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Genetically informative designs & Genetic covariance structure analysis: A brief introduction based on the classical twin design

Conor V. Dolan & Michael C. Neale

PPT presentation in 4 parts

PART 1 (11 slides)
Linear regression 
A covariance structure (based on linear regression)  
The problem: how to infer genetic effects if you have not measured any genes (SNPs)?

PART 2 (19 slides): 
Genetic covariance structure analysis 
Genetically informative design - MZ twins raised together
The observed covariance matrix vs. the hypothesized covariance matrix (model)
Representation in path diagram
Genetically informative design - MZ and DZ twins raised together ... the classical twin design (CTD)
CTD Illustration height

PART 3 (8 slides): 
CTD multivariate ACE models from 1 to p (p>1) phenotypes - limited to ACE (ADE models also possible)
Illustration Height and Weight

PART 4 (14 slides): 
The classical twin design (CTD) assumptions
Other GIDs
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Genetically informative design & Genetic covariance structure analysis:

A brief introduction based on the classical twin design

Conor V. Dolan & Michael C. Neale

PPT presentation in 4 parts  .... PART 1 (12 slides)
Linear regression 
A covariance structure (based on linear regression)  
The problem: how to infer genetic effects if you have not measured any genes (SNPs)?



Fitting models to phenotypic data in genetically informative designs (GID) 
using genetic covariance structure modeling (GCSM)

Aim: infer genetic and environmental contributions to phenotypic variance from 
the phenotypic covariances (correlations) among family members (no measured 
genotypes, no measured environmental variables)

Contributions are expressed as “variance components”, so the 
the phenotypic variance is decomposed into variance components.

Start with something familiar: the linear regression model
(e.g., as used in GWAS)
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Linear regression model: predict Y from X .... 

equation: Yi = b0 + b1*Xi + ei     ... e.g. GWAS: Heighti = b0 + b1*SNPi + ei 

variables: Yi dependent (predicted) in participant i  (EA, Height, Depression)
Xi predictor in participant i (genetic variant: a SNP)
ei residual in participant i

parameters: b0 intercept
b1 slope or regression coefficient

Y, X and e are variables because their value vary over persons
b0 and b1 are (fixed) parameters, with unknown values (in the well defined population)

Are X and Y linearly related? Null hypothesis (H-null): b1=0
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Descriptives
height: mean = 180.03 var= 64.01
SNP: mean = 0.80 var = 0.48

Covariance matrix
height   SNP

height 64.01 0.212
SNP     0.212 0.480
Correlation matrix

height SNP
height  1.000 0.038
SNP 0.038 1.000

Alleles A-a, genotypes aa, Aa/aA and AA, coded 0, 1, 2 (Note this is additive coding)
5

N = 20000



Results of linear regression analysis (in R).

Estimate    Std. Error t value Pr(>|t|)    
b0 (Intercept) 179.67245    0.08635 2080.67  < 2e-16 ***
b1 SNP           0.44226    0.08160    5.42 6.02e-08 ***

Linear association? H-null b1=0, H-alt b1≠0, α=0.01
Conclusion: p< α(p= 6.02e-08) so we reject H-null

Conclusion: individual differences in height are linearly related to Individual differences 
in SNP; or SNP explains variance of height or the SNP is associated with height. 

Linear additive model: the effect of alleles A on height is additive
go from aa (0) to Aa (1) is associated with difference .44226 (b1)
go from aa (0) to AA (2) is associated with difference .44226 + .44226 (additive: b1+ b1)  
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Heighti = b0 + b1*SNPi + ei = 197.67 + .442*SNPi + ei 

Increase in the number of A alleles (from aa to Aa and from Aa to AA) is associated 
with increase in height of b1 = 0.442 cm.  Because the SNP is coded 0 (aa) / 1 (Aa, aA) / 2 (AA) 
and the model is linear, the explained variance is called additive genetic variance. 

