

# Rare variant association tests

University of Michigan Zhangchen Zhao

## Lecture Overview

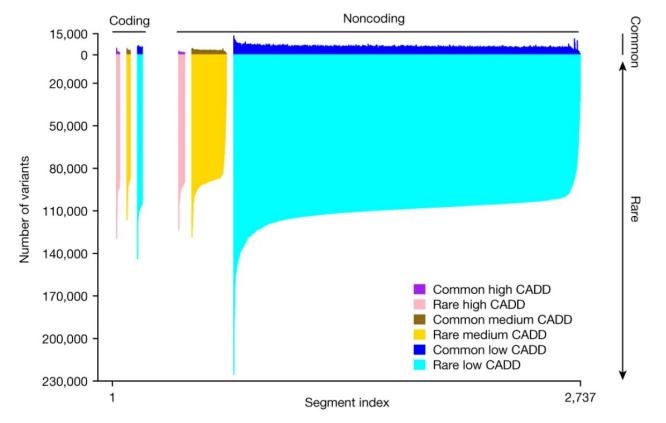
• 1. Limitations of GWAS

• 2. Rationale for Rare Variant Analysis

• 3. Unadjusted SKAT, burden and SKAT-O

• 4. Robust SKAT, burden and SKAT-O

# GWAS: Missing Heritability


- GWAS focus on common variants (MAF <= 5%).
- Missing heritability: Significant GWAS SNPs explain a small proportion of disease heritability.
- Possible reasons:
  - GxG and GxE interactions?
  - Many common causal variants: Each with a small effect?
  - Rare variants?

## Common vs Rare variants

- Common Variants (Common SNPs):
  - MAF > 1%~5%.
  - Often high correlation with adjacent SNPs (Strong Linkage Disequilibrium(LD)).
- Rare Variants (Rare SNPs):
  - MAF<= 1%~5%.
  - Relatively new mutations.
  - Often weak correlation with other SNPs.

# Why rare variants? (Taliun, 2021)

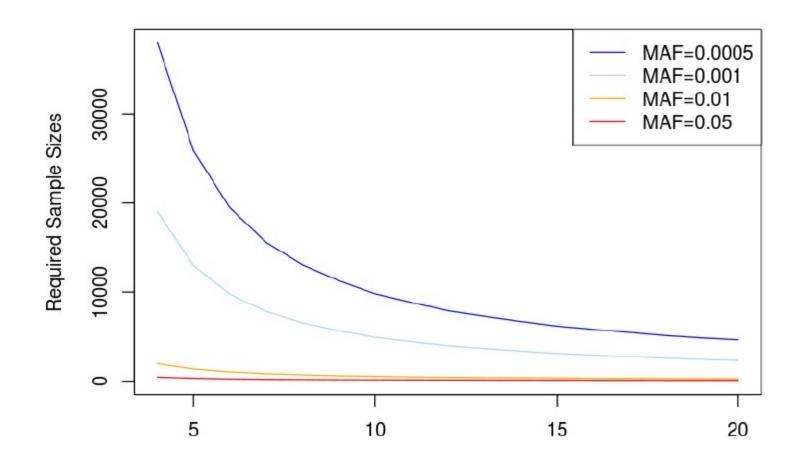
- Most of human variants are rare
- Functional variants tend to be rare.



Single variant association tests are underpowered for rare variants

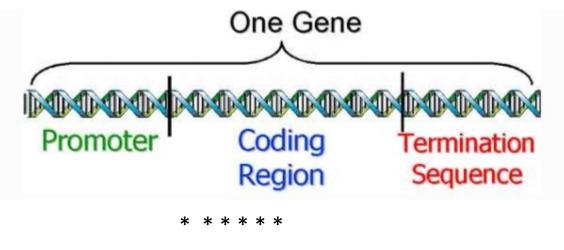
(1) Large samples are required to observe rare variants.

