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Abstract Power is a ubiquitous, though often overlooked,
component of any statistical analyses. Almost every

funding agency and institutional review board requires that

some sort of power analysis is conducted prior to data
collection. While there are several excellent on line power

calculators for independent observations, twin studies pose

unique challenges that are not incorporated into these
algorithms. The goal of the current manuscript is to outline

a general method for calculating power in twin studies, and

to provide functions to allow researchers to easily conduct
power analyses for a range of common twin models. Sev-

eral scenarios are discussed to demonstrate the importance

of various factors that influence the power within the
classical twin design and to serve as examples for the

provided functions.
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Introduction

Power is the probability of rejecting the null hypothesis when
the null hypothesis is false (Cohen 1988). Accordingly,

power is an essential component of any statistical analysis.
While there are a number of high quality online power cal-

culators for a variety of linearmodels, power analyses in twin

models can be more complicated than other types of linear
models and existingmethods often do not adequately capture

the additional complexity of the twin context. Existing pre-

sentations of statistical power for twin and family studies
present a variety of guidelines and power tables (Posthuma

and Boomsma 2000; Neale et al. 1994; Martin et al. 1978),

but do not allow the reader to rapidly check the power of a
specific set of parameters in a univariate and bivariate twin

twin study. One exception to this comes from Visscher

(2004), where an online power calculator allows users to
quickly test power for continuous, univariate twin models.

The power to detect a specific variance component (e.g. the

additive genetic variance component) in a twin study
depends upon the other variance components in the model

(e.g. the common and unique environmental variance com-

ponents). To address this I have prepared series of functions
to conduct power analyses for a variety of common twin

models. The functions use the R statistical environment (R

Development Core Team 2008), and OpenMx in particular
(Neale et al. 2015; Boker et al. 2015, 2011).

In the sections that follow, I present the theory and
algebra used calculate power in the classical twin design for

the univariate and bivariate cases. I then discuss several

typical scenarios where the functions can be used to conduct
a power analysis that are common in the twin literature.

The framework to conduct power analyses in twin
models

Figure 1 presents a graphical depiction of primary com-

ponents of statistical power: a or the probability of a Type I
Error; b or the probability of a Type II Error, N or sample
size; and d or effect size. Figure 1a presents the standard

figure typically used to discuss statistical power with a
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normal distribution and Figure 1b presents the analogous

figure for a chi-square (v2) distribution. Because Likeli-

hood ratio tests (LRTs) are the primary method of

hypothesis testing for twin analyses, and the LRTs rely on

the v2 distribution, it is necessary to discuss power from the

perspective of the v2 distribution. The red (left or taller in
Fig. 1a, b, respectively) distribution represents the distri-

bution of test statistics assuming the null hypothesis is true

while the blue (right or flatter) distribution represents the
distribution of test statistics assuming the alternative

hypothesis is true. For both panels in Fig. 1 the black line

indicates the significance threshold, the hatched red lines to
the right of the significance threshold indicate the probably

of rejecting the null hypothesis when the null hypothesis is

true (a Type I Error), and the hatched blue lines to the left
of the significance threshold indicate the probably of fail-

ing to reject the null hypothesis, when the alternative

hypothesis is true (a Type II Error). Power is the area under
the alternative (blue) distribution that is not hatched. When

the normal (or similar) distribution is used for hypothesis

testing, the null and alternative distributions look quite

similar. For the v2 distribution, however, the distribution

under the null looks substantially different from the dis-

tribution under they alternative. Importantly, the compo-
nents of statistical power work the same way in both

scenarios.

Standard power calculations set the desired level of power
at .80 and the Type I Error rate at a ¼ :05. In twin models in

particular, but in any model where there is a strong theoret-

ical boundary on a parameter, the Type I Error rate will be
over estimated. Because variancesmust be positive, theType

I Error rate for a single variance component is actually a

mixture of a v2 distribution with 1 df and a v2 distribution
with 0 df (Wu and Neale 2012; Visscher 2006; Dominicus

et al. 2006). It turns out that for the 1 df case, the solution for
the mixture reduces to setting a ¼ :10. For the general

multiple df tests, there is no straightforward correction for

the Type I Error rate, and therefore must be calculated
empirically. Dominicus et al. (2006) provide an analytical

solution for the specific case of comparing the full ACEwith

the E only model (2 df test). Thus, not taking the mixture of

v2 distributions into consideration with multiple df tests will

lead to an under estimate power.
The current discussion of power focuses on the non-

central v2 distribution. The mean of the non-central v2

distribution, or the non-centrality parameter (ncp), is the
sum of the mean of the test statistic distribution under the