R2:  0.001467 proportion of variance explained or 0.1467%

Covariance structure model:

The linear regression model
1) provides an account of the covariance (correlation) of Height and SNP 

(remember correlation expression linear association)
2) provide a decomposition of variance of Height

(remember: variance is a measure of the magnitude of individual differences)
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observed numerical cov S
Height SNP

Height 64.01 0.212
SNP 0.212 0.480

based on linear regression model
Height SNP

Height b1
2*s2

SNP+ s2
e b1*s2

SNP

SNP b1*s2
SNP s2

SNP

Heighti = b0 + b1*SNPi + ei  .... Heighti = 197.67 + .442*SNPi + ei 

in symbols
Height SNP

Height s2
H sH,SNP

SNP sH,SNP s2
SNP
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covariance matrix 



linear regression model
Height SNP

Height b1
2*s2

SNP + s2
e b1*s2

SNP

SNP b1*s2
SNP s2

SNP

Decomposition: s2
H = b1

2*s2
SNP + s2

e = 
.4422*0.480 = 0.0938 (i.e. explained additive genetic variance)

Covariance: b1*s2
SNP = .442*0.480 = .212

Effect size R2: {b1
2*s2

SNP } / { b1
2*s2

SNP + s2
e } = 

0.0938 / 64.01  = .00146, or .146%

Observed numerical
Height SNP

Height 64.01 0.212
SNP 0.212 0.480
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Heighti = b0 + b1*SNPi + ei    

SNP Height e
b1 1

s2
SNP

s2
e

linear regression model - implied covariance structure
Height SNP

Height b1
2*s2

SNP + s2
e

64.01
b1*s2

SNP
0.212

SNP b1*s2
SNP

0.212
s2

SNP
0.480
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model: linear regression model

model implied
covariance structure

path diagram
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Height

A

an observed variable, a measured variable (phenotype, locus)

a latent variable, unobservable variable (additive genetic factor)

neuro-
ticism

a latent variable, unobservable variable (the neuroticism as a latent 
construct)

regression relationship - linear association 
(asymmetric)  
covariance or correlation - linear association 
(symmetric) 

X Y

X Y

e

variance X

neuro-
ticism

neuroticism as measured using a psychometric test, a test score
(the test score approximates the latent construct) 

conventions



Suppose we measured all SNPs relevant to height, suppose there are just 2 
Heighti = b0 + b1*SNP1i + b2*SNP2i + ei 

s2
Height = b1

2*s2
SNP1 + b2

2*s2
SNP2 + 2*b1*b2*s12 + s2

E

H1 E1A

s2
A s2

E

s2
Height = s2

A + s2
e

s2
ESNP1

SNP2

H

b1

b2

s12 E1

s2
SNP1

s2
SNP2

Additive genetic variance: s2
A (Environmental) variance: s2

E
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Ai = b1*SNP1i + b2*SNP2i



H1 E1A

s2
A s2

E

s2
Height = s2

A + s2
E

Suppose the following, where s2
A is attributable to M SNPs (M>1000, say).

How to estimate the variance components, if we have not measured the SNPs?
Solution: Genetically Informative Design (GID)

+ Genetic covariance structure modelling (GCSM) 
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Eq 1: Height = b0 + b1*Gene1 + b2*Gene2 + ....bM*GeneM + E
Eq 2: Height = b0 + A + E

s2
A attributable to Gene1 to GeneM.
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Genetically informative design & Genetic covariance structure analysis:

A brief introduction based on the classical twin design

Conor V. Dolan & Michael C. Neale

PPT presentation in 4 parts  .... PART 2 (18 slides): 
Genetic covariance structure analysis 
Genetically informative design - MZ twins raised together
The observed covariance matrix vs. the hypothesized covariance matrix (model)
Representation in path diagram
Genetically informative design - MZ and DZ twins raised together ... the classical twin design (CTD)
CTD Illustration height



Genetic covariance structure model (GCSM)
A model for the linear relationships among phenotype
Phenotypes collected in a genetically informative design (GID)
Phenotypes measured in individuals in known genetic / environmental relationships

GID aim:  estimate genetic and environmental variance components based only
on the phenotype measures, no measured genes (SNPs), no measured environment

Most used GID: MZ and DZ twins raised together: the classical twin design (CTD
Polderman et al 2015 - see slide notes for the ref)

Start with a simpler GID: MZ twins raised together (MZT)
Design: collect height in a representative sample of MZ twins
(i.e., representative of the well defined population)
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H1 E1A

s2
A

s2
E Our hypothesis

A represents genetic effects s2
A

E represents unshared environmental 
effects s2

E

Data: Height measured in 250 twin pairs (500 twins), 
Unit of sampling: twin pair
Key to the GID: MZ twins are genetically identical, 100% genetic variance 
is shared by MZ twins ... implies a covariance structure model
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MZ tw1 variance s2
Height = s2

A + s2
E

MZ tw2 variance s2
Height = s2

A + s2
E

Genes that contribute to height variance, necessarily contribute to 
MZ covariance, because MZ twins are genetically identical.

