$34^{\text {th }}$ International Workshop on Statistical Genetic Methods for Human Complex Traits－ 2020

－David Evans 笛。

－Hermine Maes
－Jeff Lessem
－Conor Dolan
－Lucia Colodro Conde 丞
－Nathan Gillespie
－Brad Verhulst

－Matt Keller
－Stacey Cherny $*$ 䭗
－Elizabeth Prom－Wormley
－Nick Martin 萍
－Dorret Boomsma
－Eveline de Zeeuw
－Michel Nivard
－Rob Kirkpatrick
－Pete Hatemi
－Mike Hunter

－

The Causes of Variation

2020 International Workshop on Statistical Genetic Methods for Human Complex Traits Boulder, CO.

Nick Martin
Queensland Institute of Medical Research
Brisbane, Australia
March 2, 2020

GOALS

- To outline some of the basic issues that we shall address this week
- To set some of the issues in their historical context in the story of genetics and its application to human variation.

Genetics

The Study of

Variation and Heredity

Charles Darwin (1809-1882)

1859: On the Origin of Species

Gregor Mendel (1822-1885)

1865: Experiments in Plant Hybridisation

Mendel 1865 - genetics of discrete traits

Round or wrinkled ripe seeds

Yellow or green seed interiors

Purple or white petals

Inflated or pinched ripe pods

Axial or terminal flowers

Long or short stems

....the distribution of height

Figure 9.4
The distribution of IQ among the 14,963 children born in Scotland on February 1, May 1, August 1, and November 1, 1926. The shaded histogram shows the percentages of the group with IQ's in various ranges of 10 points. This grouping is artificial and is done solely for ease of representation: it does not imply any discontinuity in the values of IQ that children can show. The continuous curve shows the ideal distribution calculated from the observations and representing the statistical population of which the children actually observed are regarded as forming a sample. (Data from MacMeekan; from Mather 1964.)

"Liberalism"

XV.-The Correlation between Relatives on the Supposition of Mendelian Inherit-

 ance. By R. A. Fisher, B.A. Communicated by Professor J. Arthur Thomson. (With Four Figures in Text.)(MS, received June 15, 1918. Read July 8, 1918. Issued separately October 1, 1918.)

CONTENTS.

1. The superposition of factors distributed independently
2. Phase frequency in each array
3. Parental regression .
4. Dominance deviations
5. Correlation for parent ; genetic correlations
6. Fraternal correlation
7. Correlations for other relatives
8. Epistacy .
9. Assortative mating -
10. Frequency of phases
11. Association of factors
12. Conditions of equilibrium
13. Nature of association
14. Multiple allelomorphism.

page

 402 40215. Homogamy and multiple allelo:norphism $\quad \begin{array}{r}\text { PAOE } \\ 416\end{array}$
16. Coupling .
17. Theories of marital correlation; ancestral correlations.419
18. Ancestral correlations (second and third theories) 421
19. Numerical values of association 421
20. Fraternal correlation 422
21. Numerical values for environment and domi- nance ratios ; analysis of variance 423
22. Other relatives 42
23. Numerical values (third theory) 425
24. Comparison of results 427
25. Interpretation of dominance ratio (diagrams) 428
26. Summary 432

Several attempts have already been made to interpret the well-established results of biometry in accordance with the Mendelian scheme of inheritance. It is here attempted to ascertain the biometrical properties of a population of a more general type than has litherto been examined, inheritance in which follows this scheme. It is hoped that in this way it will be possible to make a more exact analysis of the causes of human variability. The great body of available statistics show us that the deviations of a human measurement from its mean follow very closely the Normal Law of Errors, and, therefore, that the variability may be uniformly measured by the standard deviation corresponding to the square root of the mean square error. When there are two independent causes of variability capable of producing in an otherwise uniform population distributions with standard deviations σ_{1} and σ_{2}, it is found that the distribution, when both causes act together, has a standard deviation $\sqrt{\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}}$. It is therefore desirable in analysing the causes of variability to deal with the square of the standard deviation as the measure of variability. We shall term this quantity the Variance of the normal population to which it refers, and we may now ascribe to the constituent causes fractions or percentages of the total variance which they together produce. It

> RA Fisher (1918). Transactions of the Royal Society of Edinburgh 52: 399-433.

