Genetically informative designs & Genetic covariance structure analysis: A brief introduction based on the classical twin design

Conor V. Dolan & Michael C. Neale

PPT presentation in 4 parts

PART 1 (11 slides)

Linear regression

A covariance structure (based on linear regression)

The problem: how to infer genetic effects if you have not measured any genes (SNPs)?

PART 2 (19 slides):

Genetic covariance structure analysis

Genetically informative design - MZ twins raised together

The observed covariance matrix vs. the hypothesized covariance matrix (model)

Representation in path diagram

Genetically informative design - MZ and DZ twins raised together ... the classical twin design (CTD)

CTD Illustration height

PART 3 (8 slides):

CTD multivariate ACE models from 1 to p (p>1) phenotypes - limited to ACE (ADE models also possible) Illustration Height and Weight

PART 4 (14 slides):

The classical twin design (CTD) assumptions Other GIDs

Genetically informative design & Genetic covariance structure analysis:

A brief introduction based on the classical twin design

Conor V. Dolan & Michael C. Neale

PPT presentation in 4 parts PART 1 (12 slides)

Linear regression

A covariance structure (based on linear regression)

The problem: how to infer genetic effects if you have not measured any genes (SNPs)?

Fitting models to phenotypic data in genetically informative designs (GID) using genetic covariance structure modeling (GCSM)

Aim: infer genetic and environmental contributions to phenotypic variance from the phenotypic covariances (correlations) among family members (<u>no measured</u> <u>genotypes</u>, <u>no measured environmental variables</u>)

Contributions are expressed as "variance components", so the the phenotypic variance is decomposed into variance components.

Start with something familiar: the linear regression model (e.g., as used in GWAS)

Linear regression model: predict Y from X

equation: $Y_i = b_0 + b_1^* X_i + e_i$... e.g. GWAS: Height_i = $b_0 + b_1^* SNP_i + e_i$

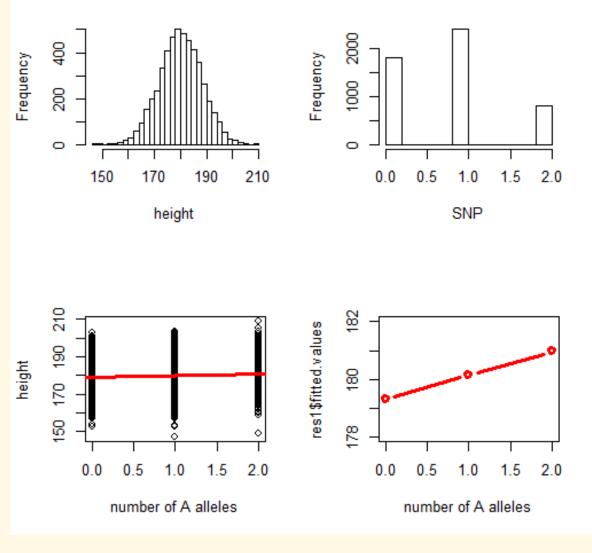
variables:	Υ _i	dependent (predicted) in participant i (EA, Height, Depression)
	X _i	predictor in participant i (genetic variant: a SNP)
	e _i	residual in participant i
parameters:	b ₀	intercept
	b ₁	slope or regression coefficient

Y, X and e are <u>variables</u> because their value <u>vary</u> over persons b_0 and b_1 are (fixed) parameters, with unknown values (in the well defined population)

Are X and Y linearly related? Null hypothesis (H-null): b₁=0

Histogram of height

Histogram of SNP



N = 20000

Descriptives

height: mean = 180.03 var= 64.01 SNP: mean = 0.80 var = 0.48

Covariance matrix					
	height	SNP			
height	64.01	0.212			
SNP	0.212	0.480			
Correlatio	on matrix				
	height	SNP			
height	1.000	0.038			
SNP	0.038	1.000			

Alleles A-a, genotypes aa, Aa/aA and AA, coded 0, 1, 2 (Note this is additive coding)

Results of linear regression analysis (in R).

		Estimate	Std. Error t value Pr(> t)
\mathbf{b}_0	(Intercept)	179.67245	0.08635 2080.67 < 2e-16 ***
b_1	SNP	0.44226	0.08160 5.42 6.02e-08 ***

Linear association? H-null b1=0, H-alt b1 \neq 0, α =0.01 Conclusion: p< α (p= 6.02e-08) so we reject H-null

Conclusion: **individual differences in height** are linearly related to Individual differences in SNP; or **SNP explains variance of height** or **the SNP is associated with height**.

Linear additive model: the effect of alleles A on height is additive go from aa (0) to Aa (1) is associated with difference .44226 (b_1) go from aa (0) to AA (2) is associated with difference .44226 + .44226 (additive: $b_1 + b_1$) $\text{Height}_{i} = b_{0} + b_{1}^{*} \text{SNP}_{i} + e_{i} = 197.67 + .442^{*} \text{SNP}_{i} + e_{i}$

Increase in the number of A alleles (from aa to Aa and from Aa to AA) is associated with increase in height of $b_1 = 0.442$ cm. Because the SNP is coded 0 (aa) / 1 (Aa, aA) / 2 (AA) and the model is linear, the explained variance is called <u>additive genetic variance</u>.

R²: 0.001467 proportion of variance explained or 0.1467%

Covariance structure model:

The linear regression model

1) provides an account of the **covariance** (**correlation**) of Height and SNP (remember correlation expression linear association)

2) provide a decomposition of **variance** of Height

(remember: variance is a measure of the magnitude of individual differences)

observed numerical cov S					
	Height SNP				
Height	64.01	0.212			
SNP	0.212	0.480			

in symbols					
	Height	SNP			
Height	s ² _H	S _{H,SNP}			
SNP	S _{H,SNP}	s ² _{SNP}			

based on linear regression model					
Height SNP					
Height	$b_1^{2*}s_{SNP}^2 + s_e^2$	b ₁ *s ² _{SNP}			
SNP	b ₁ *s ² _{SNP}	s ² _{SNP}			

 $\text{Height}_{i} = b_0 + b_1^* \text{SNP}_{i} + e_i \dots \text{Height}_{i} = 197.67 + .442^* \text{SNP}_{i} + e_i$

Observed numerical			linear regression model		
	Height	SNP		Height	SNP
Height	64.01	0.212	Height	$b_1^{2*}s_{SNP}^2 + s_e^2$	b ₁ *s ² _{SNP}
SNP	0.212	0.480	SNP	b ₁ *s ² _{SNP}	s ² _{SNP}

Decomposition: $s_{H}^{2} = b_{1}^{2*}s_{SNP}^{2} + s_{e}^{2} = .442^{2*}0.480 = 0.0938$ (i.e. explained additive genetic variance)

Covariance:

 $b_1 * s_{SNP}^2 = .442 * 0.480 = .212$

Effect size R²:

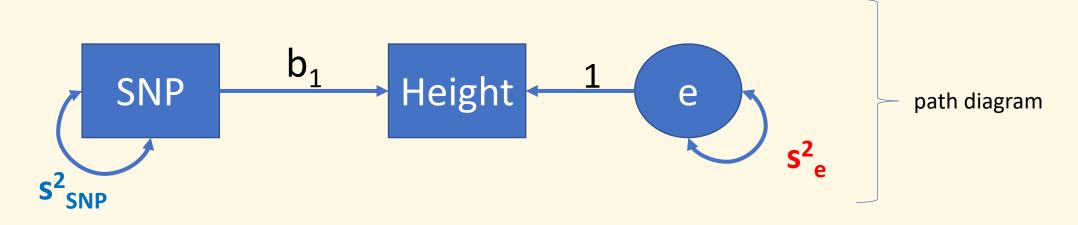
$$\{b_1^{2*}s_{SNP}^2\} / \{b_1^{2*}s_{SNP}^2 + s_e^2\} = 0.0938 / 64.01 = .00146, or .146\%$$

