greater in females compared to males.

 

How do you rate this
practical?



range in age from 17 to 88 years, as indicated in lines 667-819 of
the practicalDay3.R script.

Please check the number of variables in the dataset and their means/variance.

Q15.1. By now, you’re familial with using definition variables to adjust the means of the
phenotype for the effects of covariates. In previous examples, we have corrected for the linear
effects of age on BMI. Here we extend this by also estimating a quadratic effect of age. To do
so, we have recoded age (ageL, divided by 100 to make optimization a little easier), and pre-
calculated age squared (ageQ), and included both covariates (covVars) in the data objects.
Then we created two matrices to hold the definition variables and use matrix algebra to
generate the expected means.

Write out the expectation for the means by working out the matrix algebra.

Q16.1. Instead of estimating the variance components directly, as you’ve seen in previous
scripts (copied from earlier script) using the direct symmetric approach:
 

# covA      <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=TRUE, values=svPa, label="VA11", name="VA" )

now, we’re estimating path coefficients and using mxAlgebra statement to generate variance
components. Note that this forces the estimated variance components to be positive.
Remember that OpenMx/R are case sensitive - we’ve used lower case a, d, and e for the
names of the matrices containing the path coefficients and and upper case A, D and E for the
names of the matrices containing the variance components (or the squared path coefficients),
shown below for the additive genetic component. Given that we know that the twin
correlations are consistent with an ADE model, that’s what we are specifying. As an exercise,
you may attempt to change this into an ACE model.

pathA     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=svPa, label="a11", name="a" )

covA      <- mxAlgebra( expression= a %*% t(a), name="A" )

 

Nmz 1232

Ndz 750

mean
BMI ~21.6

variance
BMI ~0.94

meanG + l11*ageL + q11*ageQ



Can you work out the predicted means and variances/covariances at the starting values for
MZ twins? Are those in the right order of magnitude given the observed means and
variances?  Remember that reasonable start values will help optimization. 

Q17.1. Now we create additional matrices for the moderated path coefficients (i.e. aI), those
we are going to multiply with the definition variables containing the age of the twin pairs
(ageL). We start these parameters close to zero, assuming no moderation. However, if the
variance components change significantly as a function of age, then any or all of the
moderated paths would be estimated to be non-zero.

pathAI    <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=svPaI, label="aI11", name="aI" )

covAI     <- mxAlgebra( expression= (a+ ageL%*%aI) %*% t(a+ ageL%*%aI), name="AI" )

How many free parameters are being estimated in model modelADElqi?

Q18.1. Remember how we drew the path diagram for the moderation model? Both
unmoderated and moderated paths start from the same latent variable, i.e. A, suggesting that
some of the contributions of genes to the variance of BMI are not moderated by age while
other contributions of the same set of genes might be moderated by age, and we will estimate
how much is accounted for by each of these effects. When you apply the rules of path
analysis to this path diagram for the contribution to the variance of BMI due to A, it includes
not just the variance components a^2 and (ageL*aI)^2 but also twice their covariance
2a*ageL*aI, which is the result of the matrix algebra (a+ ageL%*%aI) %*% t(a+
ageL%*%aI).

(Optional). Work out the matrix algebra to match the expectations from applying the path
tracing rules.

Q19.1. Next we use the combined variance components, including the unmoderated and
moderated effects of genes (and environment), to generate the predicted variances and
covariances by zygosity.

> mxGetExpected(modelADElqi,"means") $MZ bmi1 bmi2 [1,] 20.002541 20.002541 $DZ bmi1 bmi2 [1,]
20.002684 20.002684 > mxGetExpected(fitADElqi,"means") $MZ bmi1 bmi2 [1,] 21.304865 21.304865
$DZ bmi1 bmi2 [1,] 21.334152 21.334152 > mxGetExpected(modelADElqi,"covariances") $MZ bmi1
bmi2 bmi1 0.814323 0.542882 bmi2 0.542882 0.814323 $DZ bmi1 bmi2 bmi1 0.817452 0.204363 bmi2
0.204363 0.817452 > mxGetExpected(fitADElqi,"covariances") $MZ bmi1 bmi2 bmi1 0.72779058
0.56180317 bmi2 0.56180317 0.72779058 $DZ bmi1 bmi2 bmi1 0.73470002 0.24568083 bmi2
0.24568083 0.73470002 Yes, starting values were in right order of magnitude for predicted means and
covariances.

9 parameters: l11 q11 meanbmi a11 d11 e11 aI11 dI11 eI11

a^2 + (ageL*aI)^2 + 2*a*(ageL*aI)



covPI     <- mxAlgebra( expression= AI+DI+EI, name="VI" )

covMZ     <- mxAlgebra( expression= _____, name="cMZ" )

covDZ     <- mxAlgebra( expression= ______________, name="cDZ" )

Objects that include definition variables or calculations with definition variables are only
included in the mxModel statements that include the actual data objects, thus we create two
lists of objects, one called ‘pars’ and one called ‘defs’ for objects contain definition variables.
Note that defs is included in modelMZ and modelDZ but not in the overall model (further
down in the script) modelACElqi.

pars      <- list( pathB, meanG, pathA, pathD, pathE, covA, covD, covE, covP, ______, ______, ______)

defs      <- list( defAgeL, defAgeQ, ______, ______, ______, covPI, meanAge)

modelMZ   <- mxModel( pars, defs, expMean, covMZ, expCovMZ, dataMZ, expMZ, funML, name="MZ" )

modelDZ   <- mxModel( pars, defs, expMean, covDZ, expCovDZ, dataDZ, expDZ, funML, name="DZ" )

Please complete lines 751-752 & 766-767 of the code and paste it in the box below: 

Q20.1. The next blocks of code (lines 772-801) are not necessary to fit the model and can
also be generated with different statements after the model has been fitted (and are thus not
evaluated for every iteration). However, if you want to estimate confidence intervals (CIs)
around any additional calculated quantities, it has to be done as part of the model, as the CIs
are likelihood based.