R.A. Fisher, 1918

The explanation of quantitative inheritance in Mendelian terms

1 Gene
$\rightarrow 3$ Genotypes
$\rightarrow 3$ Phenotypes

2 Genes
$\rightarrow 9$ Genotypes
$\rightarrow 5$ Phenotypes

3 Genes
$\rightarrow 27$ Genotypes
$\rightarrow 7$ Phenotypes

Fisher (1918): Basic Ideas

- Continuous variation caused by lots of genes ("polygenic inheritance")
- Each gene followed Mendel's laws
- Environment smoothed out genetic differences
- Genes may show different degrees of "dominance"
- Genes may have many forms ("multiple alleles")
- Mating may not be random ("assortative mating")
- Showed that correlations obtained by e.g. Pearson and Lee were explained well by polygenic inheritance
- Led to "Biometrical Genetics" (Mather, Jinks etc.)

Multifactorial Threshold Model

 of Disease - normally distributed "liability"Single threshold

Disease liability

Multiple thresholds

Disease liability

Douglas Scott Falconer, FRS, FRSE (1913-2004)

1965 Inheritance of liability to certain diseases estimated from incidence among relatives., Ann. Hum. Genet.29:51ff. 1960 Introduction to Quantitative Genetics. Edinburgh: Oliver and Boyd.

The (Really!) BIG Problem

Families are a mixture of genetic and social factors

Francis Galton (1822-1911)

1869: Hereditary Genius
1883: Inquiries into Human Faculty and its Development 1884-5: Anthropometic Laboratory at "National Health Exhibition"

Galton's Solution:

Twins

(Though Augustine may have got there first $5^{\text {th }}$ cent.)

One (?ideal) solution

Twins separated at birth

MZ twins reared apart - note the same way of supporting their cans of beer

Figure 2. Scatter diagram showing correlation between IQs of 122 sets of co-twins (A and B assigned at random). The obtained intraclass correlation $\left(r_{i}\right)$ is 0.82 . The diagonal line represents perfect correlation $\left(r_{i}=1.00\right)$.

But separated MZs are rare

An easier alternative:

Identical and non-identical twins reared together Galton (again!)......Or was it ?

Early Research on Human Genetics Using the Twin Method: Who Really Invented the Method?

Identity at marker loci except for rare mutation

MZ and DZ twins:
determining zygosity using ABI Profiler ${ }^{\text {TM }}$ genotyping
(9 STR markers + sex)

Twin correlations for total mole count

Twin Correlations ($95 \% \mathrm{CI}$) for Total Mole Count (Age 12 years)

Three scenarios

Twin Correlation

Twin Correlations for Adult Stature (Virginia 30,000 and Australia 22,000)

Structural equation modeling

- Both continuous and categorical variables
- Systematic approach to hypothesis testing
- Tests of significance
- Can be extended to:
- More complex questions
- Multiple variables
- Other relatives

Sewall Wright (1889-1988)

1984. Evolution and the Genetics of Populations: Genetics and Biometric Foundations (4 vols.)
1934. The method of path coefficients. Ann. Math. Staiist. 5: 161-215

Variance components

Unique	Shared	Additive Genetic	Dominance Genetic
Environment	Environment	Effects	Effects

$$
P=e E+a A+c C+d D
$$

ACE Model for twin data

Sources of variation in exam (QCST) results

Additive genetic

Shared environment

Problems with the ACE model (in the classical twin design)