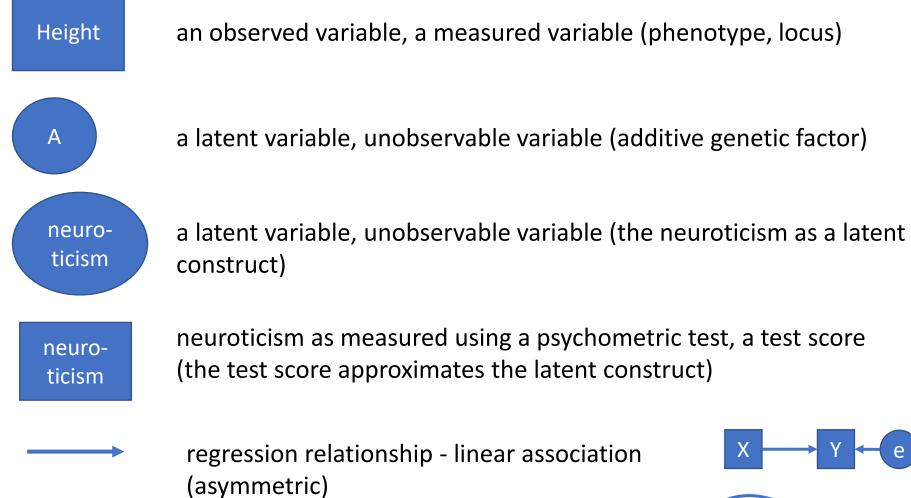
model: linear regression model

 $\text{Height}_i = b_0 + b_1^* \text{SNP}_i + e_i$

linear regression model - implied covariance structure					
	Height SNP				
Height	$b_1^{2*}s_{SNP}^2 + s_e^2$ 64.01	b ₁ *s ² _{SNP} 0.212			
SNP	b ₁ *s ² _{SNP} 0.212	s ² _{SNP} 0.480			

model implied covariance structure



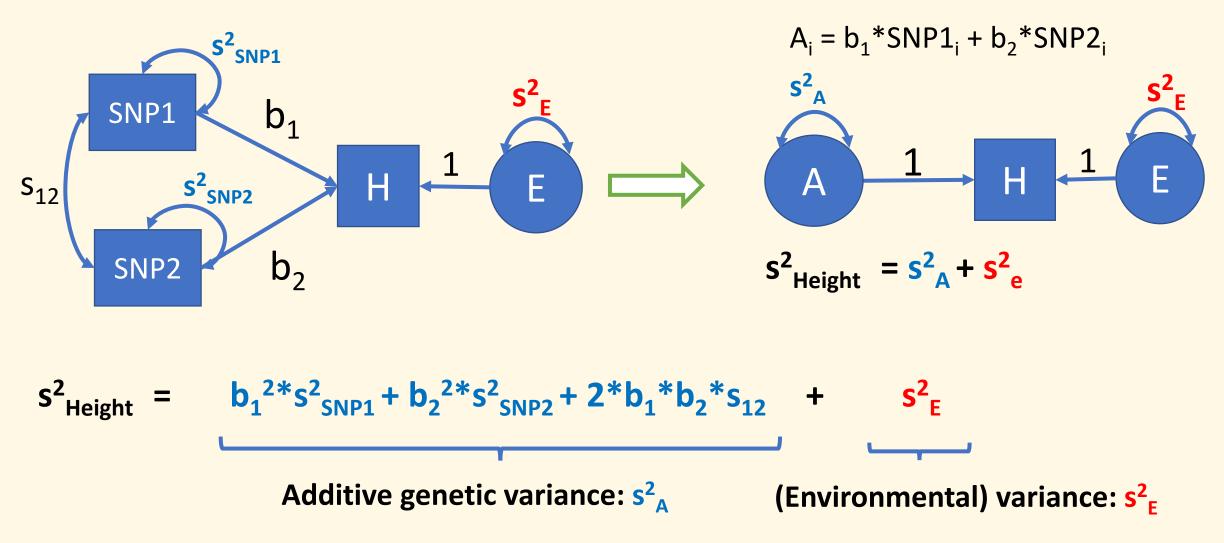


- covariance or correlation linear association (symmetric)
- variance

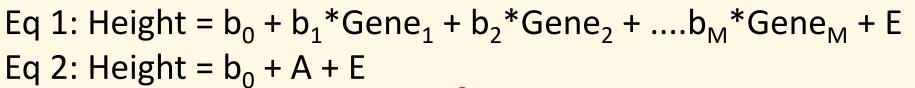
XY

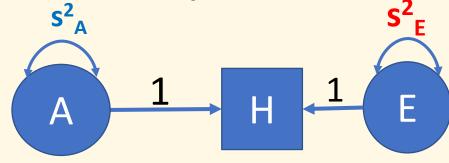
conventions

Suppose we measured all SNPs relevant to height, suppose there are just 2 Height_i = $b_0 + b_1^* SNP1_i + b_2^* SNP2_i + e_i$



Suppose the following, where s_{A}^{2} is attributable to M SNPs (M>1000, say).





$$s^2_{\text{Height}} = s^2_A + s^2_E$$

 s_{A}^{2} attributable to Gene₁ to Gene_M.

How to estimate the variance components, if we have not measured the SNPs? Solution: Genetically Informative Design (GID)

+ Genetic covariance structure modelling (GCSM)

Genetically informative design & Genetic covariance structure analysis:

A brief introduction based on the classical twin design

Conor V. Dolan & Michael C. Neale

PPT presentation in 4 parts PART 2 (18 slides):

- Genetic covariance structure analysis
- Genetically informative design MZ twins raised together
- The observed covariance matrix vs. the hypothesized covariance matrix (model)
- Representation in path diagram
- Genetically informative design MZ and DZ twins raised together ... the classical twin design (CTD) CTD Illustration height

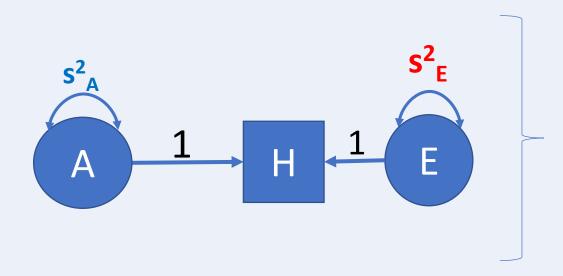
Genetic covariance structure model (GCSM)

A model for the linear relationships among phenotype Phenotypes collected in a **genetically informative design** (GID) Phenotypes measured in individuals in known genetic / environmental relationships

GID aim: estimate genetic and environmental variance components based only on the phenotype measures, no measured genes (SNPs), no measured environment

Most used GID: MZ and DZ twins raised together: the classical twin design (CTD Polderman et al 2015 - see slide notes for the ref)

Start with a simpler GID: MZ twins raised together (MZT) Design: collect height in a representative sample of MZ twins (i.e., representative of the well defined population)



Our hypothesis

A represents genetic effects s^2_A E represents unshared environmental effects s^2_E

Data: Height measured in 250 twin pairs (500 twins),
Unit of sampling: twin pair
Key to the GID: MZ twins are genetically identical, 100% genetic variance is shared by MZ twins ... implies a covariance structure model

MZ tw1 variance $s_{Height}^2 = s_A^2 + s_E^2$ MZ tw2 variance $s_{Height}^2 = s_A^2 + s_E^2$

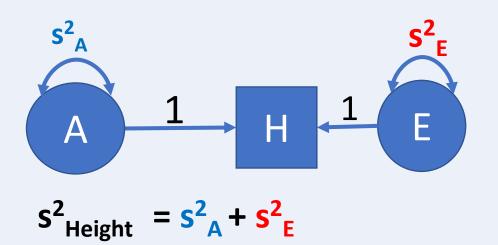
Hypothesis (variance)

Genes that contribute to height variance, necessarily contribute to MZ covariance, because MZ twins are genetically identical.

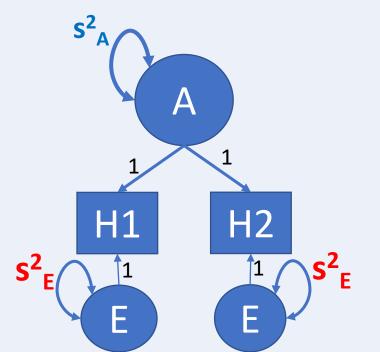
Hypothesis (covariance)

Observed N=250 MZ pairs (S)			GCS	SM (Model)	(Σ)
	MZ1	MZ2		MZ1	MZ2
MZ1	63.891	50.782	MZ1	$s_A^2 + s_E^2$	s ² _A
MZ2	50.782	64.150	MZ2	s ² _A	$s_A^2 + s_E^2$

Observed N=250 MZ pairs (S)			GCS	SM (Model)	(Σ)
	MZ1	MZ2		MZ1	MZ2
MZ1	63.891	50.782	MZ1	$s_A^2 + s_E^2$	s ² _A
MZ2	50.782	64.150	MZ2	s ² _A	$s_A^2 + s_E^2$



The hypothesis of interest Estimate s²_A and s²_E



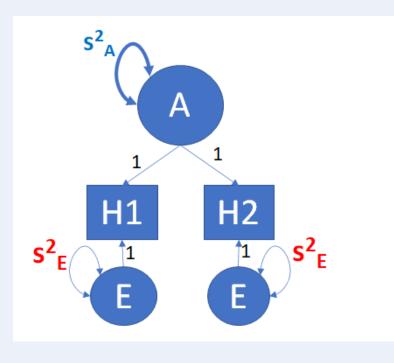
The GID: the means to the end of estimating s_A^2 and s_E^2