alternative hypothesis and the degrees of freedom. Two

features of the ncp that are integral to the current discus-
sion. First, as the effect size gets larger, the mean of the test

statistic gets larger, and the ncp gets larger. Second, as

sample size increases, the standard deviation of the sam-
pling distribution of the test statistic gets tighter, and the

ncp gets larger. Thus, power will increase with both larger

effect sizes and larger sample sizes.
The general procedure for the twin power analysis has 4

steps. The first step is to simulate twin data that corre-

sponds with the expected results. These expectations
should be based, as far possible, on the literature. While

users will not have to simulate the data themselves, they

will need to provide the proportions of variance for the
standardized A, C and E variance components (the function

f(N,d)
µ0 ncp

Type II 
 Error

Type I 
 Error

Normal Distribution

f(N,d)
µ0 ncp

Type II Error

Type I Error

Chi Square Distribution(a) (b)

Fig. 1 A graphical depiction of primary components of statistical
power. The red distribution represents the distribution of test statistics
under the null and the blue distribution represents the distribution of
test statistics under the alternative. The black line indicates the
significance threshold. The hatched red lines indicate the probably of

a Type I Error or a Error. The hatched blue lines indicate the probably
a Type II Error or b Error. Power is 1# b. The non-centrality
parameter (ncp), is the mean of the test statistic distribution under the
alternative (Color figure online)
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will automatically simulate data based on these values). At

this stage it is important to consider the ratio of MZ to DZ
twins, as the power to detect significant genetic or envi-

ronmental variance is influenced by this ratio. See Visscher

(2004) for a more detailed discussion of the ratio between
MZ and DZ twins and power.

The second step is to fit the full and reduced models to

the simulated data to obtain the v2 value from the likeli-

hood ratio test. As a check, the fitted parameter estimates

are returned. It is important to make sure that the fitted
parameters correspond to the values that you simulated in

case there was some problem with estimation. When

extreme values are chosen for the variance components,
small sample sizes are specified, or complex models are

utilized, the fitted parameters may not correspond with the

specified simulated values. In these cases, it is possible to
increase the sample size (keeping the ratio of the MZ to DZ

twins constant). This will not affect the estimates of the

required sample size or the power.
The third step is to calculate the weighted non-centrality

parameter (Wncp). To do this, we divide the v2 value by

the total sample size (NMZ þ NDZ). By dividing the v2

value by the sample size, we are calculating the average

contribution of each family to v2. Therefore, this value is

dubbed the weighted ncp.
The final step is to calculate power. The essential

component to discussing power from the perspective of the

ncp is that the ncp increases linearly with sample size. For

example, if the value of the v2 value for the LRT between

an ACE model and an AE model is 10 with 500 MZ and

500 DZ twin pairs (N = 1000), each family will contribute

10=1000 ¼ :01 to the v2 value, on average. It is then

possible to extrapolate that with 2000 families, the v2

value would be 20, and with 500 families the v2 value

would be 5. Therefore, we can multiply the Wncp obtained

in the previous step by a vector of sample sizes to obtain a
vector of ncp’s. This vector of ncp’s is then used to

calculate the power for a range of sample sizes. The power

can then be plotted to obtain a standard power graph or the
required sample size for a specific level of power can be

obtained.

Because the family is the unit of measurement for twin
studies, the sample size here refers to the total number of

families (Nmz ? Ndz) rather than the number of individual

twins. To obtain the number of MZ (or DZ) twins, you
must multiply the total sample size by the proportion of the

sample that was specified to be MZ (or DZ) twins.

Demonstrations

To demonstrate the application of the power analysis

functions, power analyses for five common scenarios were
conducted. These examples are not intended to be

exhaustive, but instead highlight a few considerations that

influence power twin studies. A complete description of the
functions used to conduct the power analysis and a tutorial

can be found at: http://www.people.vcu.edu/*bverhulst/

power/power.html.
The first demonstration examines the power to detect a

moderate sized standardized A (or C) variance component

when the magnitude of the complimentary C (or A) vari-
ance component was varied. Specifically, the common

environmental (or genetic) variance was tested at .1, .3, or

.5 proportion of the phenotypic variance for small, med-
ium, and large effect sizes, respectively. Figure 2 presents

the results of the power analysis. As can be seen, the power

to detect both variance components depend on the magni-
tude of the other variance component. As the opposing

variance component increases, the power to detect the

variance component of interest increases. Interestingly, the
increase in power is not symmetrical across A and C. The

power increase is larger for the A as C increases, than it is

for C as A increases. Therefore, when conducting power
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analyses for twin studies, it is essential to consider not only