MZ tw1-tw2 covariance sH1,H2 = s2
A

Hypothesis (variance)

Hypothesis (covariance)

Observed N=250 MZ pairs (S) GCSM (Model) (Σ)
MZ1 MZ2 MZ1 MZ2

MZ1 63.891 50.782 MZ1 s2
A + s2

E s2
A

MZ2 50.782 64.150 MZ2 s2
A s2

A + s2
E
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Observed N=250 MZ pairs (S) GCSM (Model) (Σ)
MZ1 MZ2 MZ1 MZ2

MZ1 63.891 50.782 MZ1 s2
A + s2

E s2
A

MZ2 50.782 64.150 MZ2 s2
A s2

A + s2
E

H1 E1A

s2
A s2

E

s2
Height = s2

A + s2
E

The hypothesis of interest
Estimate s2

A and s2
E

The GID: the means to the end of
estimating s2

A and s2
E
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s2
A

H1 H2

E E

1 1

1 1s2
E s2

E



Observed N=250 MZ pairs (S) GCSM (Model) (Σ)
MZ1 MZ2 MZ1 MZ2

MZ1 63.891 50.782 MZ1 s2
A + s2

E s2
A

MZ2 50.782 64.150 MZ2 s2
A s2

A + s2
E

s2
A = 50.782 (estimate of A variance component)

s2
E = s2

Ph - s2
A = 63.891 – 50.782 =13.11 and 64.150 – 50.782 = 13.37

s2
E = (13.11 + 13.37) /2 = 13.24 (estimate of E variance component)
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GID (MZ)

Graphically: pathmodel 

H1 = m + A1 + E1
H2 = m + A2 + E1

or  (A1=A2)

H1 = m + A + E1
H2 = m + A + E2

GID (MZ)

Regression Equations

GID (MZ)

Covariance structure
(variances and covariance)
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This a weak GID... what have we assumed concerning the environment? 
(see the MZ1-MZ2 covariance!)



GCSM (Model) (ΣMZ)
MZ1 MZ2

MZ1 s2
A + s2

E s2
A

MZ2 s2
A s2

A + s2
E

GCSM (Model) (ΣDZ)
DZ1 DZ2

DZ1 s2
A + s2

E .5*s2
A

DZ2 .5*s2
A s2

A + s2
E

Why add DZ twins? To extend the model (add variance component): ACE model or ADE model

Classical twin design: MZ twins and DZ twins  (raised / growing up together in the same 
household) .... AE model

21
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GCSM (Model) (ΣMZ) rA = 1

MZ1 MZ2

MZ1 s2
A + s2

C+ s2
E 1*s2

A+ s2
C

MZ2 1*s2
A+ s2

C s2
A + s2

C+ s2
E

GCSM (Model) (ΣDZ) rA = ½

DZ1 DZ2

DZ1 s2
A + s2

C+s2
E ½*s2

A+s2
C

DZ2 ½*s2
A+s2

C s2
A + s2

C+ s2
E

H1 H2

A C E A C E
s2

A
s2

A

rA*s2
A s2

C 0

s2
C

s2
C s2

Es2
E

1
1 1 1 1

1

ACE model
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A = additive genetic
C= common (shared) environmental
E = unshared environmental

(+ measurement error)



GCSM (Model) (ΣMZ) rA = 1 rD = 1

MZ1 MZ2

MZ1 s2
A + s2

D+ s2
E s2

A+ s2
D

MZ2 s2
A+ s2

D s2
A + s2

D+ s2
E

GCSM (Model) (ΣDZ) rA =½ rD = ¼

DZ1 DZ2

DZ1 s2
A + s2

D+s2
E ½*s2

A+¼*s2
D

DZ2 ½*s2
A+¼*s2

D s2
A + s2

D+ s2
E

H1 H2

A D E A D E
s2

A
s2

A

rA*s2
A rD* s2

D

s2
D

s2
D s2

Es2
E

1
11

1
11

ADE model
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A = additive genetic
D= dominance genetic
E = unshared environmental