Observed N=250 MZ pairs (S)			GCS	SM (Model)	(Σ)
	MZ1	MZ2		MZ1	MZ2
MZ1	63.891	50.782	MZ1	$s_A^2 + s_E^2$	s ² _A
MZ2	50.782	64.150	MZ2	s² _A	s ² _A + s ² _E

s²_A = 50.782 (estimate of A variance component)

 $s_{E}^{2} = s_{Ph}^{2} - s_{A}^{2} = 63.891 - 50.782 = 13.11$ and 64.150 - 50.782 = 13.37 $s_{E}^{2} = (13.11 + 13.37) / 2 = 13.24$ (estimate of E variance component) GID (MZ)

Graphically: pathmodel



GID (MZ)

Regression Equations

 $H_1 = m + A_1 + E_1$ $H_2 = m + A_2 + E_1$

 $H_1 = m + A + E_1$

 $H_2 = m + A + E_2$

or $(A_1 = A_2)$

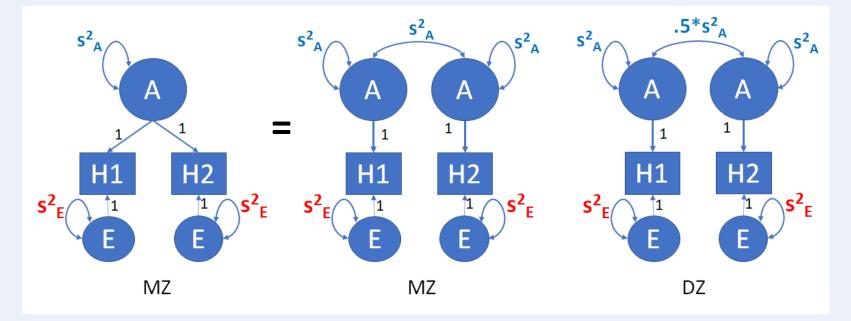
GID (MZ)

Covariance structure (variances and covariance)

GCSM (Model) (Σ)					
MZ1 MZ2					
MZ1	$s_A^2 + s_E^2$	s² _A			
MZ2	s² _A	s ² _A +s ² _E			

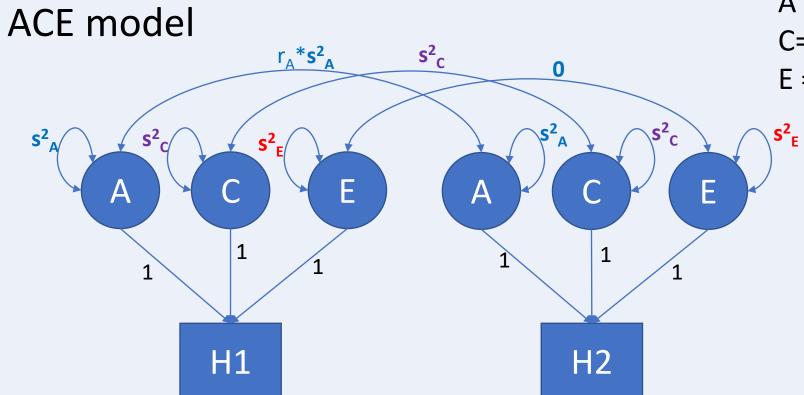
This a weak GID... what have we assumed concerning the environment? (see the MZ1-MZ2 covariance!)

Classical twin design: MZ twins and DZ twins (raised / growing up together in the same household) AE model



GCSM (Model) (Σ_{MZ})		GCSM (Model) ($\Sigma_{ m DZ}$)		Σ _{DZ})	
MZ1 MZ2			DZ1	DZ2	
MZ1	$s_A^2 + s_E^2$	s² _A	DZ1	$s_A^2 + s_E^2$.5*s ² _A
MZ2	s ² _A	$s_A^2 + s_E^2$	DZ2	.5*s ² _A	$s_A^2 + s_E^2$

Why add DZ twins? To extend the model (add variance component): ACE model or ADE model



A = additive genetic

C= common (shared) environmental

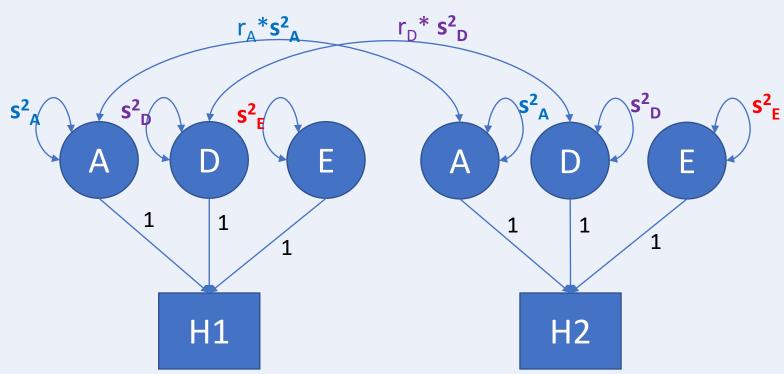
E = unshared environmental

(+ measurement error)

GCSM (Model) (Σ_{MZ}) r _A = 1					
	MZ1 MZ2				
MZ1	$1*s_{A}^{2}+s_{C}^{2}$				
MZ2 $1*s_{A}^{2}+s_{C}^{2}$ $s_{A}^{2}+s_{C}^{2}$					

GCSM (Model) (Σ_{DZ}) r _A = $\frac{1}{2}$					
	DZ1 DZ2				
DZ1 $s_A^2 + s_C^2 + s_E^2$		¹ / ₂ *s ² _A +s ² _C			
DZ2	$s_A^2 + s_C^2 + s_E^2$				

ADE model



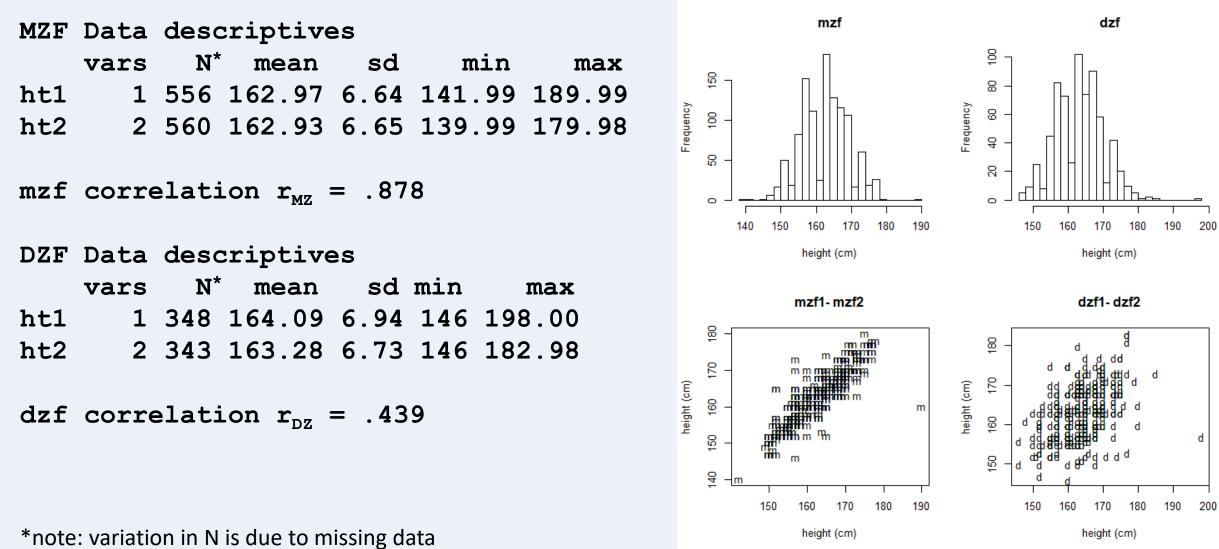
A = additive geneticD= dominance geneticE = unshared environmental (+ measurement error)

GCSM (Model) (Σ_{MZ}) $r_A = 1 r_D = 1$					
	MZ1 MZ2				
MZ1	$s_A^2 + s_D^2 + s_E^2$	s ² _A + s ² _D			
MZ2 $s_A^2 + s_D^2$ $s_A^2 + s_D^2 + s_D^2$					

GCSM (Model) (Σ_{DZ}) $r_A = \frac{1}{2} r_D = \frac{1}{4}$					
	DZ1 DZ2				
DZ1	$s_A^2 + s_D^2 + s_E^2$	¹ / ₂ *s ² _A + ¹ / ₄ *s ² _D			
DZ2	$s_A^2 + s_D^2 + s_E^2$				

Illustration - height in females twins (mean age 23; std age 3.6)

(twinData in OpenMx R library ... R code in slide notes)



GID: the classical twin design.