- C and D are negatively confounded and a model with ACDE is not identified - can only fit one or the other of C/D-
- If rmz $=r d z>$ pure C : CE model fits best
- If $r m z=2 r d z>$ pure A : AE model fits best
- If rmz < 2rdz > A plus C : ACE model fits best
- If rmz > 2rdz > A plus D : ADE model fits best
- If rmz = rdz=0 > all E : no familial resemblance

Other problems (2)

- C can be inflated by age, sex differences; also batch effects; correct for these using Means model in Mx
- Low power to detect D
- D subsumes epistasis and other non-additive genetic effects
- E includes measurement error - value of testretest data

Other problems (3)

- C can be inflated by phenotypic assortative mating (like marrying like)
- Important to collect spouse data to estimate marital correlation
- Height ~0.2
. Education, smoking, drinking, politics ~0.6 CAN ACCOUNT FOR SOME/MOST/ALL OF "C" ESTIMATED FROM ACE MODEL IN TWIN DATA

How twin studies changed research agendas

1. Autism - "caused by cold mothers" 10/11 MZ pairs concordant, 2/11 DZs concordant
2. ADHD - "caused by food dyes" Twin studies found $h^{2} \sim 0.8$
3. Multiple sclerosis - "caused by a virus" MZ concordance 26\%, DZ concordance 2\%

Are there common genetic and environmental factors influencing Verbal IQ, Performance IQ and QCST results?

Genetic variation in developmental change: time series with

 common genes and time-specific environmental "innovations"

Environment

ACE Model for twin data

Figure 1. Empirical Distribution of Actual Additive Genetic Relationships of 4,401 Quasi-Independent Pairs of Full Sibs
Histogram of the genome-wide additive genetic relationships of full-sib pairs estimated from genetic markers. DOI: 10.1371/journal.pgen.0020041.g001

Classical twin design revisited:
 Heritability estimation without MZ twins

 Why do we use the average sib value of $r_{a}=0.5$ when we can estimate the (almost) exact values for each sib pair from genetic marker data?PLOS genemics

Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings

[^0]Table 2. ML Estimates of Heritability of Height from Genome-Wide IBD Sharing between Sib Pairs

Data	Model	Estimates $(95 \% \mathbf{C I})$	
		\boldsymbol{f}^{2}	$\boldsymbol{h}^{\mathbf{2}}$
Adolescents $(n=931)$	FAE	$0.00(0.00-0.43)$	$0.80(0.00-0.90)$
Adults $(n=2,444)$	FE	$0.40(0.34-0.45)$	$0.80(0.43-0.86)$
	FAE	$0.00(0.00-0.18)$	$0.80(0.46-0.85)$
Combined $(n=3,375)$	FE	$0.39(0.36-0.43)$	

Finding the genes - association

Looks for correlation between specific alleles and phenotype (trait value, disease risk) using single nucleotide polymorphisms (SNPs)

High density SNP arrays - up to 1 million SNPs

Genome-Wide Association Studies

The success of GWAS

2006 Jan

Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior

Total $\mathrm{n}=477,522$ (26,827 reporting same-sex sexual behavior)

Andrea Ganna ${ }^{1,2,3,4 *}$, Karin J. H. Verweij ${ }^{5 *}$, Michel G. Nivard ${ }^{6}$, Robert Maier ${ }^{1,2,3}$, Robbee Wedow ${ }^{1,3,7,8,9,10,11}$, Alexander S. Busch ${ }^{12,13,14}$, Abdel Abdellaoui ${ }^{5}$, Shengru Guo ${ }^{15}$, J. Fah Sathirapongsasuti ${ }^{16}$, 23andMe Research Team ${ }^{16}$, Paul Lichtenstein ${ }^{4}$, Sebastian Lundström ${ }^{17}$, Niklas Långström ${ }^{4}$, Adam Auton ${ }^{16}$, Kathleen Mullan Harris ${ }^{18,19}$, Gary W. Beecham ${ }^{15}$, Eden R. Martin ${ }^{15}$, Alan R. Sanders ${ }^{20,21}$, John R. B. Perry ${ }^{12}+$, Benjamin M. Neale ${ }^{1,2,3} \dagger$, Brendan P. Zietsch ${ }^{22} \dagger \ddagger$