(+ measurement error)



MZF Data descriptives
vars   N* mean   sd    min    max

ht1    1 556 162.97 6.64 141.99 189.99
ht2    2 560 162.93 6.65 139.99 179.98

mzf correlation rMZ = .878

DZF Data descriptives
vars   N* mean   sd min    max

ht1    1 348 164.09 6.94 146 198.00
ht2    2 343 163.28 6.73 146 182.98

dzf correlation rDZ = .439

Illustration - height in females twins (mean age 23; std age 3.6) 
(twinData in OpenMx R library ... R code in slide notes)

24
*note: variation in N is due to missing data



GCSM (Model) (ΣMZ)  

MZ1 MZ2

MZ1 s2
A + s2

C+ s2
E s2

A+ s2
C

MZ2 s2
A+ s2

C s2
A + s2

C+ s2
E

GCSM (Model) (ΣDZ)  

DZ1 DZ2

DZ1 s2
A + s2

C+s2
E ½*s2

A+s2
C

DZ2 ½*s2
A+s2

C s2
A + s2

C+ s2
E

GID: the classical twin design. 
Decomposing phenotypic variance based on ACE Model: s2

Height = s2
A + s2

C+ s2
E

Observed SMZ (RMZ) (N=569)  

MZ1 MZ2

MZ1 44.068 
(1) 

38.721 
(.878)

MZ2 38.721 
(.878)

44.177 
(1)

GCSM (Model) SDZ (RDZ)  (N=351)

DZ1 DZ2

DZ1 48.175 
(1)

20.519 
(.439) 

DZ2 20.519 
(.439)

45.319
(1)

Observed data (variances, covariances, correlations)
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ACE model, if (2*rDZ)≥rMZ 

s2
A = 2*(rMZ-rDZ)  = 2*(.878 - .439) = .878

s2
C = 2*rDZ-rMZ  = 2*.439-.878 = 0.0 

s2
E = 1- s2

A - s2
C = 1-.0-.878 = .122

Conclusion given s2
A + s2

C+ s2
E  =.878 + 0 + .122 = 1. In young females adults, #1) 87.8% of variance is 

genetic (87.8% of phenotypic differences due to genetic differences); #2) No contribution of shared 
environment; #3) 12.2% of variance is environmental (+ measurement error). 

Quick method based on standardized phenotypes .... Falconer's equations

s2
A + s2

C+ s2
E = variance =  1 

s2
A + s2

C = rMZ = .878
½*s2

A + s2
C = rDZ = .439
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Note: ADE model equations in slide notes (used if (2*rDZ)<rMZ)

three equations, 
three unknowns, three knowns

solve for the unknowns....

Solution



In practice, we use genetic covariance structure modeling to fit models to data collected in 
genetically informative design. 

1) Optimal estimates of parameters + information about precision of estimates (95% CIs)
2) Overall goodness of fit testing: does the specified model fit the observed covariance matrices?
3) Statistical testing of individual parameters (ACE vs AE; ACE vs CE; ADE vs AE).

and 

4) Generalizes from 1 phenotype to P phenotypes (multivariate phenotype / repeated measures)
5) Accommodates missing data
6) Can handle binary / dichotomous phenotypic data  
7) Can handle any (multivariate) Genetically Informative Design
(e.g. twins + parents; twins + siblings; children of twin design; extended pedigree design)  
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GCSM 
We have the data (MZ and DZ twin phenotypic data)
The data summary (linear relationship): two covariance matrices and the 4 means
We have a linear model for the data (pathmodel), which implies covariance structure(s) 
The covariance structure(s) are covariance matrices expressed in terms of unknown (to be estimated) and
known parameters  (GID!). 
The classical twin design: unknown parameters (s2

A , s2
C, s2

e) and known parameters (1, ½, ¼)

28
How to obtain estimates? Maximum likelihood estimation



Observed SMZ (RMZ) (N=569)  