Decomposing phenotypic variance based on ACE Model: $s_{Height}^2 = s_A^2 + s_C^2 + s_E^2$

GCSM (Model) ($\Sigma_{\sf MZ}$)				
MZ1 MZ2				
MZ1	s ² _A + s ² _C			
MZ2 $s_A^2 + s_C^2$ $s_A^2 + s_C^2 + s_E^2$				

GCSM (Model) (Σ_{DZ})				
DZ1 DZ2				
DZ1	¹ / ₂ *s ² _A +s ² _C			
DZ2 $\frac{1}{2} * s_{A}^{2} + s_{C}^{2}$ $s_{A}^{2} + s_{C}^{2} + s_{E}^{2}$				

Observed data (variances, covariances, correlations)

Observed S_{MZ} (R_{MZ}) (N=569)					
MZ1 MZ2					
MZ1	MZ1 44.068 38.721 (1) (.878)				
MZ2	38.721 (.878)	44.177 (1)			

GCSM (Model) $S_{DZ}(R_{DZ})$ (N=351)				
DZ1 DZ2				
DZ1	48.175 (1)	20.519 (.439)		
DZ2	20.519 (.439)	45.319 (1)		

Quick method based on standardized phenotypes Falconer's equations

$s_{A}^{2} + s_{C}^{2} + s_{E}^{2}$	= variance = 1
$s_A^2 + s_C^2$	= r _{MZ} = .878
$\frac{1}{2} * s_{A}^{2} + s_{C}^{2}$	= r _{DZ} = .439

three equations, three unknowns, three knowns

solve for the unknowns....

ACE model, if (2*r _{DZ})≥r _{MZ}					
s ² _A =	$2*(r_{MZ}-r_{DZ}) =$	2*(.878439) = .878	Solution		
s ² _C =	$2*r_{DZ}-r_{MZ} =$	2*.439878 = 0.0			
s ² _E =	$1 - s_{A}^{2} - s_{C}^{2} =$	10878 = .122			

Conclusion given $s_A^2 + s_C^2 + s_E^2 = .878 + 0 + .122 = 1$. In young females adults, **#1)** 87.8% of variance is genetic (87.8% of phenotypic differences due to genetic differences); **#2)** No contribution of shared environment; **#3**) **12.2%** of variance is environmental (+ measurement error).

Note: ADE model equations in slide notes (used if $(2*r_{DZ}) < r_{MZ}$)

In practice, we use genetic covariance structure modeling to fit models to data collected in genetically informative design.

Optimal estimates of parameters + information about precision of estimates (95% CIs)
 Overall goodness of fit testing: does the specified model fit the observed covariance matrices?
 Statistical testing of individual parameters (ACE vs AE; ACE vs CE; ADE vs AE).

and

4) Generalizes from 1 phenotype to P phenotypes (multivariate phenotype / repeated measures)

- 5) Accommodates missing data
- 6) Can handle binary / dichotomous phenotypic data
- 7) Can handle any (multivariate) Genetically Informative Design

(e.g. twins + parents; twins + siblings; children of twin design; extended pedigree design)

GCSM

We have the data (MZ and DZ twin phenotypic data)

The data summary (linear relationship): two covariance matrices and the 4 means

We have a linear model for the data (pathmodel), which implies covariance structure(s)

The covariance structure(s) are covariance matrices expressed in terms of unknown (to be estimated) and known parameters (GID!).

The classical twin design: unknown parameters (s_A^2, s_C^2, s_e^2) and known parameters $(1, \frac{1}{2}, \frac{1}{4})$

GID: the classical twin design.

Decomposing phenotypic variance based on ACE Model: $s_{Height}^2 = s_A^2 + s_C^2 + s_E^2$

GCSM (Model) (Σ_{MZ})		GCSM (Model) (Σ_{DZ})			
	MZ1 MZ2 DZ1		DZ2		
MZ1	s²_A+s²_C+s²_E	s ² _A +s ² _C	DZ1	s ² _A +s ² _C +s ² _E	1⁄2*s ² _A +s ² _C
MZ2	s ² _A +s ² _C	s²_A+ s²_C+ s²_E	DZ2	½ *s ² _A +s ² _C	s²_A+s²_C+s²_E

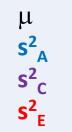
Observed data (variances, covariances, correlations)

Obser	ved $\mathbf{S}_{MZ}(\mathbf{R}_{MZ})$ (N	=569)	GCSM (N	/lodel) S _{DZ} (R _{DZ})	(N=351)
	MZ1	MZ2		DZ1	DZ2
MZ1	44.068 (1)	38.721 (.878)	DZ1	48.175 (1)	20.519 (.439)
MZ2	38.721 (.878)	44.177 (1)	DZ2	20.519 (.439)	45.319 (1)

How to obtain estimates? Maximum likelihood estimation

Observed S_{MZ} (R_{MZ}) (N=569)						
	MZ1	MZ2				
MZ1	44.068 (1)	38.721 (.878)				
MZ2	38.721 (.878)	44.177 (1)				

GCSM (Model) S _{DZ} (R _{DZ}) (N=351)							
	DZ1 DZ2						
DZ1	48.175 (1)	20.519 (.439)					
DZ2	20.519 (.439)	45.319 (1)					



the phenotypic mean genetic variance shared env variance unshared env variance

Parameters associated with the hypothesis ACE model

openn	x ML e						
free pa	rameter	cs:					
name	matrix	row	col	Estimate	Std.Error	4 Para	neters
1 mean	meanH	1	1	163.296892	0.2045165	μ	the phenotypic mean
2 VA11	VA	1	1	41.162844	4.1639267	s ² _A	genetic variance
3 VC11	VC	1	1	-1.093649	4.1465672	s ² _c	shared env variance
4 VE11	VE	1	1	5.419555	0.3276949	s ² _E	unshared env variance
Model S	Statisti	ics:					
		I	Para	ameters	Degrees of F	'reedom Fi	t (-21nL units)
	Model:	~~+-		4		1803	<u>11135.91</u> 2*f _{ML} (θ)
	x ML e		lmat	-	del i.e.,	1803	<u>11135.91</u> 2*f _{ML} (θ)
OpenM free pa	x ML e arameter	rs:		es AE mo	odel i.e., Std.Error 3	1803 s ² _c = 0 (fix	
OpenM free pa name	x ML e arameter matrix	rs: row	col	es AE mo Estimate		1803 s ² _c = 0 (fix	<u>11135.91</u> 2*f _{ML} (θ)
OpenM free pa name 1 mean	x ML e arameter matrix meanH	rs: row 1	col 1	Estimate	Std.Error 3	1803 $s_{C}^{2} = 0$ (fix Parameters μ	<u>11135.91</u> 2*f _{ML} (θ) wed to zero) Hypothesis AE model
OpenMa free pa name 1 mean 2 VA11	x ML e arameter matrix meanH VA	rs: row 1 1	col 1 1	Estimate 163.29555 40.18631	Std.Error 3 0.2051183	1803 $s_{C}^{2} = 0$ (fix Parameters μ s_{A}^{2}	$\frac{11135.91}{11135.91} \dots -2*f_{ML}(\theta)$ wed to zero) Hypothesis AE model the phenotypic mean
OpenMa free pa name 1 mean 2 VA11	x ML e arameter matrix meanH VA VE	rs: row 1 1 1 ics:	col 1 1	Estimate 163.29555 40.18631 5.42909	Std.Error 3 0.2051183 1.8228455 0.3269049	1803 $s_{C}^{2} = 0$ (fix Parameters μ s_{A}^{2} s_{E}^{2}	<pre>11135.912*f_{ML}(θ) ked to zero) Hypothesis AE model the phenotypic mean genetic variance unshared env variance</pre>
OpenM: free pa name 1 mean 2 VA11 3 VE11 Model S	x ML e arameter matrix meanH VA VE	rs: row 1 1 1 ics:	col 1 1	Estimate 163.29555 40.18631 5.42909	Std.Error 3 0.2051183 1.8228455 0.3269049	1803 $s_{C}^{2} = 0$ (fix Parameters μ s_{A}^{2} s_{E}^{2}	$\frac{11135.91}{11135.91} \dots -2*f_{ML}(\theta)$ wed to zero) Hypothesis AE model the phenotypic mean genetic variance

Likelihood ratio test. ACE vs AE can we "drop" C (i.e., set $s_c^2 = 0$)?