GCTA h ${ }^{2}=32.4 \%$ (95\% CI 10.6-54.3)

Across sex $\mathrm{Rg}=0.63$
(95\% CI, 0.48-0.78)

Ganna et al., Science 365, 882 (2019)

Major Depressive Disorder

130,664 MDD cases , 330,470 controls $\rightarrow 44$ independent loci ($\mathrm{P}<5 \mathrm{e}-8$) Genes that are targets of antidepressant medications were strongly enriched for MDD association signals ($\mathrm{P}=8.5 \mathrm{e}-10$)

NR Wray....PF Sullivan: bioRxiv Jul. 24, 2017; Nature Genetics, in press

Polygenic Risk Scores

Polygenic Risk Scores capture (part of) someone's genetic "risk" by summing all risk alleles weighted by the effect sizes estimated in a Genome-Wide Association Study (GWAS)

MDD Polygenic Risk Score predicts risk in independent samples

Odd ratios of MDD per PRS decile relative to the first decile for iPSYCH and anchor cohorts.

Interdecile risk ~2.5

Decile

MDD Polygenic Risk Score predicts age at onset, recurrence, and severity in independent samples

MDD PRS (from out-of-sample discovery sets) were significantly higher in MDD cases with:

- earlier age at onset; more severe MDD symptoms (based on number of criteria endorsed)
- recurrent MDD compared to single episode
- chronic/unremitting MDD ("Stage IV" compared to "Stage II", first-episode MDD)

Error bars represent 95\% CI

Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations

Amit V. Khera ${ }^{1,2,3,4,5, ~ M a r k ~ C h a f f i n ~} \odot^{4,5}$, Krishna G. Aragam ${ }^{1,2,3,4,}$, Mary E. Haas ${ }^{4}$, Carolina Roselli® ${ }^{4}$, Seung Hoan Choi ${ }^{4}$, Pradeep Natarajan $\oplus^{2,3,4}$, Eric S. Lander ${ }^{4}$, Steven A. Lubitz ${ }^{{ }^{2,3,4}}$, Patrick T. Ellinor $\odot^{2,3,4}$ and Sekar Kathiresan $\odot^{1,2,3,4 \star}$

Genome-wide polygenic score for CAD
 care..."
\% Population at >3fold increased risk

- CAD
8.0\%,
- atrial fibrillation 6.1\%
- type 2 diabetes 3.5\%
- IBD
3.2\%
- breast cancer 1.5\%
"We propose that it is time to contemplate the inclusion of polygenic risk prediction in clinical

Effect of Disclosing Genetic Risk for Coronary Heart Disease on Information Seeking and Sharing
 The MI-GENES Study (Myocardial Infarction Genes)

Sherry-Ann N. Brown, MD, PhD; Hayan Jouni, MD; Tariq S. Marroush, MD; Iftikhar J. Kullo, MD

Statin use significantly higher in patients given genetic risk score than conventional risk score

GxE Interaction and Correlation

- GxE: SENSITIVITY to E controlled by G
- rGE: EXPOSURE to E correlated with ("depends on") G

Lots of good plant and animal models for both

DIATHESIS-STRESS MODEL IN DEPRESSION

Depression = Diathesis + Stress +
 Diathesis * Stress

(Predisposition, Vulnerability)
(Disruption of psychological equilibrium)

Hypothesised contribution to risk

Our model:

Depression = PRS + PSLE + NSLE + SS + PRS * PSLE + PRS*NSLE + PRS*SS

- PRS: Polygenic Risk Score
- PSLE: Personal Stressful Life Event, NSLE: Network Stressful life event, SS Social Support
- Familial relatedness modelled using a kinship matrix or a genetic relatedness matrix calculated from SNPs.
- All analyses controlled for age, age ${ }^{2}$, sex, age*sex and age ${ }^{2 *}$ sex interactions, study, array, and the first four genetic principal components
- Scores regressed for covariates to avoid false positive interactions

MAIN EFFECTS OF STRESS SCORES

- Depression score associated with Personal (PSLE) and network (NSLE) stressful life events and perceived social support (SS). Note sex differences.