MZ1 MZ2

MZ1 44.068 
(1) 

38.721 
(.878)

MZ2 38.721 
(.878)

44.177 
(1)

GCSM (Model) SDZ (RDZ)  (N=351)

DZ1 DZ2

DZ1 48.175 
(1)

20.519 
(.439) 

DZ2 20.519 
(.439)

45.319
(1)

µ the phenotypic mean
s2

A genetic variance
s2

C shared env variance
s2

E unshared env variance

Parameters associated with the 
hypothesis ACE model

Illustration of ML estimation in GCSM with MZ and DZ twin design (phenotype height)
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OpenMx ML estimates AE model i.e., s2
C = 0 (fixed to zero) ... Hypothesis AE model

free parameters:
name matrix row col  Estimate Std.Error 3 Parameters

1 mean  meanH   1   1 163.29555 0.2051183  µ the phenotypic mean
2 VA11     VA   1   1  40.18631 1.8228455  s2

A genetic variance
3 VE11     VE   1   1  5.42909 0.3269049  s2

E unshared env variance

Model Statistics: 
|  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)

Model:              3                   1804              11135.99 .... -2*fML(θ)

OpenMx ML estimates ACE model ... Hypothesis ACE model

free parameters:
name matrix row col   Estimate Std.Error 4 Parameters

1 mean  meanH   1   1 163.296892 0.2045165 µ the phenotypic mean
2 VA11     VA   1   1  41.162844 4.1639267 s2

A genetic variance
3 VC11     VC   1   1  -1.093649 4.1465672 s2

C shared env variance
4 VE11     VE   1   1   5.419555 0.3276949 s2

E unshared env variance

Model Statistics: 
|  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)

Model:              4                   1803              11135.91 .... -2*fML(θ)
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Likelihood ratio test. ACE vs AE .... can we "drop" C (i.e., set s2
C = 0)?

A statistical test of the hypothesis s2
C = 0 based on the values of the likelihood functions

Model Statistics: 
|  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)

Model:              4                   1803              11135.91

Model Statistics: 
|  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)

Model:              3                   1804              11135.99 

Test statistic called the (log-)Likelihood Ratio test (LRT): 
11135.99 - 11135.91 = .08

If H-null: s2
C = 0 is true, the LRT is distributed chi2(1), where 1 (df) = 4-3, difference in the number of parameters

.08, df=1, p-value = .777 (in R pchisq(.08,1,lower=F) 
If p-value < alpha (e.g. .01), we would reject s2

C = 0. 
Here we conclude s2

C = 0 ... So there is no shared environmental variance 
no shared environmental contributions to the phenotype variance in height 

31

s2
Height = s2

A + s2
C + s2

E



s2
Height = s2

A + s2
E = 40.186 + 5.429 =  45.615

standardized variance components

s2
A / {s2

A + s2
E} = 40.186 / 45.615 = .881  (a.k.a "narrow-sense" heritability, a proportion like R2)

s2
E / {s2

A + s2
E} = 5.429 / 45.615 = .119 

95% confidence intervals of the standardized variance components:

lbound  estimate ubound
s2

A / {s2
A + s2

E} 0.8629  0.881  0.8964      
s2

E / {s2
A + s2

E} 0.1035 0.119  0.1370 
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95% CI tell us how precise
the estimate are ...
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Genetically informative design & Genetic covariance structure analysis:

A brief introduction based on the classical twin design

Conor V. Dolan & Micheal C. Neale

PPT presentation in 4 parts  .... PART 3 (8 slides): 
CTD multivariate ACE models from 1 to p (p>1) phenotypes - limited to ACE (ADE models 
also possible)
Illustration Height and Weight



GCSM (Model) (ΣMZ)  

MZ1 MZ2

MZ1 s2
A + s2

C+ s2
E s2

A+ s2
C

MZ2 s2
A+ s2

C s2
A + s2

C+ s2
E

GCSM (Model) (ΣDZ)  

DZ1 DZ2

DZ1 s2
A + s2

C+s2
E ½*s2

A+s2
C

DZ2 ½*s2
A+s2

C s2
A + s2

C+ s2
E

Univariate ACE model (one phenotype: s2
A and s2

C and s2
E are variances)