A statistical test of the hypothesis $s_c^2 = 0$ based on the values of the likelihood functions

Model Statistics:						
l I	Parameters	Ι	Degrees of Free	dom	Fit	(-21nL units)
Model:	4		1	.803		<u>11135.91</u>
Model Statistics:						
l I	Parameters	I	Degrees of Free	dom	Fit	(-21nL units)
Model:	3		1	804		11135.99

Test statistic called the (log-)Likelihood Ratio test (LRT): 11135.99 - 11135.91 = .08

If H-null: $s_c^2 = 0$ is true, the LRT is distributed chi2(1), where 1 (df) = 4-3, difference in the number of parameters

.08, df=1, p-value = .777 (in R pchisq(.08,1,lower=F) If p-value < alpha (e.g. .01), we would reject $s_{C}^{2} = 0$. Here we conclude $s_{C}^{2} = 0$... So there is no shared environmental variance no shared environmental contributions to the phenotype variance in height

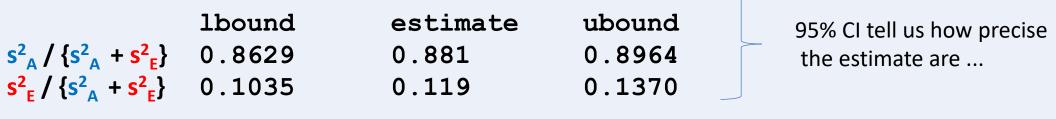
$$s^{2}_{\text{Height}} = s^{2}_{A} + s^{2}_{E}$$

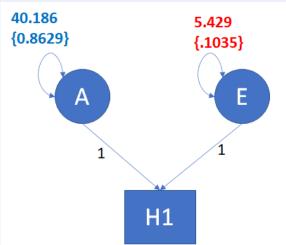
 $s_{Height}^2 = s_A^2 + s_E^2 = 40.186 + 5.429 = 45.615$

standardized variance components

 $s_{A}^{2} / \{s_{A}^{2} + s_{E}^{2}\} = 40.186 / 45.615 = .881$ (a.k.a "narrow-sense" heritability, a proportion like R²) $s_{E}^{2} / \{s_{A}^{2} + s_{E}^{2}\} = 5.429 / 45.615 = .119$

95% confidence intervals of the standardized variance components:





Genetically informative design & Genetic covariance structure analysis:

A brief introduction based on the classical twin design

Conor V. Dolan & Micheal C. Neale

PPT presentation in 4 parts PART 3 (8 slides):

CTD multivariate ACE models from 1 to p (p>1) phenotypes - limited to ACE (ADE models also possible)

Illustration Height and Weight

Univariate ACE model (one phenotype: s_{A}^{2} and s_{C}^{2} and s_{E}^{2} are <u>variances</u>)

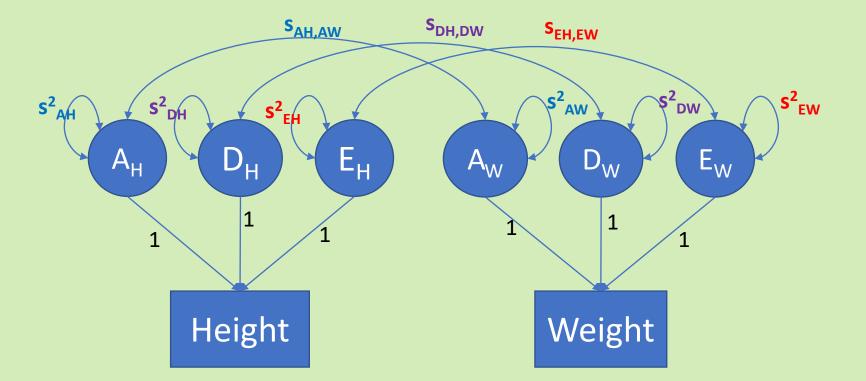
GCSM (Model) ($\Sigma_{\sf MZ}$)			G	CSM (Model) (Σ	_{oz})
	MZ1	MZ2		DZ1	DZ2
MZ1	$s_A^2 + s_C^2 + s_E^2$	s ² _A + s ² _C	DZ1	$s_A^2 + s_C^2 + s_E^2$	¹ / ₂ *s ² _A +s ² _C
MZ2	s ² _A + s ² _C	$s_A^2 + s_C^2 + s_E^2$	DZ2	¹ / ₂ *s ² _A +s ² _C	$s_{A}^{2} + s_{C}^{2} + s_{E}^{2}$

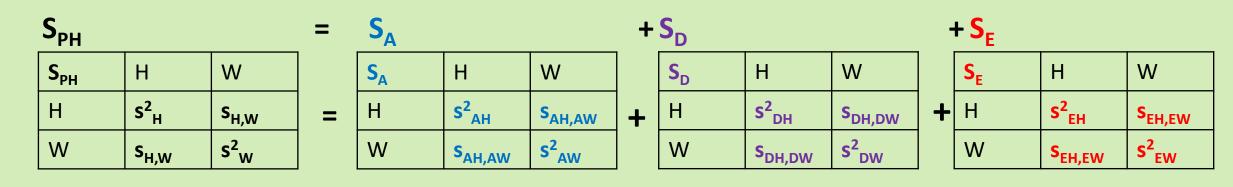
Classical twin model generalizes readily to the multivariate case. p-phenotypes: S_A and S_c and S_E are <u>pxp covariance matrices</u> in the ACE model

GCSM (Model) (Σ_{MZ}) r _A = 1							
	MZ1 MZ2						
MZ1	MZ1 S _A + S _C + S _E S _A + S _C						
MZ2	S _A + S _C	$S_A + S_C + S_E^2$					

GCSM (Model) (Σ_{DZ}) r _A = ½							
	DZ1 DZ2						
DZ1	DZ1 $S_A + S_C + S_E$ $\frac{1}{2} * S_A + S_C$						
DZ2	DZ2 $\frac{1}{2} S_A + S_C S_A + S_C + S_E$						

Path diagram of 2 phenotypes: height and weight. Hypothesis / aim: $S_{PH} = S_A + S_D + S_E$





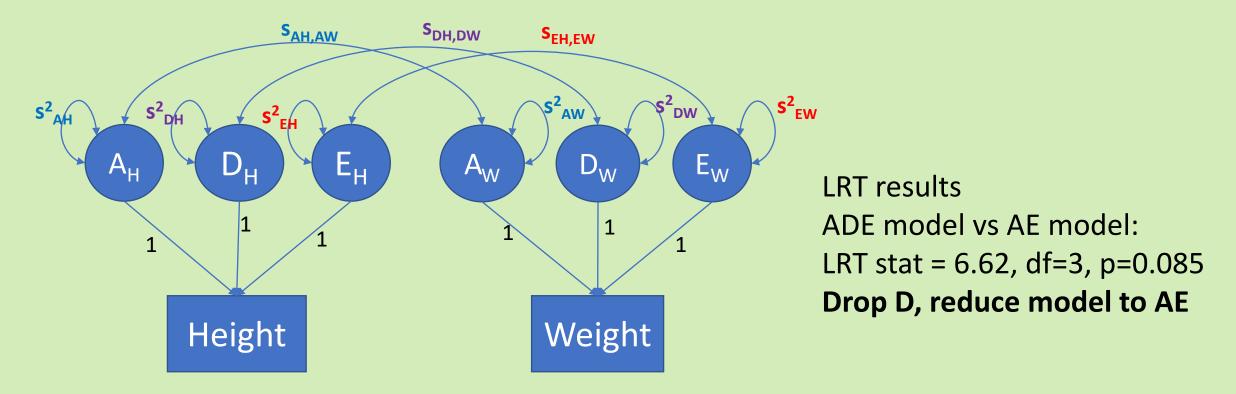
Covariance matrices (m)

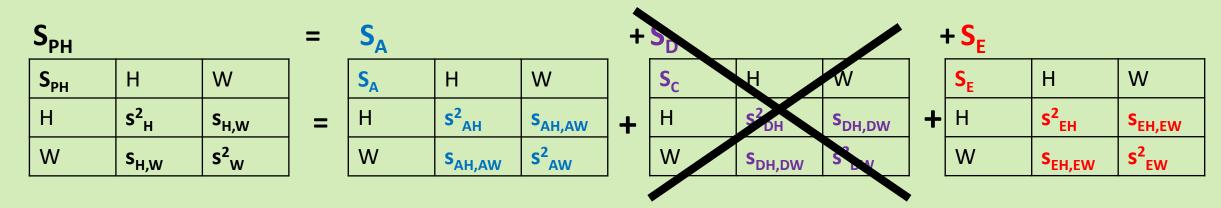
MZ	H1	W1	H2	W2		
H1	44.068 (1)	28.066	38.721	24.283	$S_{A} + S_{D} + S_{F}$	$S_{A} + D$
W1	28.066 (.493)	73.441 (1)	27.702	63.359		~A -
H2	<u>38.721 (.878)</u>	27.702 (.486)	44.177 (1)	26.909	S _A + S _D	$S_A + S_D + S_E$
W2	24.283 (.415)	<u>63.359 (.839)</u>	26.909 (.459)	77.662 (1)		