• Sample size required to observe a variant with MAF= p with at least  $\boldsymbol{\theta}$  chance


$$N > \frac{\ln(1-\theta)}{2\ln(1-p)}$$

• For  $\theta$  = 99.9%, the required minimum sample size is

| MAF       | 0.1 | 0.01 | 0.001 | 0.0001 |
|-----------|-----|------|-------|--------|
| Minimum N | 33  | 344  | 3453  | 34537  |


Single variant association tests are underpowered for rare variants

(2) How many subjects are needed to achieve 80% of power  $(\alpha=10^{-6})$  by single variant test?



# To increase power in association studies for Rare Variants

- Test the joint effect of rare variants by grouping rare variants into functional units, i.e. genes.
- Region/gene-based tests



#### Methods for region/gene-based tests

- Consider the following question: Given N independent observations, we already know
  - the phenotype we are interested in
  - covariates we need to adjust
  - all genotype information of rare variants in a region

Can we get an appropriate p-value of this rare-variant region?

• Existing methods: SKAT (Wu, 2011), burden (Wu, 2011), SKAT-O (Lee, 2012), C-alpha test (Neale, 2011), etc.

#### Model

• For continuous traits, we consider the following model

$$Y_i = X'_i \alpha + G'_i \beta + \varepsilon_i$$

• For binary traits, we consider the following model

$$logit[Pr(Y_i = 1 | X_i, G_i)] = X_i' \alpha + G_i' \beta$$

- For the individual *i*,
  - *Y<sub>i</sub>* is the outcome;
  - X<sub>i</sub> is the vector containing all the covariates, including the intercept;
  - *G<sub>i</sub>* is the genotype vector of rare variants with length *m*;
- $H_0: \beta = 0$  vs  $H_A: \beta \neq 0$

#### Burden, SKAT and SKAT-O (I) (Wu, 2011)

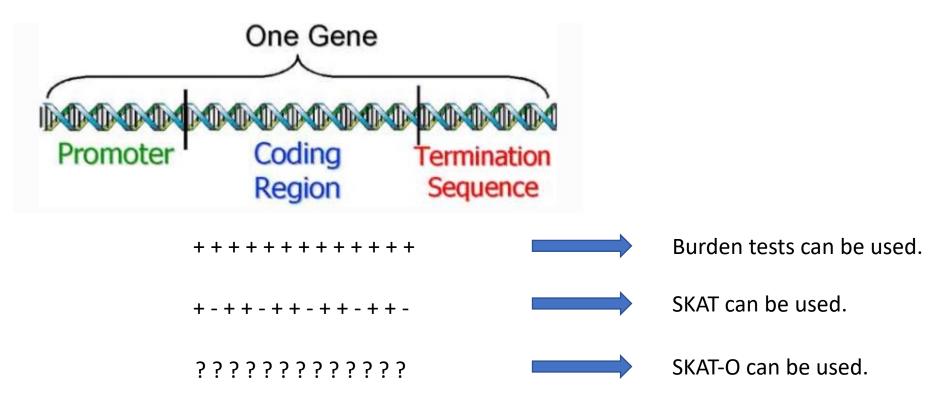
• The burden statistic:

$$Q_B = \left[\sum_{i=1}^n (y_i - \hat{\pi}_i) \left(\sum_{j=1}^m \omega_j g_{ij}\right)\right]^2,$$

where  $Q_B$  follows scaled  $\chi_1^2$  distribution asymptotically under  $H_0$ .

• SKAT statistic:

$$Q_{s} = \sum_{j=1}^{m} \omega_{j}^{2} \left\{ \sum_{i=1}^{n} g_{ij} (y_{i} - \hat{\pi}_{i}) \right\}^{2},$$


where  $Q_s$  asymptotically follows a mixture of chi-square distribution under  $H_0$ .