The first block generates the unstandardized and standardized variance components of the
unmoderated components. In case moderation of the variance components is not statistically
significant, there would be just one estimate for the relative contributions of A, C and E. The
next block is used to indicate which confidence intervals we want to estimate. It requires the
‘intervals=T’ argument to the mxRun statement to actually tell OpenMx to estimate them.

estUS     <- mxAlgebra( expression=cbind(A,D,E,A/V,D/V,E/V), name="US", dimnames=list(rowUS,colUS))

ciADE     <- mxCI( c("US[1,1:3]" ))#,"AI","DI","EI") )

Adjust the code to generate confidence intervals around the standardized variance
components. Does the interpretation of the results change?

covMZ <- mxAlgebra( expression= AI+DI, name="cMZ" ) covDZ <- mxAlgebra( expression=
0.5%x%AI+0.25%x%DI, name="cDZ" ) pars <- list( pathB, meanG, pathA, pathD, pathE, covA, covD,
covE, covP, pathAI, pathDI, pathEI) defs <- list( defAgeL, defAgeQ, covAI, covDI, covEI, covPI,
meanAge)

Yes No



Q21.1. However, if moderation of the variance components is significant, then the predicted
variance components change as a function of the moderator, in this case, age. We can make
use of the power of matrix algebra to generate the predicted (means and) variance
components for a range of values of the moderator that reflects the range of the moderator in
the observed data. In this example, we included adult twins, with most pairs in the 15-75 age
range. We can generate a table with the predicted values across this age range, and we do
this in the ‘UxAge’ matrix for unstandardized components and in the ‘SxAge’ for standardized
components.

Play with the values of the vals object (line 782) and re-generate the graph below and
discuss the changes?

Q22.1. Of course, we can use the power of R to generate nice plots with the matplot function
from the values generated in the algebras. In lines 827-835 we plot the standardized and
unstandardized predicted estimates of the contributions of A, D and E by age, which we pre-
calculated in R in the UxAge and SxAge matrices.

It would be nice to have confidence intervals around the estimates of ADE by age. This
requires that you estimate those CIs first. To generate similar graphs as above with CIs, we
have to reformat the output that contains the CIs (lines 837-846), so that we can add extra
dotted lines for the lower (lci) and upper (uci) CI’s around A, D, and E (lines 848-857). If you
come up with more efficient ways to do this, please let us know!

What do you conclude about the causes of variation for BMI and do they change as a function
of age? Discuss the advantages and disadvantages of plotting the standardized or the
unstandardized estimates.

Q23.1. This full GxE model allows adjusting the means for the linear and quadratic effects of
the moderator, and furthermore moderating the ADE variance components by the moderator,
which in this example is age.

Yes No

It only makes sense to plot estimates for the variance components in the range of values of the
moderator present in your data. The confidence intervals are much wider at the older age range given
the sample size decreases with age.

The total variance in BMI in females increases as a function of age. Most of this increase in total
variance is accounted for by an increase in unique environmental variance and to a lesser degree an
increase in dominance genetic variance. The additive genetic variance is mostly stable across the age
range of the sample (18-80 years of age).



Formulate three different hypotheses about how a person’s age influences their BMI that you
can test as submodes of this first model, generate the R code to test them and discuss the
results.

If you get stuck, lines 859-888 provide some examples. We typically test the significance of
the moderation of the variance components prior to testing the main effects.
 

Q24.1. RCR topic.
For these RCR discussions there are a few things to keep in mind as a discussion participant

State views and ask genuine questions.
Share all relevant information.
Use specific examples and agree on what important words mean.
Explain your reasoning.
Focus on interests, not positions.
Test assumptions and inferences.
Jointly design the next steps.
Discuss undiscussable issues.
No one is expected to speak on behalf of their identities.

Today's question
Models discussed in this session test heterogeneity of means and variance components as a
function of a moderator. Discuss the considerations and potential consequences of fitting
these models when the moderator relates to an issue of identity such as race/ethnicity or
ancestry.

Q25.1. Congratulations, you have successfully completed this practical! 

We hope you expanded your model fitting expertise in OpenMx and leaned how to test
genetic epidemiological hypotheses about heterogeneity.

# Run non-Moderated ADE model modelADElq <- mxModel( fitADElqi, name="oneADEcaI2" )
modelADElq <- omxSetParameters( modelADElq, labels=c("aI11","dI11","eI11"), free=FALSE, values=0
) fitADElq <- mxRun(modelADElq, intervals=F ) mxCompare(fitADElqi,fitADElq) fitGofs(fitADElq);
fitEsts(fitADElq) # Fit Moderated ADE model + Linear Moderated Means modelADEli <- mxModel(
fitADElqi, name="oneADEcaI3" ) modelADEli <- omxSetParameters( modelADEli, labels="q11",
free=FALSE, values=0 ) fitADEli <- mxRun(modelADEli, intervals=F ) mxCompare(fitADElqi,fitADEli)
fitGofs(fitADEli); fitEsts(fitADEli) # Fit Moderated ADE model + no Moderated Means modelADEi <-
mxModel( fitADEli, name="oneADEcaI4" ) modelADEi <- omxSetParameters( modelADEi, labels="l11",
free=FALSE, values=0 ) fitADEi <- mxRun(modelADEi, intervals=F ) mxCompare(fitADElqi,fitADEi)
fitGofs(fitADEi); fitEsts(fitADEi) # Print Comparative Fit Statistics ADENested <- list(fitADElq, fitADEli,
fitADEi) mxCompare(fitADElqi,ADENested)
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