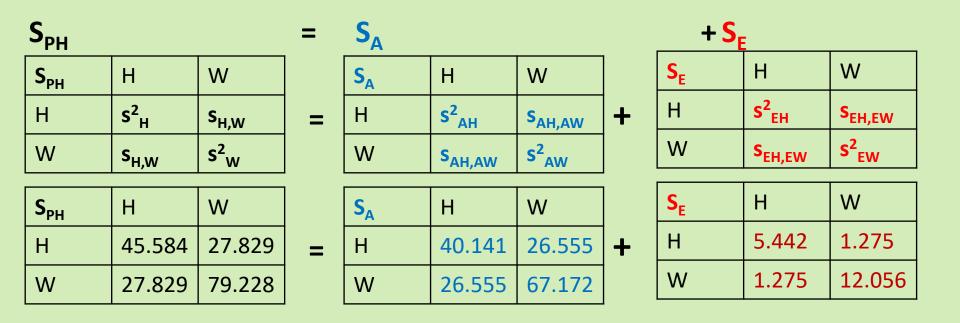
DZ	H1	W1	H2	W2		
H1	48.175 (1)	26.426	20.519	14.952	$S_A + S_D + S_E$.5*S _A +.25*S _D
W1	26.426 (.441)	74.632 (1)	10.158	26.773		
H2	<u>20.519 (.439)</u>	10.158 (.175)	45.319 (1)	28.205	.5*S _A +.25*S _D	$S_A + S_D + S_E$
W2	14.952 (.234)	<u>26.773 (.337)</u>	28.205 (.456)	84.564 (1)		

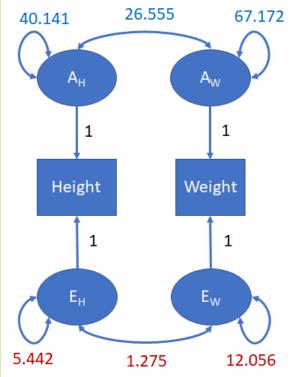
 $S_{A, S_{D, and S_{E}}}$ are 2x2 matrices (2 phenotypes)

Path diagram of 2 phenotypes: height and weight. Hypothesis / aim: $S_{PH} = S_A + S_D + S_E$









Bivariate AE model reveals:

1) Contribution of A and E to phenotypic height variance (s²_{AH} s²_{EH})

(40.141 / 45.484 = .881; 5.442 / 45.484 = .119)

2) Contribution of A and E to phenotypic weight variance (s²_{AW} s²_{EW})

(67.172 / 79.228 = .848; 12.056 / 79.228 = .152)

3) Contribution of A and E to phenotypic height - weight covariance (s_{AH,AW} s_{EH,EW}) (26.555 / 27.829 = .954; 1.275/27.829 = .046)

.... Pleiotropy is used to denote genetic effects common to 2 or more phenotypes.

The p-variate twin model based on the CTD represents the following hypothesis

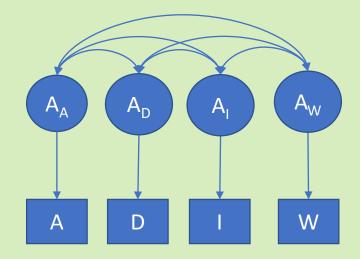
 $S_{PH} = S_A + S_C + S_E (or S_{PH} = S_A + S_D + S_E)$

where S_A , S_c and S_E are pxp covariance matrices

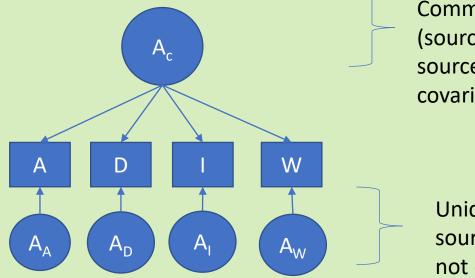
In genetic covariance structure pxp covariance matrices S_A , S_C and S_E may themselves be subject to a covariance structure model. Well known models in standard phenotypic covariance structure modeling, can be applied to S_A , S_C and S_E .

Example: common factor model

Suppose $S_{PH} = S_A + S_E$ where S_{PH} is the phenotypic covariance of p=4 phenotypes: anxiety, depression, introversion, withdrawnness



S_A as a 4x4 covariance matrix with 10 parameters (estimated not modeled)



S_A as a 4x4 covariance matrix with 8 parameters (estimated subject to specified structure: 1 common factor model)

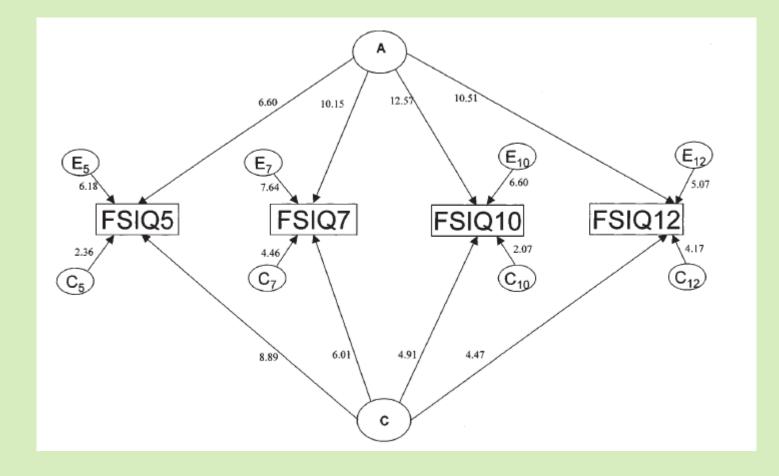
Common set (source of pleiotropy) source of variance and covariance

Unique set source of variance, not covariance

We know that these phenotypes are phenotypically correlated (correlations between .4 and .6). Hypothesis: The phenotypic correlations are due to a set of genes common to the four phenotypes (A_c). In addition each phenotype has its own unique set of genes.... ($A_A A_D A_I A_W$) **S**_c 4x4 covariance matrix ... a 1 common factor model

S_A 4x4 covariance matrix ... a 1 common factor model without phenotype specific genetic residuals

S_E 4x4 covariance matrix ... a diagonal matrix (E does not contribute to the phenotypic covariance)



Bartels M, Rietveld MJH, Baal van GCM, Boomsma DI. (2002) Behavior Genetics, 32, 237-249.

Genetically informative design & Genetic covariance structure analysis:

brief introduction based on the classical twin design

Conor V. Dolan & Michael C. Neale

PPT presentation in 4 parts PART 4 (13 slides): The classical twin design (CTD) assumptions Other GIDs

Assumptions of the CTD: generalizability.

The CTD is a means to an end $S_{PH} = S_A + S_C + S_E$, cognitive abilities in **12 year olds**

The MZ and DZ twins are representative of the "target" population (i.e., 12 year olds).

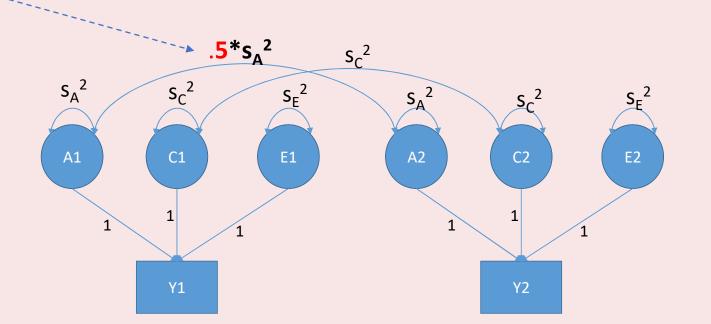
12 year old Dutch urban MZ twins are representative of 12 year old Dutch urban children. 12 year old Dutch urban DZ twins are representative of 12 year old Dutch urban children.

In a study of IQ (say), this means statistically ...

phenotypically: same mean, same variance, genetically: same genetic influences / genetic variants environmentally: same environmental influences

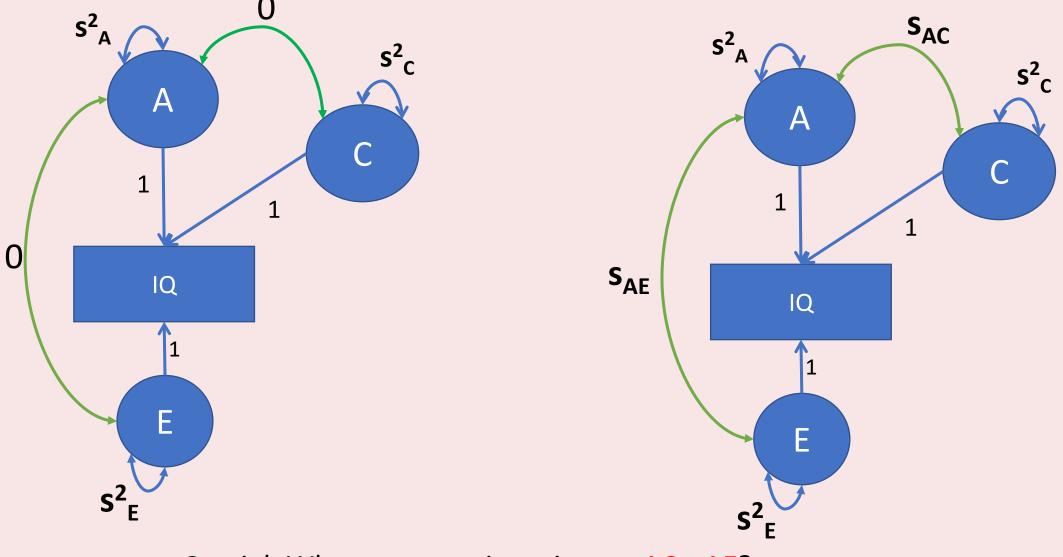
Assumption: random mating (testable if you have parental data r_{spouse} = 0).