• SKAT-O statistic:

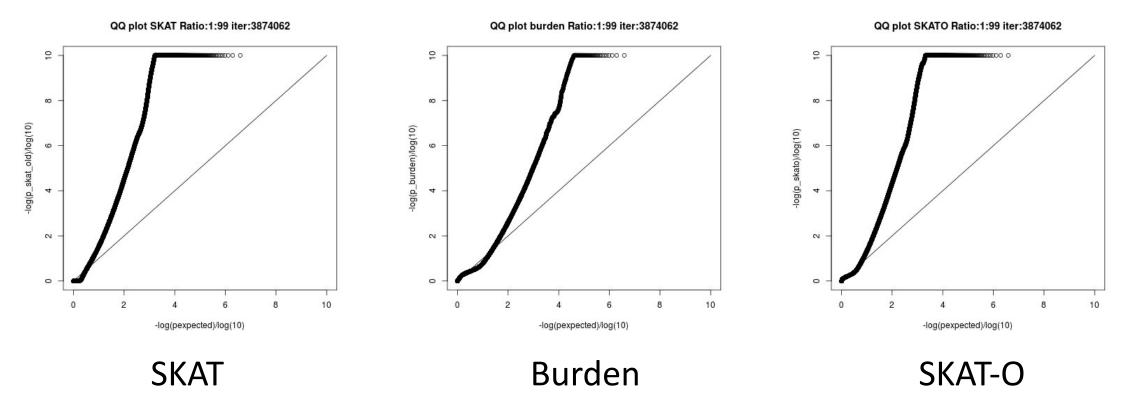
$$Q_{\rho} = (1-\rho)Q_B + \rho Q_s,$$

where  $\rho$  is a tuning parameter with range [0,1].

# Burden, SKAT and SKAT-O (II)



#### Score statistics used in Burden and SKAT


- Suppose  $S_j = \sum_{i=1}^n g_{ij}(y_i \hat{\pi}_i)$  is the score statistic for the variant *j*.
- $Q_B$  and  $Q_S$  can be written as

$$Q_B = \left(\sum_{j=1}^m \omega_j S_j\right)^2, \qquad Q_S = \sum_{j=1}^m \omega_j^2 S_j^2.$$

- Under  $H_0$ ,  $S = (S_1, ..., S_m)^T$  asymptotically follows  $MVN\left(0, V^{\frac{1}{2}}CV^{\frac{1}{2}}\right)$ 
  - *C* is the correlation matrix among *m* variants;
  - V is a diagonal matrix where the diagonal elements are the asymptotic variances of S.
- SKAT, burden and SKAT-O can be implemented in R package SKAT.

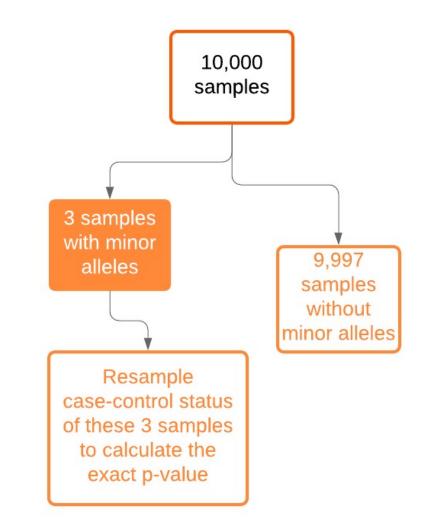
#### Existing method has inflation of type I error rates

- Case: Control Ratio= 1:99
- The huge inflation can be found in QQ plots.

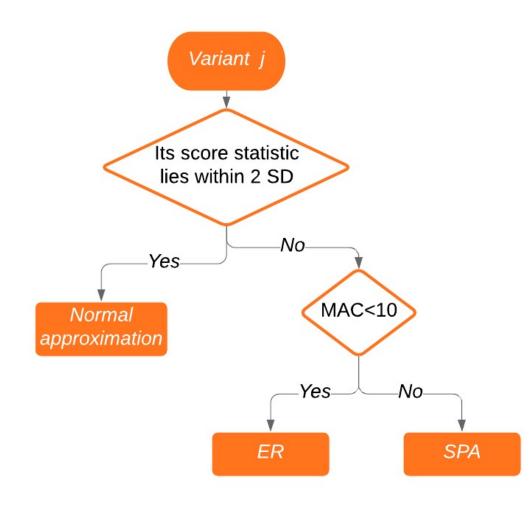


#### Robust Region-based Test (Zhao, 2021)

Main idea:


- Under  $H_0$ ,  $S \sim \text{MVN}\left(0, V^{\frac{1}{2}}CV^{\frac{1}{2}}\right)$ .
- However, in the presence of case-control imbalance, the distribution of *S* are not normal, causing misleading p-values.
- Solution:
  - Step1: Estimate distribution accurately to calculate single-variant p-values
    - Saddle Point Approximation (SPA)
    - Efficient Resampling (ER)
  - Step2: Re-estimate diagonal variance matrix V so that single-variant p-values are the same as p-values from SPA or ER.
- The robust methods can also be implemented in R package SKAT.

#### Saddle Point Approximation (SPA) (Dey, 2017)


- The cumulant generating function (CGF)  $K_j(t)$  of the score statistic  $S_j$  could be derived based on the fact  $Y_i \sim \text{Bernoulli}(\mu_i)$  under  $H_0$ .
  - We can further calculate p-values.
- Normal approximation behaves well near the mean, but poorly at the tails, especially if the true distribution is skewed.
  - Normal approximation cannot incorporate higher moments such as skewness.

### Efficient Resampling (ER) (Lee, 2016)

- Resample the case–control status of individuals with a minor allele at a given variant
  - Instead of permuting case—control status across all individuals
  - only individuals with minor alleles contribute to the score statistics S.
- When MAC is low (ex. MAC < 20), ER can calculate the exact p-value by numerating all possible configurations of case-control statuses.



#### Robust Region-based Test



• Adjust the variance of  $S_j$  so that the pvalue is the same as  $\tilde{p}_j$  from ER or SPA:

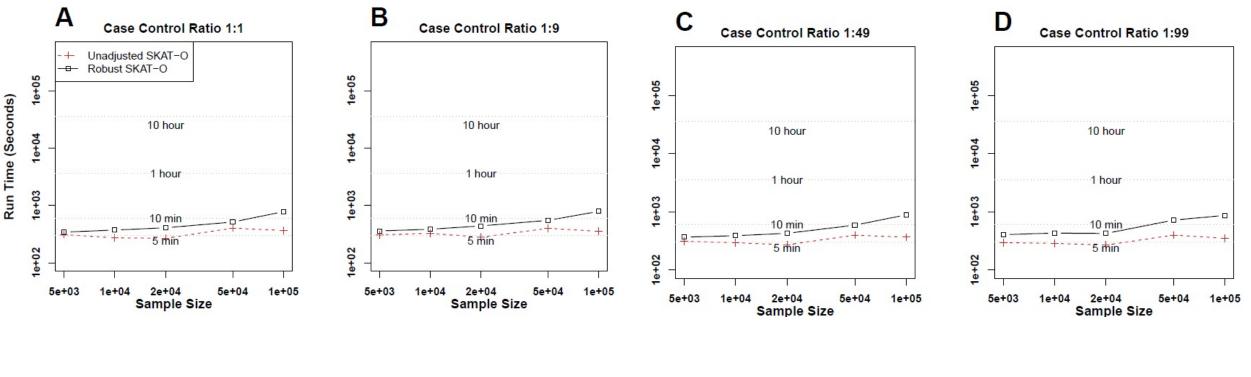
$$\tilde{V}_j = \frac{S_j^2}{\chi^2_{quantile}(1-\tilde{p}_j)}.$$

