

Denotes He-man

Denotes practical

Power and p-values

Benjamin Neale March 5th, 2020 International Twin Workshop, Boulder, CO

♥ FiveThirtyEight

Politics Sports Science & Health Economics Culture

- SCIENTIFIC METHOD | 10:23 AM | MAR 7, 2016
- Statisticians Found One Thing They
- F Can Agree On: It's Time To Stop Misusing P-Values

By CHRISTIE ASCHWANDEN

p-values are in the press

The New York Times **SCIENCE TIMES AT 40** Essay: The Experiments Are Fascinating. But Nobody Can Repeat Them. Science is mired in a "replication" crisis. Fixing it will not be easy. https://www.nytimes.com/2018/ 11/19/science/science-research-

fraud-reproducibility.html

In February, 2014, George Cobb, Professor Emeritus of Mathematics and Statistics at Mount Holyoke College, posed these questions to an ASA discussion forum:

- Q: Why do so many colleges and grad schools teach p = .05?
- A: Because that's still what the scientific community and journal editors use.
- Q: Why do so many people still use p = 0.05?
- A: Because that's what they were taught in college or grad school.

What we've been teaching

A way to ask if the data are consistent with a null model

What exactly is a p-value?

 The baseline model for comparison, usually no effect [e.g. no heritability]

What's a null model?

 Distrust of his aunt's claims of being able to discriminate between milk in first or tea in first

Whose fault is it anyway?

Alternative hypothesisNull hypothesisSome effectNo effect

Hypothesis testing

		Statistics		
		Reject H ₀	Fail to reject H_0	
uth	H_0 is true	α	1-α	
Ţ	H _a is true	1-β	β	

 α =type 1 error rate β =type 2 error rate 1- β =statistical power

Possible scenarios

- Definitions of power
- The probability that the test will reject the null hypothesis if the alternative hypothesis is true
- The chance the your statistical test will yield a significant result when the effect you are testing exists

What is power?

 We are going to simulate a normal distribution using R

 We can do this with a single line of code, but let's break it up

R has functions for many distributions
Normal, χ², gamma, beta (others)
Let's start by looking at the random normal function: rnorm()

Simulation functions

	R Help			
\checkmark	Print	Q- Help Search		
Normal {stats}		R Documentation		
The Normal Distribution				
Description				
Density, distribution function, quantile function and random generation for the normal distribution with mean equal to mean and standard deviation equal to sd.				
Usage				
<pre>dnorm(x, mean = 0, sd = 1, log = FALSE) pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) rnorm(n, mean = 0, sd = 1)</pre>				
Arguments				
x,q vector p vector n numbe mean vector sd vector	r of quantiles. r of probabilities. er of observations. If length(n) > 1, the length is taken to be the number r r of means. r of standard deviations.	required.		

In R: ?rnorm

rnorm Documentation

Standard deviation of distribution with default value

- This script will plot 4 samples from the normal distribution
- Look for changes in shape
- Thoughts?

R script: Norm_dist_sim.R

One I made earlier

- Sampling variance
 - We saw that the 'normal' distribution from 100 observations looks stranger than for 1,000,000 observations
- Where else may this sampling variance happen?
- How certain are we that we have created a good distribution?

- Rather than just simulating the normal distribution, let's simulate what our estimate of a mean looks like as a function of sample size
 We will run the R script
 - mean_estimate_sim.R

Mean estimation

- This script will plot 4 samples from the normal distribution
- Look for changes in shape
- Thoughts?

R script: mean_estimate_sim.R

One I made earlier

- We see an inverse relationship between sample size and the variance of the estimate
- This variability in the estimate can be calculated from theory
- SE_x = s/\sqrt{n}
- SE_x is the standard error, s is the sample standard deviation, and n is the sample size

Standard Error

The sampling variability in my estimate affects my ability to declare a parameter as significant (or significantly different)

Key Concept 1

The probability that the test will reject the null hypothesis if the alternative hypothesis is true

Power definition again

What about when you have the total population?

Same Data, Different Conclusions

Twenty-nine research teams were given the same set of soccer data and asked to determine if referees are more likely to give red cards to dark-skinned players. Each team used a different statistical method, and each found a different relationship between skin color and red cards.

S FIVETHIRTYEIGHT

SOURCE: BRIAN NOSEK ET AL.

Analytic choices matter a lot https://fivethirtyeight.com/features/science-isnt-broken/#part1

- Rather than disprove the null estimate posterior probability
- Attempt to condition on the range of possibilities

Bayesian philosophy

Ascertainment

Why being picky can be good and bad

Bivariate plot for actors in Hollywood

Bivariate plot for actors who "made it" in Hollywood

P<2e-16

Bivariate plot for actors who "made it" in Hollywood

- Bias in your parameter estimates
 - Bias is a difference between the "true value" and the estimated value
- Can apply across a range of scenarios
 - Bias estimates of means, variances, covariances, betas etc.

- For testing means, ascertainment increases power
- For characterizing variance:covariance structure, ascertainment can lead to bias

When might we want to ascertain?

For testing means, ascertainment increases power

 For characterizing variance:covariance structure, ascertainment can lead to bias

Copyright © 1989 by the Genetics Society of America

Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps

Eric S. Lander,**** and David Botstein***

*Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, [†]Harvard University, Cambridge, Massachusetts 02138, [‡]Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and [§]Genentech, South San Francisco, California 94080

> Manuscript received August 2, 1988 Accepted for publication October 6, 1988

When might we want to ascertain?

- Power calculations using NCP
- We create the model
 specifying our effect sizes
- We then simulate data
 - empirical = T means that the simulated data matches the specifications [within some error]
- The chi square can then be used to generate power

Practical!