The .5 in $.5 * s_A^2$ is based on the assumption of random mating

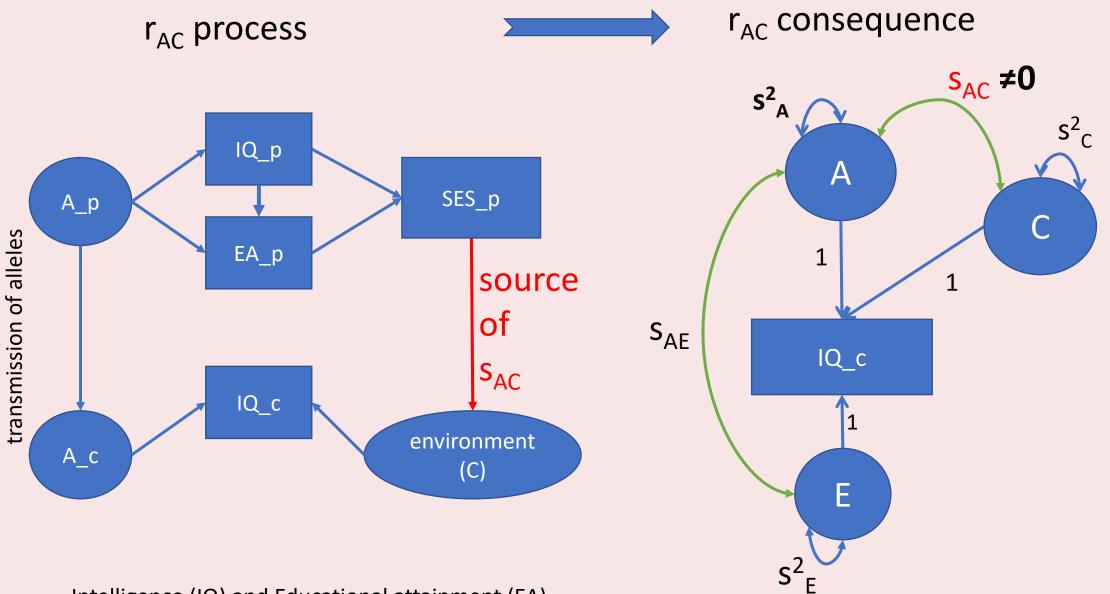


Positive non-random mating (a.k.a. *assortative mating*) may result in $r_A * s_A^2$, where $r_A > .5$. Simple test: what is the phenotypic spousal correlation r_{spouse} ? If $r_{spouse} > 0$, then we acknowledge assortative mating This raises the question: what process underlies assortative mating? Is mating random? Height $r_{spouse} = ~ .2 ... ~ IQ ~ r_{spouse} = ~ .3 to ~ .4$

A-E ($s_{AE} \neq 0$) and A-C ($s_{AC} \neq 0$) covariance



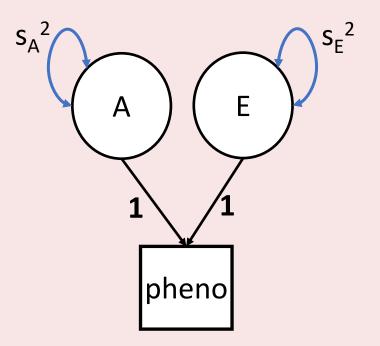
Crucial: What process gives rise to rAC, rAE?



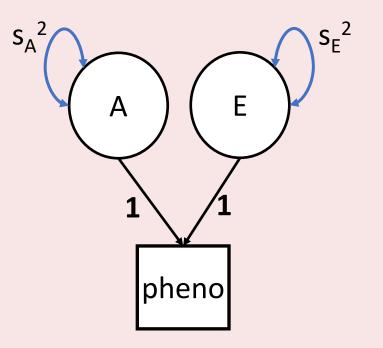
Intelligence (IQ) and Educational attainment (EA)

Moderation / interaction

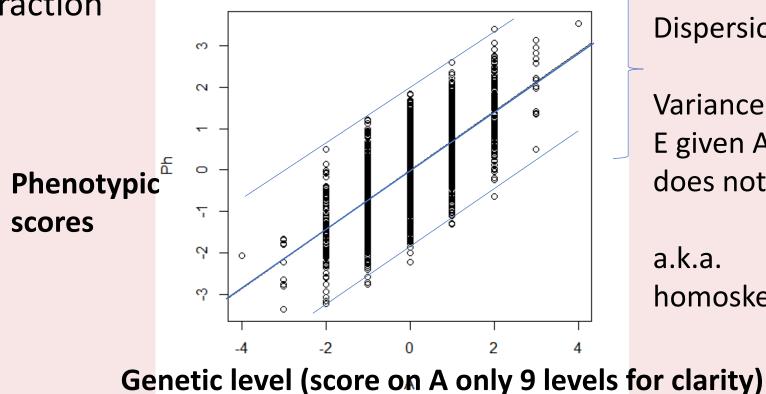
The effect of A is expressed as s_A^2 and quantified as $s_A^2/(s_A^2 + s_E^2)$. The effect of A does not depend on E: E does not moderate the effect of A. There is <u>no AxE interaction</u>.



The effect of E is expressed as s_E^2 and quantified as $s_E^2/(s_A^2 + s_E^2)$. The effect of E does not depend on A: A does not moderate the effect of E. There is <u>no AxE interaction</u>.



NO AxE interaction



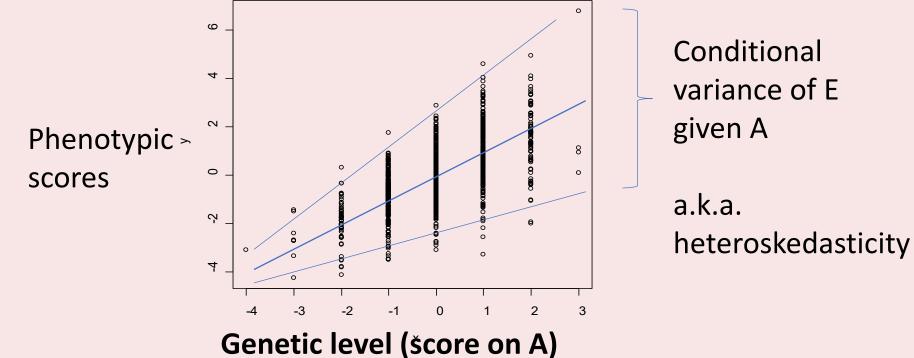
Environmental **Dispersion / variance**

Variance of E given A score ... does not depend on A

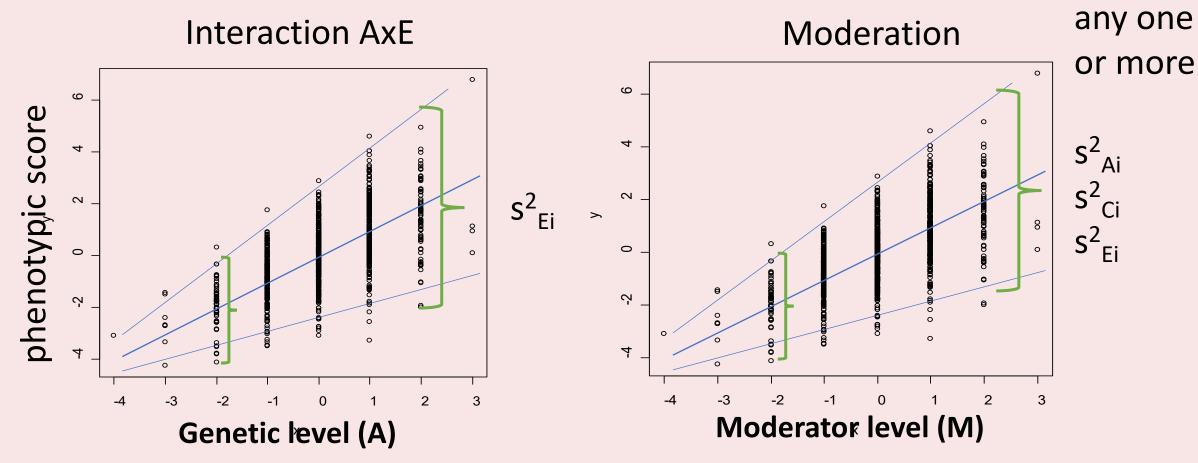
a.k.a. homoskedasticity

 s_{F}^{2} is **constant** over levels of A: environmental effects (s_{F}^{2}) are the same given any value of A