the level of A but also the level of C.
The second demonstration examines the power to detect

the A and C variance components when the ratio of MZ to

DZ sample size varied. Specifically, the ratio of MZ to DZ
twins varied from 5:1 to 1:1 to 1:5. While these ratios are

extreme, they clearly illustrate the impact of differential

MZ to DZ sample size ratios. As can be seen in the left
panel of Fig. 3, the power to detect A is maximized when

there are approximately equal numbers of MZ and DZ
twins. Deviations from a 1:1 ratio in either the MZ or DZ

direction, reduce the power to detect a significant A com-

ponent. By contrast, the power to detect C is highest if
there are a surplus of DZ relative to MZ twins, but the

increase in power is minimally better than an equal MZ:DZ

ratio. A surplus of MZ twins is strongly reduces the power
to detect C. This highlights the importance of considering

the ratio of MZ to DZ twins when conducting a twin power

analysis. For a more complete discussion of the optimal
ratio of MZ to DZ twins, see Visscher (2004).

The third power analysis demonstration examines the

power to detect a significant A variance component using
continuous data relative to binary data with prevalences

ranging from .5 to .05. For this example we kept the A and

C variance components at .33 and used equal numbers of
MZ and DZ twins. As can be seen in Fig. 4, there is a large

reduction in power for a median split (prevalence = .50)

relative to a continuous variable, and as the prevalence of a
phenotype decreases, the power to detect A decreases.

The fourth example of a power analysis examines the

power to detect a significant genetic correlation (Rg)
between two phenotypes. As the power to detect a signif-

icant Rg depends on the magnitude of the genetic variance

in the phenotypes under examination, the values of A,
which were equated across phenotypes, were varied from .3

to .4 to .5 and the values of Rg were varied from .1 to .3 to

.5. The value of C for both phenotypes was set to .33 and
the value of E was adjusted to ensure that the variance of

all of the traits was 1. The left column of Fig. 5 presents the

power curves for the A variance component in the first

phenotype. The right column presents the power curves for

Rg. As can be seen, the power to detect significant Rg
increases as the magnitude of Rg increases and as the

magnitude of A increases.

There are many common bivariate models that could be
examined, and multiple potentially interesting parameters

within each model. For example, the power to detect

genetic variance in one phenotype if it is (1) genetically
correlated with another phenotype and (2) the genetic

variance of the second phenotype varies. Under such a

scenario, it is important to remember that logically, if the
genetic variance in the second phenotype goes to zero, the

genetic correlation necessarily goes to zero as well.

Finally, the fifth demonstration examines the power to
detect significant differences between the variance com-

ponents for males and females, often called sex limitation
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models (Medland 2004; Neale et al. 2006; Harris 1948).

There are two distinct forms of sex limitation that are

commonly discussed in the literature. The first type of sex
limitation, qualitative sex limitation, assesses the extent to

which the same genetic factors contribute to phenotypic

variation in both sexes. The other type of sex limitation,
quantitative sex limitation, assesses the same genetic fac-

tors contribute to differing amounts of phenotypic variance

in each sex. In both cases, larger proportions of genetic
variation will increase the power to detect sex limitation.

The demonstration of qualitative sex limitation is pre-
sented in the left panel of Fig. 6. For the demonstration, the

proportion of genetic variance was set at .5 and the pro-

portion of shared environmental variance was set at .1 for
both males and females. The proportion of shared genetic

variance (or Rgmf ) between males and females tested at .9,

.7, .5, .3 and .1. As can be seen in the figure, there is very
little power to detect qualitative sex limitation when the

correlation between the proportion of shared genetic vari-

ance between males and females is high, but increases to
reasonable levels when only a few of the genetic factors

that contribute to the phenotype in males also contribute to

the phenotype in females.

The demonstration of quantitative sex limitation is

presented in the right panel of Fig. 6. For this demonstra-

tion, the proportion of common environmental variation is
small and equal for both sexes (Cm ¼ Cf ¼ :2), the pro-

portion of additive genetic variation in females is moderate
(Af ¼ :5), and the proportion of additive genetic variation

in males varies from Am ¼ :2 to Am ¼ :3 to Am ¼ :4. As
can be seen in the figure, as additive genetic estimates for

males and females diverge, the power to detect differences

in the additive genetic estimates for each sex. This type of
analysis can also be done for common and unique envi-

ronmental quantitative sex differences. It is important to

note that for these values for both qualitative and quanti-
tative sex limitation, over 1000 twin pairs is necessary to

detect genetic sex limitation with a reasonable magnitude.