• The p-value of the region can be calculated based on the assumption that

$$S \sim MVN\left(0, \tilde{V}^{\frac{1}{2}}C\tilde{V}^{\frac{1}{2}}\right).$$

Simulation studies to evaluate type I error rates

- Generate the sequence data of mimicking European ancestry over 200 kb regions using the calibrated coalescent model
- 50,000 independent individuals with 4 case control ratios:
  - 1: 1, 1: 9, 1: 49 and 1: 99
- Two covariates:
  - $X_1 \sim Bernoulli(0.5)$
  - $X_2 \sim Normal(0, 1)$
- The binary phenotypes were simulated from


 $\operatorname{logit}(\pi_i) = \gamma_0 + \gamma_1 X_{1i} + \gamma_2 X_{2i} + \beta_1 g_{1i} + \dots + \beta_m g_{mi}.$ 

#### Robust method has well controlled type I error rates

|                  |       |       | Rare variantsRobustRobustRobust |        |        |        |        |  |
|------------------|-------|-------|---------------------------------|--------|--------|--------|--------|--|
|                  |       |       | Robust                          |        | Robust |        | Robust |  |
| Alpha            | Ratio | SKAT  | SKAT                            | Burden | burden | SKAT-O | SKAT-O |  |
|                  | 1:1   | 1.24  | 1.54                            | 1.11   | 1.03   | 1.38   | 1.38   |  |
| 2.5              | 1:9   | 2.47  | 1.45                            | 1.29   | 0.77   | 2.51   | 1.49   |  |
| $\times 10^{-6}$ | 1:49  | 28.27 | 1.91                            | 6.88   | 1.06   | 23.70  | 1.98   |  |
|                  | 1:99  | 89.53 | 1.81                            | 16.34  | 0.90   | 71.32  | 1.60   |  |

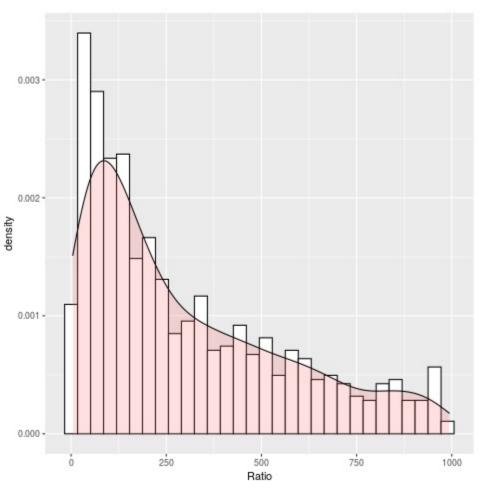
Note: the number in each cell represents the type I error rate divided by alpha level.