Classical twin model generalizes readily to the multivariate case. 
p-phenotypes: SA and SC and SE are pxp covariance matrices in the ACE model

GCSM (Model) (ΣMZ) rA = 1

MZ1 MZ2

MZ1 SA + SC+ SE SA+ SC

MZ2 SA+ SC SA + SC+ S2
E

GCSM (Model) (ΣDZ) rA = ½

DZ1 DZ2

DZ1 SA + SC+SE ½*SA+SC

DZ2 ½*SA+SC SA + SC+ SE

34



Height Weight

AH DH EH AW DW EW

s2
AH

s2
AW

sAH,AW sDH,DW sEH,EW

s2
DH

s2
DW s2

EWs2
EH

1
1 1 1 1

1

SPH                                                = SA + SD + SE
SPH H W

H s2
H sH,W

W sH,W s2
W

SA H W

H s2
AH sAH,AW

W sAH,AW s2
AW

SD H W

H s2
DH sDH,DW

W sDH,DW s2
DW

SE H W

H s2
EH sEH,EW

W sEH,EW s2
EW

+ +

Path diagram of 2 phenotypes: height and weight. Hypothesis / aim:  SPH  = SA + SD + SE

=
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MZ H1 W1 H2 W2

H1 44.068 (1) 28.066 38.721 24.283

W1 28.066 (.493) 73.441 (1) 27.702 63.359

H2 38.721 (.878) 27.702 (.486) 44.177 (1) 26.909

W2 24.283 (.415) 63.359 (.839) 26.909 (.459) 77.662 (1)

DZ H1 W1 H2 W2

H1 48.175 (1) 26.426 20.519 14.952

W1 26.426 (.441) 74.632 (1) 10.158 26.773

H2 20.519 (.439) 10.158 (.175) 45.319 (1) 28.205

W2 14.952 (.234) 26.773 (.337) 28.205 (.456) 84.564 (1)

Covariance matrices (correlations) 

SA + SD + SE SA + D

SA + SD SA + SD + SE 

SA + SD + SE .5*SA + .25*SD 

.5*SA+ .25*SD SA + SD + SE 

SA ,   SD , and SE are 2x2 matrices (2 phenotypes)

Covariance matrices (m) 



Height Weight

AH DH EH AW DW EW

s2
AH

s2
AW

sAH,AW sDH,DW sEH,EW

s2
DH

s2
DW s2

EWs2
EH

1
1 1 1 1

1

SPH                                                = SA + SD + SE
SPH H W

H s2
H sH,W

W sH,W s2
W

SA H W

H s2
AH sAH,AW

W sAH,AW s2
AW

SC H W

H s2
DH sDH,DW

W sDH,DW s2
DW

SE H W

H s2
EH sEH,EW

W sEH,EW s2
EW

+ +

Path diagram of 2 phenotypes: height and weight. Hypothesis / aim:  SPH  = SA + SD + SE

=
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LRT results
ADE model vs AE model:
LRT stat = 6.62, df=3, p=0.085
Drop D, reduce model to AE



SPH                                                = SA + SE
SPH H W

H s2
H sH,W

W sH,W s2
W

SA H W

H s2
AH sAH,AW

W sAH,AW s2
AW

SE H W

H s2
EH sEH,EW

W sEH,EW s2
EW

+=

Bivariate AE model reveals:
1) Contribution of A and E to phenotypic height variance (s2

AH s2
EH)

(40.141 / 45.484 = .881; 5.442 / 45.484 = .119)
2) Contribution of A and E to phenotypic weight variance (s2

AW s2
EW)

(67.172 / 79.228 = .848; 12.056 / 79.228 = .152)
3) Contribution of A and E to phenotypic height - weight covariance (sAH,AW sEH,EW )
(26.555 / 27.829 = .954; 1.275/27.829 = .046) 
.... Pleiotropy is used to denote genetic effects common to 2 or more phenotypes.
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SPH H W

H 45.584 27.829

W 27.829 79.228

SA H W

H 40.141 26.555

W 26.555 67.172

SE H W

H 5.442 1.275

W 1.275 12.056
+=

R script in slide notes
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The p-variate twin model based on the CTD represents the following hypothesis

SPH  = SA + SC + SE (or SPH  = SA + SD + SE)

where SA, SC and SE are pxp covariance matrices

In genetic covariance structure pxp covariance matrices  SA, SC and SE may themselves be 
subject to a covariance structure model. Well known models in standard phenotypic 
covariance structure modeling, can be applied to SA, SC and SE. 