TEST OF INTERACTION

Significant interaction

No interaction

No interaction

The nature of nurture: Effects of parental genotypes

Augustine Kong \qquad Kari Stefansson

Nontransmitted alleles can affect a child through their impacts on the parents and other relatives, a phenomenon we call "genetic nurture." Using results from a meta-analysis of educational attainment, we find that the polygenic score computed for the nontransmitted alleles of 21,637 probands with at least one parent genotyped has an estimated effect on the educational attainment of the proband that is $29.9 \%\left(P=1.6 \times 10^{-14}\right)$ of that of the transmitted polygenic score.

Detection and interpretation of shared genetic influences on 42 human traits

Joseph K Pickrell, Tomaz Berisa, Jimmy Z Liu, Laure Ségurel, Joyce Y Tung \& David A Hinds.

Nature Genetics 48; 709-717, 2016

Powerful GWAS for traits A and B can help determine direction of causation

The causal influence of brain size on human intelligence: Evidence from within-family phenotypic associations and GWAS modeling

James J. Lee ${ }^{\mathrm{a}, *}$, Matt McGue ${ }^{\mathrm{a}}$, William G. Iacono $^{\mathrm{a}}$, Andrew M. Michael ${ }^{\mathrm{b}, \mathrm{c}}$, Christopher F. Chabris ${ }^{\text {b }}$

Ascertainment by

 intracranial volume

Ascertainment by

 years of educationManhattan plot of the 250HD (vitamin D) GWAS in the UK Biobank: n=417,580, 143 loci

Bidirectional Generalized Summary data level Mendelian Randomization (GSMR) between 25 hydroxyvitamin D concentrations and selected phenotypes

$-\quad P_{x y}>0.05$
$-\quad P_{x y}<0.05$
$\approx \quad P_{x y}<0.003$

John McGrath

Inference on heritability and selection from WGS data Heritability estimates from different studies:

Source	Height	BMI	Year	EA	SCZ
Pedigree studies	~ 0.8	$\sim 0.4-0.6$	<2010	~ 0.4	~ 0.7
Genotyped SNPs	$\sim 0.45(0.03)$	$\sim 0.16(0.03)$	$2010+$	~ 0.15	~ 0.25
Imputed SNPs	$\sim 0.56(0.02)$	$\sim 0.27(0.02)$	$2015+$	~ 0.2	~ 0.3
Whole Genome	???				

Can we recover the 'still missing' heritability using WGS data?

Investigation using TOPMed WGS

TOPMed overview
NIH project, whole genome sequencing of entire cohorts in the US (~ 30 cohorts)
~40\% Europeans
~30\% African americans
~16\% latinos
~9\% Asians
$\sim 4 \%$ unkown

Median sequencing depth 30x
Multiple data freezes:

- 54k samples for freeze 5
- 140k samples for freeze 8

Pierrick Wainschtein

Peter Visscher

GREML-LDMS using WGS data: recovery of pedigree heritability?

Estimates using 20PCs as fixed effects:

- Height:

$$
h_{W G S}^{2}=0.79(0.09)
$$

- BMI:

$$
h_{W G S}^{2}=0.40(0.09)
$$

Estimates close to pedigree estimates
Large role for low LD and low MAF variants

We also run two journals (1)

A Journal Devoted to Research in the Inheritance of Behavior

Whuwer academic/ PLenum publishers

- Editor: John Hewitt
- Editorial assistant Christina Hewitt
- Publisher: Kluwer /Plenum
- Fully online
- http://www.bga.org

twin research and humangenetics

thentry
tant
Whatien © Mives

- Editor: Nick Martin
- Publisher:

Cambridge University Press

- Fully online
. Fast turnaround
- First submission
free to workshop participants!!!!!:

Schizophrenia GWAS: polygenic centile analysis

Independent discovery sample (29,415 cases and 40,101 controls) used to predict to CLOZUK target sample (11,260 cases and 24,542 controls)
Risk of schizophrenia in top 1% is ~ 40-fold higher than in bottom 1%

Pardinas et al. Nature Genetics 50: 381-389 (2018)

European ancestry selection

Selection of European ancestry samples

1. Using HM3 SNPs (1.2M)
2. From 1 kG population references
3. Selected samples within 6 sd of EUR pop

Selected EUR projected on 1kG EUR pop (TOPMed allele freq)

Dataset

Analysis parameters:

- 21,620 unrelated individuals from European ancestry
- Genomic Relationship Matrices (GRMs) fitted:
- 1 GRM from HM3 SNPs
- 7 GRMs from all variants split by MAF
- 14 GRM split by MAF and LD (7 AF bins * 2 LD bins)
- MAF threshold of 0.0001 (each variant seen $>2 x$)
- 47.1M variants
- Phenotypes standardized $N(0,1)$ within each cohort by sex

RINT = rank based inverse normal transformation

GWAS for moliness(II studies, 23,000 subjects, 5 hits)

The support of human genetic evidence for approved

 drug indicationsMatthew R Nelson ${ }^{1}$, Hannah Tipney ${ }^{2}$, Jeffery L Painter ${ }^{1}$, Judong Shen ${ }^{1}$, Paola Nicoletti ${ }^{3}$, Yufeng Shen ${ }^{3,4}$, Aris Floratos ${ }^{3,4}$, Pak Chung Sham ${ }^{5,6}$, Mulin Jun $\mathrm{Li}^{6,7}$, Junwen Wang ${ }^{6,7}$, Lon R Cardon ${ }^{8}$, John C Whittaker ${ }^{2}$ \& Philippe Sanseau ${ }^{2}$

Table 1 The relative value of genetic support for the probability that a target-indication pair progresses along the drug development pipeline, based on historical drug trial information

	p (progressIgenetic support)/(progressIno genetic support)		
Progression	GWASdb and OMIM	GWASdb	OMIM
Phase I to phase II	$1.2(1.1-1.3)$	$1.2(1.1-1.3)$	$1.2(1.1-1.3)$
Phase II to phase III	$1.5(1.3-1.7)$	$1.4(1.2-1.7)$	$1.6(1.3-1.9)$
Phase III to approval	$1.1(1.0-1.2)$	$1.0(0.8-1.2)$	$1.1(0.9-1.3)$
Phase I to phase III	$1.8(1.5-2.1)$	$1.8(1.4-2.1)$	$1.9(1.5-2.3)$
Phase I to approval	$2.0(1.6-2.4)$	$1.8(1.3-2.3)$	$2.2(1.6-2.8)$

"We estimate that selecting genetically supported targets could double the success rate in clinical development. Therefore, using the growing wealth of human genetic data to select the best targets and indications should have a measurable impact on the successful development of new drugs."

Quantitative analysis of population-scale family trees with millions of relatives Joanna Kaplanis et al. Science 01 Mar 2018:

A

"HEREDITY"

Francis Galton (1822-1911)

1869: Hereditary Genius
1883: Inquiries into Human Faculty and its Development 1884-5: Anthropometic Laboratory at "National Health Exhibition"