#### Robust method has similar computation time (1000 iterations)



Case Control Ratio 1:1

1:9

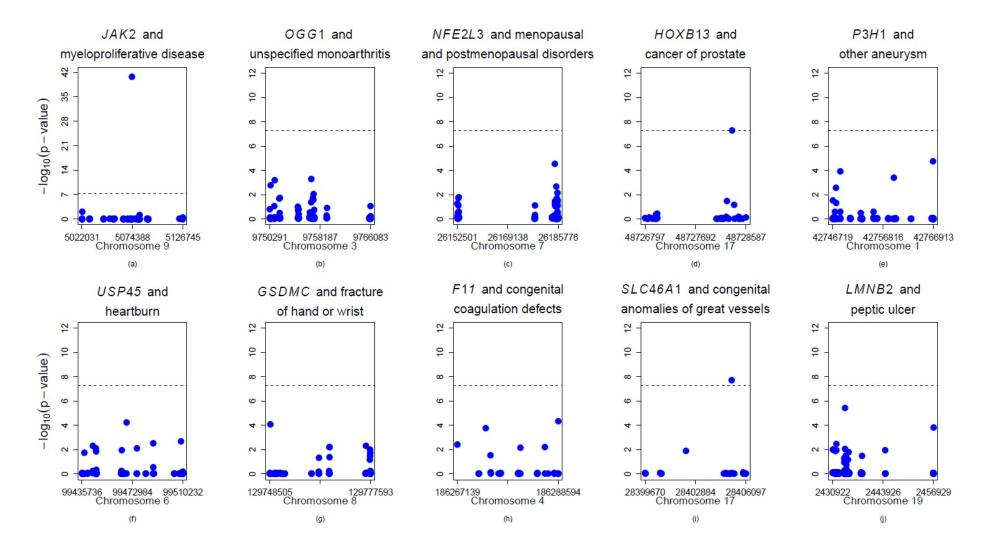

1:49

1:99

#### UK Biobank WES Data

- 791 binary phenotypes with at least 50 cases based on PheCodes.
- Rare variants (MAF<=0.01) of the nonsynonymous and splicing variants in the exon and neighboring regions.
- A total of 18,360 genes remained for analysis
  - gene size ranged from 2 to 7,439 with a highly skewed distribution
- Covariates: age, gender and the first four principal components.

#### Control: Case of 791 phenotypes




#### Significant Gene-Phenotype Associations (p-value< 10<sup>-7</sup>)

| Phenotype (PheCode)                            | Gene<br>Name | Case-control<br>Ratio | NSNP | Robust SKAT-<br>O | Lowest P<br>SNP | Conditional P-<br>value (SKAT-O) |
|------------------------------------------------|--------------|-----------------------|------|-------------------|-----------------|----------------------------------|
| Myeloproliferative disease (200)               | JAK2         | 94:9306               | 73   | 1.36E-33          | 1.81E-41        | 1.06E-35                         |
| Unspecified monoarthritis (716.2)              | OGG1         | 1728:41060            | 117  | 7.73E-09          | 4.67E-04        | 7.79E-09                         |
| Menopausal and postmenopausal disorders (627)  | NFE2L3       | 1345:21226            | 171  | 2.54E-08          | 2.72E-05        | 3.94E-08                         |
| Cancer of prostate (185)                       | HOXB13       | 741:18940             | 37   | 3.00E-08          | 5.24E-08        | 2.50E-08                         |
| Other aneurysm (442)                           | P3H1         | 164:16236             | 110  | 5.76E-08          | 1.71E-05        | 4.03E-07                         |
| Heartburn (530.9)                              | USP45        | 189:18711             | 103  | 6.34E-08          | 5.39E-05        | 1.46E-09                         |
| Fracture of hand or wrist (804)                | GSDMC        | 382:37818             | 109  | 7.12E-08          | 8.17E-05        | 1.49E-07                         |
| Congenital coagulation defects (286.1)         | F11          | 76:7524               | 38   | 7.40E-08          | 4.52E-05        | 4.09E-08                         |
| Congenital anomalies of great vessels (747.13) | SLC46A1      | 134:13266             | 28   | 9.38E-08          | 1.86E-08        | 3.87E-08                         |
| Peptic ulcer (excl. esophageal) (531)          | LMNB2        | 773:44818             | 171  | 9.89E-08          | 3.83E-06        | 9.54E-08                         |

Note: Associations with red color are previously reported.