Example: common factor model
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Suppose SPH  = SA + SE where SPH is the phenotypic covariance of p=4 phenotypes: anxiety, depression, 
introversion, withdrawnness

AA

A D I W

Ac

A D I W

AD AI AW

SA as a 4x4 covariance 
matrix with 10 parameters
(estimated not modeled)

SA as a 4x4 covariance matrix with 8 
parameters (estimated subject to 
specified structure: 1 common factor 
model)

AA AD AI AW

Common set
(source of pleiotropy)
source of variance and 
covariance

Unique set
source of variance, 
not covariance

We know that these phenotypes are phenotypically correlated (correlations between .4 and .6).
Hypothesis:  The phenotypic correlations are due to a set of genes common to the four phenotypes (Ac). 
In addition each phenotype has its own unique set of genes.... (A A A DAI AW)



Bartels M, Rietveld MJH, Baal van GCM, Boomsma DI.  (2002) Behavior Genetics, 32, 237-249.
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SC 4x4 covariance matrix ... a 1 common factor model
SA 4x4 covariance matrix ... a 1 common factor model without phenotype specific genetic residuals
SE 4x4 covariance matrix ... a diagonal matrix (E does not contribute to the phenotypic covariance)
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Genetically informative design & Genetic covariance structure analysis:

brief introduction based on the classical twin design

Conor V. Dolan & Michael C. Neale

PPT presentation in 4 parts  .... PART 4 (13 slides): 
The classical twin design (CTD) assumptions
Other GIDs



Assumptions of the CTD: generalizability. 

The MZ and DZ twins are representative of the “target”  population (i.e., 12 year olds).

12 year old Dutch urban MZ twins are representative of 12 year old Dutch urban children.
12 year old Dutch urban DZ twins are representative of 12 year old Dutch urban children.

In a study of IQ (say), this means statistically ... 

phenotypically: same mean, same variance, 
genetically: same genetic influences / genetic variants
environmentally: same environmental influences

The CTD is a means to an end .... SPH = SA + SC+SE , cognitive abilities in 12 year olds



Assumption: random mating (testable if you have parental data .... rspouse = 0).

The .5 in .5*sA
2 is based on the assumption of random mating

Positive non-random mating (a.k.a. assortative mating) may result in rA*sA
2 , where rA>.5.

Simple test: what is the phenotypic spousal correlation rspouse? 
If rspouse > 0, then we acknowledge assortative mating ..... This raises the question: what process underlies 
assortative mating?
Is mating random? Height rspouse = ~ .2 ...  IQ  rspouse = ~ .3 to ~.4

Y1

A1 C1 E1

1 1
1

Y2

A2 C2 E2

1 1
1

sA
2 sE

2sC
2 sA

2 sC
2 sE

2

sC
2.5*sA

2



A

IQ

s2
A

1

E

C
1

s2
C

s2
E

1

no A-E (rAE) and A-C (rAC) correlation
0

0

A

IQ

s2
A

1

E

C
1

s2
C

s2
E

1

sAC

sAE

A-E (sAE≠0) and A-C (sAC ≠0) covariance
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Crucial: What process gives rise to rAC, rAE?



IQ_p

EA_p

A_p

IQ_c

A_c environment
(C)

SES_p

rAC process rAC consequence

A

IQ_c

s2
A

1

E

C
1

s2
C

s2
E

1

sAC ≠0

sAE

Intelligence (IQ) and Educational attainment (EA)
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Moderation / interaction

pheno

A E

1 1

47

sA
2 sE

2

The effect of A is expressed as sA
2 and quantified as sA

2 /(sA
2 

+ sE
2). The effect of A does not depend on E: E does not 

moderate the effect of A. There is no AxE interaction. 

pheno

A E

1 1

sA
2 sE

2

The effect of E is expressed as sE
2 and quantified as sE

2 /(sA
2 

+ sE
2). The effect of E does not depend on A: A does not 

moderate the effect of E. There is no AxE interaction. 