Galton's Other Work e.g. Meteorology

Hereditary Genius（1869，p 317）

				気号		$\begin{aligned} & \text { 合 } \\ & \frac{1}{4} \\ & \frac{5}{6} \\ & 0 \end{aligned}$			Illustrious and Eminent Men of all Classes．		
	B．	C．	D．								
Father．	26	33	47	48	26	20	32	28	3^{31}	100	3^{1}
Brother	35	39	50	42	47	40	50	36	41	150	27
Son．．．	36	49	3^{11}	51	60	45	8_{9}	40	4^{8}	100	48
Grandfather ．	15	28	16	24	14	5	7	20	17	200	8
Uncle ．．	18	18	A	24	16	5	14	40	18	400	5
Nephew ．．	19	18	35	24	23	50	18		22	400	5
Grandson．．	19	10	12	9	14	5	${ }^{18}$	16	14	200	7
Great－grandfather ．	2	8	8	3	－	－	－	4	3	400	1
Great－uncle ．．	4	5	8	6	5	5	7	4	5	800	1
First cousin ．	11	21	20	18	16	－	1	8	${ }^{3}$	800	2
Great－nephew ．．	17	5	，	6	16	10	－	－	10	800	\pm
Great－grandson．．	6	－	－	3	7	－	－	－	3	400	\pm
All more remote	14	37	44	15	23	5	18	16	32	？	．．．

Galton's Anthropometric Laboratory (1884-1885)

ANTHROPOMETRIC

LABORATORY

For the measurement in various ways of Human Form and Faculty.

Entered from the Science Collection of the S. Kensington Museum.

This laboratory is established by Mr. Francis Galton for the following purposes:-
I. For the use of those who desire to be accurately measured in many ways, either to obtain timely warning of remediable faults in development, or to learn their powers.
2. For keeping a methodical register of the principal measurements of each person, of which he may at any future time obtain a copy under reasonable restrictions. His initials and date of birth will be entered in the register, but not his name. The names are indexed in a separate book.
3. For supplying information on the methods, practice, and uses of human measurement.
4. For anthropometric experiment and research, and for obtaining data for statistical discussion.

Charges for making the principal measurements:
THREEPENCE each, to those who are already on the Register. FOURPENCE each, to those who are not:- one page of the FOURPENCE each, to ther will thenceforward be assigned to them, and a few extra measurements will be made, chiefly for future identification.

The Superintendent is charged with the control of the laboratory and with determining in each case, which, if any, of the extra measurements may be made, and under what conditions.

Francis Galcon's First Anthropometrie Laboratory at the International Health Fxhibition, South Kensington, $1884-5$,

Karl Pearson (1857-1936)

1903: On the Laws of Inheritance in Man: I Physical Characteristics (with Alice Lee) 1904: II Mental and Moral Characteristics
1914: The Life, Letters and Labours of Francis Galton

K. Pearson and A. Lee

FAMILY MEASUREMENTS.

Professor Karl Pearson, of University College, London, would esteem it a great favour if any persons in a position to do so, would assist him by making one set (or if possible several sets) of anthropometric measurements on their own family, or on families with whom they are acquainted. The measurements are to be made use of for testing theories of heredity, no names, except that of the recorder, are required, but the Professor trusts to the bona fides of each recorder to send only correct results.

Each family should consist of a father, mother, and at least one son or daughter, not necessarily the eldest. The sons or daughters are to be at least 18 years of age, and measurements are to be made on not more than two sons and two daughters of the same family. If more than two sons or two daughters are easily accessible, then not the tallest but the eldest of those accessible should be selected.

To be of real service the whole series ought to contain 1000-2000 families, and therefore the Professor will be only too grateful if anyone will undertake several families for him.

Copies of this paper, together with cards for recording data, may be obtained from
or from the above-named Professor.

Pearson and Lee's diagram for measurement of "span" (finger-tip to finger-tip distance)

'IABLE IV.

Coefficients of Heredity. Parents and Offspring.

Character	Father and		Mother and	
	Son	Daughter	Son	Daugiter
Stature	$\cdot 514 \pm \cdot 015$	$\cdot 510 \pm \cdot 013$	$\cdot 494 \pm \cdot 016$	$.507 \pm \cdot 014$
Span	$\cdot 454 \pm \cdot 016$	$\cdot 454 \pm \cdot 014$	$\cdot 457 \pm \cdot 016$	$\cdot 452 \pm \cdot 015$
Forearm	$\cdot 421 \pm .017$	$\cdot 422 \pm \cdot 015$	$\cdot 406 \pm \cdot 017$	$\cdot 421 \pm \cdot 015$

From Pearson and Lee (1903) p. 378

Correlation Coefficients for Direct Fraternal Heredity.