#### Scatterplots of single variants in 10 significant genes



## GWAS figures in PheWeb (Denny, 2010) (I)



#### Link: <u>http://ukb-50kexome.leelabsg.org/</u>

## PheWAS figures in PheWeb (Denny, 2010)(II)

| nes-site Search   | h for a gene or phenotype      |                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                      |                                             | Phe                                    | notypes Genes A                       |
|-------------------|--------------------------------|-------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------|---------------------------------------|
| DAMTS2            | 20                             |                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                      |                                             |                                        |                                       |
| 3.0               | 700.2 5                        | icca syndrome                                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                      |                                             |                                        | Downloa                               |
| ~                 | . 414 - Other forms of chronic | •                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                     | /93.2 - Nonspecific abnormal finding | is on radiological and other examin         | ation of other intrathoracic organ     | s (echocardiogram, etc)               |
| 0-                | • 425.1 - Primary/intrinsic    |                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 6 - Anaphylactic shock NOS           |                                             | . 473.4 - Voice                        |                                       |
| 0                 | 425 - Cardiomyopathy           |                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                      | 0                                           | •                                      |                                       |
| 0-                |                                | • •                                                         |           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                      | Ø 00                                        |                                        |                                       |
|                   | •                              | • • • • •                                                   | 0         | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                     | 0                                    | ° 8 8 0                                     | 0                                      |                                       |
| 1                 | • • • • • •                    |                                                             | 00 ° ° 00 | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                      | • •                                         |                                        | 0 00                                  |
|                   |                                |                                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                      |                                             | 28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |                                       |
| CITCHING A STREET |                                |                                                             |           | A BARANA A BAR | A A A A A A A A A A A A A A A A A A A |                                      | A ALIAN A A A A A A A A A A A A A A A A A A |                                        | A A A A A A A A A A A A A A A A A A A |
| egory             | <ul> <li>Code</li> </ul>       | A Name                                                      | #Cases    | #Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P-value                               | ▲ #Rare Variants                     | ▲ Start-End                                 | Case MAC (Minor Alle                   | Control MAC (Minor Al                 |
| er column         | filter column                  | filter column                                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                      |                                             |                                        |                                       |
| natologic         | 709.2                          | Sicca syndrome                                              | 58        | 5,742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6e-6                                | 110                                  | 43,354,237 - 43,462,894                     | 10                                     | 185                                   |
| otoms             | 793.2                          | Nonspecific abnormal findings on radiological and other exa | 53        | 5,247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0e-5                                | 114                                  | 43,354,237 - 43,550,908                     | 7                                      | <mark>1</mark> 67                     |
| ulatory system    | 414                            | Other forms of chronic heart disease                        | 145       | 14,355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6e-5                                | 186                                  | 43,354,237 - 43,550,908                     | 13                                     | 468.01                                |

#### Link: <u>http://ukb-50kexome.leelabsg.org/</u>

# Acknowledgement and references

- The slides are modified based on "Introduction to Rare Variant Analysis and Collapsing Tests" by Timothy Thornton and Michael Wu at Summer Institute in Statistical Genetics 2015
- Hirschhorn, J. N., Lohmueller, K., Byrne, E., & Hirschhorn, K. (2002). A comprehensive review of genetic association studies. *Genetics in medicine*, 4(2), 45-61.
- Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., & Lin, X. (2011). Rare-variant association testing for sequencing data with the sequence kernel association test. *The American Journal of Human Genetics*, 89(1), 82-93.
- Lee, S., Emond, M. J., Bamshad, M. J., Barnes, K. C., Rieder, M. J., Nickerson, D. A., ... & NHLBI GO Exome Sequencing Project. (2012). Optimal unified approach for rare-variant association testing with application to smallsample case-control whole-exome sequencing studies. The American Journal of Human Genetics, 91(2), 224-237.
- Neale, B. M., Rivas, M. A., Voight, B. F., Altshuler, D., Devlin, B., Orho-Melander, M., ... & Daly, M. J. (2011). Testing for an unusual distribution of rare variants. PLoS Genet, 7(3), e1001322.
- Zhao, Z., Bi, W., Zhou, W., VandeHaar, P., Fritsche, L. G., & Lee, S. (2020). Uk biobank whole-exome sequence binary phenome analysis with robust region-based rare-variant test. *The American Journal of Human Genetics*, 106(1), 3-12.
- Dey, R., Schmidt, E. M., Abecasis, G. R., & Lee, S. (2017). A fast and accurate algorithm to test for binary phenotypes and its application to PheWAS. *The American Journal of Human Genetics*, 101(1), 37-49.
- Lee, S., Fuchsberger, C., Kim, S., & Scott, L. (2016). An efficient resampling method for calibrating single and genebased rare variant association analysis in case–control studies. *Biostatistics*, 17(1), 1-15.
- Denny, J. C., Ritchie, M. D., Basford, M. A., Pulley, J. M., Bastarache, L., Brown-Gentry, K., ... & Crawford, D. C. (2010). PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics, 26(9), 1205-1210.