AxE interaction



G x E as "genetic control" of E effects: The effect of E, expressed as s_E^2 is a function of A: $s_E^2 = f(A)$

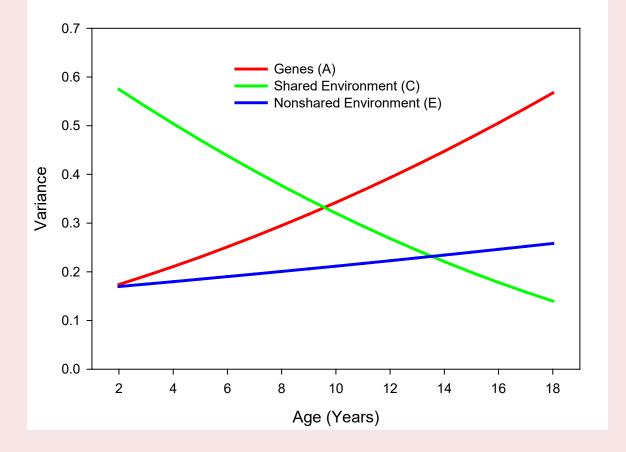


Environmental effects (variance) depend on A-level

Environmental effects and /or genetic effects (variances) depend on M-level (linear increase)

 $s_{E}^{2} = f(M)$ $s_{A}^{2} = f(M)$ $s_{C}^{2} = f(M)$

S. Purcell (2002). Variance Components Models for Gene–Environment Interaction in Twin Analysis Twin Research Volume 5 Number 6 pp. 554-571 50



PSYCHOLOGICAL SCIENCE

Psychological Science

© The Author(s) 2015

pss.sagepub.com

(S)SAGE

Reprints and permissions

sagepub.com/journalsPermissions.nav DOI: 10.1177/0956797615612727

1 - 12

Research Article

Large Cross-National Differences in Gene × Socioeconomic Status Interaction on Intelligence

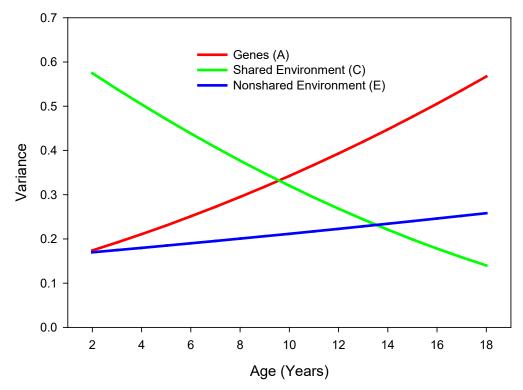
Elliot M. Tucker-Drob^{1,2} and Timothy C. Bates³ ¹Department of Psychology, University of Texas at Austin; ²Population Research Center, University of Texas at Austin; and ³Department of Psychology, University of Edinburgh

> Age a continuous moderator of genetic and environmental effects on IQ

Tucker-Drob & Bates (2015): Variance components. Moderation model with measured moderator (age) A increase and C decreases with age

Suppose that there is GxE interaction or G-E covariance, but you fit the standard ACE twin model... how are the variance components biased?

		consequence in the CTD
Assumption	violation	Bias
AxE	AxE>0 mimics E	E overestimated
AxC	AxC>0 mimics A	A overestimated
cov(A,C)	cov(A,C) >0 mimics C	C overestimated
cov(A,E)	cov(A,E) >0 mimics A	A overestimated



		consequence in the CTD
Assumption	violation	Bias
cov(A,C)	cov(A,C) >0 mimics C	C overestimated
cov(A,E)	cov(A,E) >0 mimics A	A overestimated

C variance declines with age Effect of C declines with age However, cov(AC) results in C overestimation in the twin model.... So the large C variance in early years could be due in part to cov(AC).

So the apparent C variance may - in part - be cov(AC) and the decline in C effects, may be due - in part - to a change in process that gives rise to the cov(AC)

.... just sayin' interpret your variance components carefully bearing in mind possible violations of model assumptions

CTD is ONE genetically informative design (GID) that has proven to be highly productive and very influential... (changed the view of genetics in psychology!)

Meta-analysis of the heritability of human traits based on fifty years of twin studies

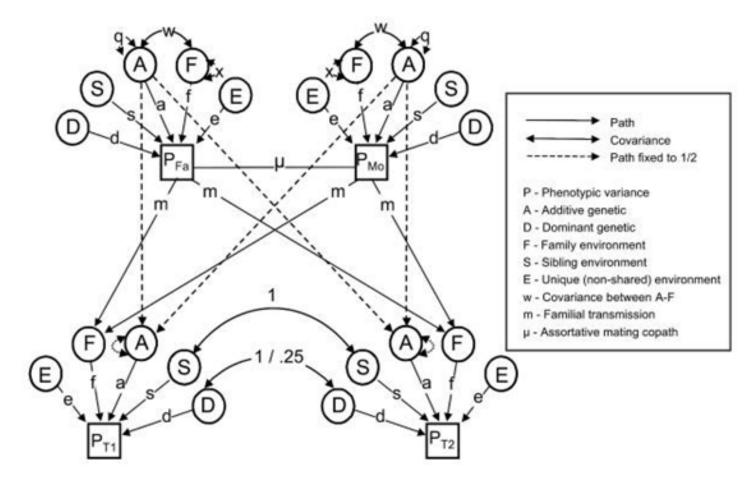
Tinca J C Polderman^{1,10}, Beben Benyamin^{2,10}, Christiaan A de Leeuw^{1,3}, Patrick F Sullivan^{4–6}, Arjen van Bochoven⁷, Peter M Visscher^{2,8,11} & Danielle Posthuma^{1,9,11}

VOLUME 47 | NUMBER 7 | JULY 2015 NATURE GENETICS

It is generally recognized to be a useful design that includes strong assumptions.

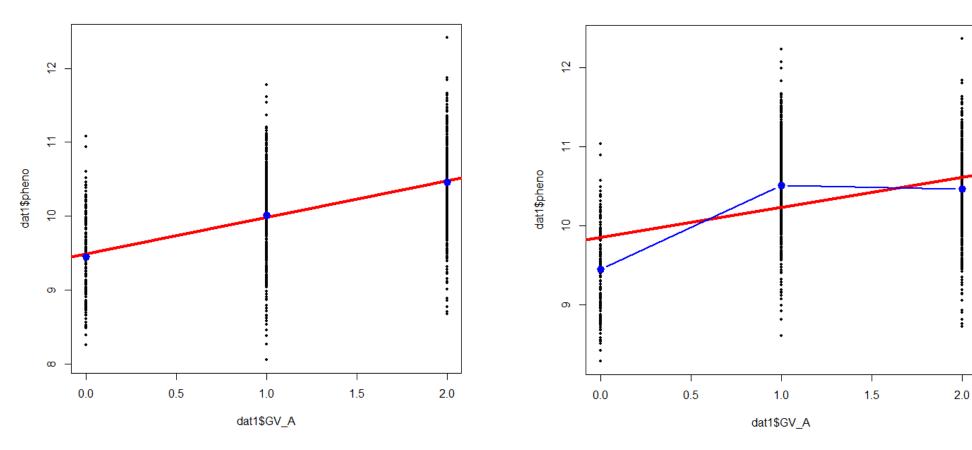
However the CTD is not the only GID ... more extended designs are less dependent on assumptions or allow one to test assumptions. Examples of extended GIDs:

Nuclear Twin Family Design (e.g., Keller et al 2009 Twin Research and Human Genetics) Children of Twin Designs (e.g., McAdams et al 2018 Behavior Genetics) Twins and spouses Designs (e.g. Reynolds et al 2006 Behavior Genetics)



Includes assortative mating (μ), s_{AC} (A-C covariance) stemming from cultural transmission (m)

Keller et al (2009) Twin Res Hum Genet. 2009 Feb;12(1):8-18. doi: 10.1375/twin.12.1.8.



blue dots are the conditional mean read line is the linear regression line

data are consistent with linear regression

blue dots are the conditional mean read line is the linear regression line

data are not consistent with linear regression see difference between conditional means and the regression that is dominance