Character	Brother and Brother	Sister and Sister	Brother and Sister	Mean
Stature	$\cdot 511 \pm \cdot 028$	$\cdot 537 \pm{ }^{-022}$	$\cdot 553 \pm{ }^{-013}$	-534
Span	$\cdot 549 \pm \cdot 026$	$\cdot 555 \pm \cdot 021$	$\cdot 525 \pm \cdot 013$	-543
Forearm	$\cdot 491 \pm{ }^{\text {- }}$ - ${ }^{\text {a }}$	$\cdot 507 \pm{ }^{\circ} 023$	$\cdot 440 \pm{ }^{\circ} 015$	-479
Mean	$\cdot 517$	-533	$\cdot 506$	$\cdot 519$
Eye Colour*	$\cdot 517 \pm{ }^{\circ} 020$	$\cdot 446 \pm{ }^{\circ} 023$	$\bullet 462 \pm{ }^{\text {- }}$ - 22	-475
Total mean	-517	. 511	$\cdot 495$	-508

From Pearson and Lee (1903) p. 387

Assortative Mating. Based on 1000 to 1050 Cases of Husband and Wife.

	Husband's Character	Wife's Character	Correlation and Probable Error	Symbol
Direct	Stature	Stature	$\cdot 2804 \pm .0189$	r_{12}
	Span	Span	$\cdot 1989 \pm .0204$	r_{34}
	Forearm	Forearm	$\cdot 1977 \pm \cdot 0205$	r_{56}

From Pearson and Lee (1903) p. 373

Modern Data

The Virginia 30,000 ($\mathrm{N}=29691$)

The Australia 22,000

($\mathrm{N}=20480$)

Overall sample sizes

Relationship \# of pairs
Parent-offspring 25018
Siblings
Spouses
8287
DZ Twins
MZ Twins
5120
4623

Nuclear Family Correlations for Stature (Virginia 30,000 and OZ 22,000)

Nuclear Family Correlations for Stature and Liberalism/Conservatism (Virginia 30,000)

Nuclear Family Correlations for Liberalism/Conservatism
(Virginia 30,000 and Australia 22,000)

Ronald Fisher (1890-1962)

1918: On the Correlation Between Relatives on the Supposition of Mendelian Inheritance 1921: Introduced concept of "likelihood"
1930: The Genetical Theory of Natural Selection
1935: The Design of Experiments

Fisher developed mathematical theory that reconciled Mendel's work with Galton and Pearson's correlations

Schizophrenia GWAS associations from the meta-analysis of CLOZUK and PGC

Pardinas et al. Nature Genetics 50: 381-389 (2018)

Lindon Eaves

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes

Nasim Mavaddat, ${ }^{1, *}$ Kyriaki Michailidou, ${ }^{1,2}$ Joe Dennis, ${ }^{1}$ Michael Lush, ${ }^{1}$ Laura Fachal, ${ }^{3}$ Andrew Lee, ${ }^{1}$

Compared with women in the middle quintile, those in the highest 1\% of risk had 4.37and 2.78 -fold risks, and those in the lowest 1% of risk had 0.16 - and 0.27 -fold risks, of developing ER-positive and ER-negative disease, respectively. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.

American Journal of Human Genetics 104, 21-34, January 3, 2019

[^0]: Peter M. Visscher*, Sarah E. Medland, Manuel A. R. Ferreira, Katherine I. Morley, Gu Zhu, Belinda K. Cornes, Grant W. Montgomery, Nicholas G. Martin
 Genetic Epidemiology Group, Queensland Institite of Medical Research, Brisbane, Australia