Phenotypic
scores

Genetic level (score on A only 9 levels for clarity)

Environmental
Dispersion / variance

Variance of
E given A score ...
does not depend on A

a.k.a. 
homoskedasticity

sE
2 is constant over levels of A: 

environmental effects (sE
2) are the same given any value of A

NO AxE interaction
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-4 -3 -2 -1 0 1 2 3

-4
-2

0
2

4
6

x
yPhenotypic

scores

Genetic level (score on A)

Conditional
variance of E 
given A

a.k.a. 
heteroskedasticity

G x E  as “genetic control” of E effects: The effect of E, 
expressed as sE

2 is a function of A: sE
2 =f(A) 

AxE interaction
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-4 -3 -2 -1 0 1 2 3

-4
-2

0
2

4
6

x

y

Genetic level (A)
-4 -3 -2 -1 0 1 2 3

-4
-2

0
2

4
6

x

y

Moderator level (M)
Environmental effects (variance) 
depend on A-level

Environmental effects and /or genetic effects (variances)  
depend on M-level (linear increase)

Interaction AxE Moderation
ph

en
ot

yp
ic

 s
co

re

s2
Ei

any one
or more

s2
Ai

s2
Ci

s2
Ei

s2
E = f(M)
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s2
A = f(M) s2

C = f(M)

S. Purcell (2002). Variance Components Models for Gene–Environment 
Interaction in Twin Analysis Twin Research Volume 5 Number 6 pp. 554-
571



Age (Years)

2 4 6 8 10 12 14 16 18

Va
ria

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Genes (A)
Shared Environment (C)
Nonshared Environment (E)

Tucker-Drob & Bates (2015): Variance components. Moderation model with 
measured moderator (age) .... A increase and C decreases with age

Age a continuous moderator
of genetic and environmental effects
on IQ

51GHB 2020 – lecture 7
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consequence in the CTD 

Assumption violation Bias

AxE AxE>0 mimics E E overestimated

AxC AxC>0 mimics A A overestimated

cov(A,C) cov(A,C) >0 mimics C C overestimated

cov(A,E) cov(A,E) >0 mimics A A overestimated

Suppose that there is GxE interaction or G-E covariance, but you fit the standard ACE twin model...
how are the variance components biased?



53

Age (Years)

2 4 6 8 10 12 14 16 18

Va
ria

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Genes (A)
Shared Environment (C)
Nonshared Environment (E)

C variance declines with age .... Effect of C declines with age .... 
However, cov(AC) results in C overestimation in the twin model.... 
So the large C variance in early years could be due in part to cov(AC).

So the apparent C variance may - in part - be cov(AC) and the decline in C effects, may be due - in part - to a change  in 
process that gives rise to the cov(AC) 

.... just sayin' interpret your variance components carefully .... bearing in mind possible violations of model assumptions

consequence in the 
CTD 

Assumption violation Bias

cov(A,C) cov(A,C) >0 mimics C C overestimated

cov(A,E) cov(A,E) >0 mimics A A overestimated
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CTD is ONE genetically informative design (GID) that has proven to be highly productive and
very influential... (changed the view of genetics in psychology!)

It is generally recognized to be a useful design that includes strong assumptions.

However the CTD is not the only GID ... more extended designs are less dependent on assumptions
or allow one to test assumptions. Examples of extended GIDs:

Nuclear Twin Family Design (e.g., Keller et al 2009 Twin Research and Human Genetics)
Children of Twin Designs (e.g., McAdams et al 2018 Behavior Genetics)
Twins and spouses Designs (e.g. Reynolds et al 2006 Behavior Genetics) 
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Includes assortative mating (µ), sAC (A-C covariance) stemming from cultural transmission (m)

Keller et al (2009) Twin Res Hum Genet. 2009 Feb;12(1):8-18. doi: 10.1375/twin.12.1.8.
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blue dots are the conditional mean
read line is the linear regression line

data are consistent with linear regression

blue dots are the conditional mean
read line is the linear regression line

data are not consistent with linear regression
see difference between conditional means and the regression
.... that is dominance
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