Discussion

The preceding sections present a framework for conducting

power analyses in twin models. Five examples are dis-

cussed that highlight some relevant considerations.
Specifically, the power to detect a given level of A depends
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Fig. 5 Power to detect a
significant genetic correlation
between two phenotypes. The
values of A for both phenotypes
are are fixed at .3, .4 and .5 in
the top, middle and bottom
rows, respective. The power to
detect a significant A variance
component for the first
phenotype is presented in the
left column. As the phenotypes
had the same values of A, the
power to detect the A in the
second phenotype was
equivalent to the first. The Rg
between the phenotypes was
varied from .1, to .3 to .5. The
value of C was fixed at .33 for
both phenotypes in all
conditions and the Rc
(correlation between the
common environment) mirrored
the Rg. The variance of E was
computed so that the total
variance of each trait summed to
1. There were no correlations
between the unique
environment components for the
phenotypes (Re = 0). The
sample size for MZ and DZ
twins was equal (Color
figure online)
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on the assumed value of C, and vice versa. The power to
detect A and C depend on the ratio of MZ to DZ twins,

with approximately equal proportions of MZ and DZ twins

providing optimum levels of power. There is more power
to detect variance components from continuous variables

relative to binary variables, and as the prevalence of a

binary phenotype decreases, so too does the power to detect
the variance components. The power to detect significant

genetic correlations depends on the magnitude of the

additive genetic components of each constituent pheno-
type. Finally, the power to detect genetic sex limitation is

fairly low and may require a substantial number of fami-

lies. While these examples present common considerations,
the potential permutations of these scenarios are virtually

infinite and the data available to researchers is often quite

specific. Accordingly, most people will prefer to conduct a
limited number of power analyses that reflect their specific

data. The functions and scripts used to conduct these power

analyses are available at: http://www.people.vcu.edu/
*bverhulst/power/power.html.

Notably, the power analyses presented here intentionally
do not cover multivariate genetic models, such as the

Cholesky decomposition, the independent or the common

pathway models. While these models are common in the
literature, calculating power for such models is not straight

forward because determining the Type I Error rate is

ambiguous for LRTs with multiple degrees of freedom if
there are theoretical boundaries for the parameter esti-

mates. Specifically, for most multivariate hypothesis tests

the Type I Error rate must be empirically estimated from a

mixture of multiple v2 distributions with different degrees

of freedom. Thus, the Type I Error rate for a multivariate

genetic models with 7 df is a complex mixture of 8 v2

distributions with degrees of freedom ranging sequentially

from 0 to 7.
To accommodate individuals interested in conducting

power analyses for multivariate models, functions to sim-

ulate data for the common application of the Cholesky
decomposition, independent and common pathway models

are provided. Users can then follow the steps delineated

above and insert the data into the appropriate multivariate
scripts to calculate the difference in the log likelihood

between the saturated and reduced models of interest, and

divide that v2 by N to obtain the Weighted ncp. An

example of how to conduct a power analysis similar to this

is discussed in the on line tutorial. Those interested in
conducting such power analyses should do so with caution

and at their own peril.

The discussion to this point has focused on a priori
power analyses (or power analyses conducted before a

grant is submitted and data is collected). Another common

usage of power analyses is post hoc power analysis, where
the values obtained from a specific sample are used to

calculate the power to detect a significant effect. To con-

duct a post hoc power analysis it is possible to insert the

obtained v2 values and sample sizes from a completed

analysis into the functions provided. Specifically, the dif-

ference in the likelihood for the full and the reduced
models (as estimated in the data), can be divided by the

observed sample size to obtain the weighted ncp, in the

same way as was described above. This weighted ncp can
be used to calculate the power for a range of sample sizes.
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Fig. 6 Power to detect a significant qualitative and quantitative sex
limitation. In the power analysis demonstration for qualitative sex
limitation presented in the left panel, the proportion of genetic
variance was set at .5 and the proportion of shared environmental
variance was set at .2 for both males and females. The proportion of
shared genetic variance between males and females was varied from
.8 to .6 to .4. In the demonstration for quantitative sex limitation

presented in the right panel, the proportion of shared environmental
variance was fixed at .2 for both sexes, the proportion of genetic
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variance in males varied from .2 to .3 to .4. The proportion of
variance for E was computed so that the total variance of each trait
summed to 1 in all cases.eps (Color figure online)
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The functions used to conduct these power analysis and

a tutorial can be found at: http://www.people.vcu.edu/
*bverhulst/power/power.html.

Supporting information

Power scripts

The functions used to fit all of the examples described in

the current paper available on line at http://www.people.
vcu.edu/*bverhulst/power/power.html.
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