GREML: Heritability Estimation Using Genomic Data

Rob Kirkpatrick & Mike Hunter March 5th, 2020 (Some slides courtesy of Matt Keller)

Overview

- I. Regression Estimates of V_A .
- II. Genomic Relatedness Matrices.
- III. GREML.
- IV. Combining GREML & SEM.
- V. mxGREML Design.
- VI. mxGREML Implementation.

Using genetic similarity at SNPs to estimate V_A

- Determine extent to which genetic similarity at SNPs is related to phenotypic similarity
- Multiple approaches to derive unbiased estimate of
 V_A captured by measured (common) SNPs
 - Regression (Haseman-Elston)
 - Mixed effects models (GREML)
 - Bayesian (e.g., Bayes-R)
 - LD-score regression

$$\theta_{ij} = Z_i Z_j \leftarrow \cdots$$

product of centered scores (here, z-scores)

 $E[\theta_{ij}] = COV(Z_i, Z_j)$

$$E[\theta_{ij} \mid \hat{\pi}_{ij}] = \hat{\beta}_0 + \hat{\beta}_1 \hat{\pi}_{ij}$$

$$\hat{\beta}_1 = \hat{h}^2$$

$$\theta_{ij} = Z_i Z_j$$

$$E[\theta_{ij}] = COV(Z_i, Z_j)$$

$$E[\theta_{ij} \mid \hat{\pi}_{ij}] = \hat{\beta}_0 + \hat{\beta}_1 \hat{\pi}_{ij}$$

$$\hat{\beta}_1 = \hat{h}^2$$

$$\theta_{ij} = Z_i Z_j$$

$$E[\theta_{ij}] = COV(Z_i, Z_j)$$

$$E[\theta_{ij} \mid \hat{\pi}_{ij}] = \hat{\beta}_0 + \hat{\beta}_1 \hat{\pi}_{ij}$$

$$\hat{\beta}_1 = \hat{h}^2$$

$$\theta_{ij} = Z_i Z_j$$
$$E[\theta_{ij}] = COV(Z_i, Z_j)$$
$$E[\theta_{ij} | \hat{\pi}_{ij}] = \hat{\beta}_0 + \hat{\beta}_1 \hat{\pi}_{ij}$$

$$\hat{\beta}_1 = \hat{h}^2$$

$$\theta_{ij} = Z_i Z_j$$

$$E[\theta_{ij}] = COV(Z_i, Z_j)$$

$$E[\theta_{ij} \mid \hat{\pi}_{ij}] = \hat{\beta}_0 + \hat{\beta}_1 \hat{\pi}_{ij}$$

$$\hat{\beta}_1 = \hat{h}^2$$

$$\theta_{ij} = Z_i Z_j$$

$$E[\theta_{ij}] = COV(Z_i, Z_j)$$

$$E[\theta_{ij} \mid \hat{\pi}_{ij}] = \hat{\beta}_0 + \hat{\beta}_1 \hat{\pi}_{ij}$$

$$\hat{\beta}_1 = \hat{h}^2$$

$$\theta_{ij} = Z_i Z_j$$

$$E[\theta_{ij}] = COV(Z_i, Z_j)$$

$$E[\theta_{ij} \mid \hat{\pi}_{ij}] = \hat{\beta}_0 + \hat{\beta}_1 \hat{\pi}_{ij}$$

$$\hat{\beta}_1 = \hat{h}^2$$

Regression estimates of h²_{snp}

$$\theta_{ij} = Z_i Z_j$$

$$E[\theta_{ij}] = COV(Z_i, Z_j)$$

$$E[\theta_{ij} \mid \hat{\pi}_{ij}] = \hat{\beta}_0 + \hat{\beta}_1 \hat{\pi}_{ij}$$

$$\hat{\beta}_1 = \hat{h}^2$$

Interpreting h² estimated from SNPs (h²_{snp})

- If close relatives included (e.g., sibs), $h_{snp}^2 \cong h^2$ estimated from a family-based method, because great influence of extreme pihats. Interpret h_{snp}^2 as from these designs.
 - <u>If use 'unrelateds' (e.g., pihat < .05)</u>:
 - h_{snp}^2 = proportion of V_P due to V_A captured by SNPs. Upper bound % V_P GWAS can detect
 - Gives idea of the aggregate importance of CVs tagged by SNPs
 - By not using relatives who also share environmental effects: (a) V_A estimate 'uncontaminated' by V_C & V_{NA}; (b) does not rely on family study assumptions (e.g., r(MZ) > r(DZ) for only genetic reasons)

Comparison of approaches for estimating h²_{snp}

APPROACH (METHOD)	ADVANTAGES	DISADVANTAGES
HE-regression	Fast. Point estimates usually unbiased	Large SEs (~30% larger than REML). SE estimates biased. Limited model building.

Comparison of approaches for estimating h²_{snp}

APPROACH (METHOD)	ADVANTAGES	DISADVANTAGES
HE-regression	Fast. Point estimates usually unbiased	Large SEs (~30% larger than REML). SE estimates biased. Limited model building.
LD-score regression	Requires only summary statistics; mostly robust to stratification/relatedness	Does not give good estimates of variance due to rare CVs

Comparison of approaches for estimating h²_{snp}

APPROACH (METHOD)	ADVANTAGES	DISADVANTAGES
HE-regression	Fast. Point estimates usually unbiased	Large SEs (~30% larger than REML). SE estimates biased. Limited model building.
LD-score regression	Requires only summary statistics; mostly robust to stratification/relatedness	Does not give good estimates of variance due to rare CVs
GREML (e.g., GCTA	Point estimates & SEs usually unbiased. Well maintained & easy to use	Limited model-building (e.g., no nonlinear constraints).

Consider **S**, an *N*×*m* matrix of genotypes expressed as reference-allele counts, where *N* is the number of participants and *m* is the number of markers (SNPs, say):

$$\mathbf{S} = \begin{bmatrix} 0 & 2 & 0 & 1 & 1 & \cdots \\ 0 & 1 & 1 & 1 & 2 & \cdots \\ 0 & 1 & 1 & 0 & 0 & \cdots \\ 0 & 2 & 1 & 0 & 2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Let **W** denote **S**, after its columns have been standardized to have zero mean and unit variance. That is, the *ij*th element of **W** is

$$w_{ij} = \frac{s_{ij} - 2p_j}{\sqrt{2p_j(1-p_j)}}$$

where p_i is the reference-allele frequency of marker *j*.

The GRM is then

$$\mathbf{G} = \frac{1}{m} \mathbf{W} \mathbf{W}^T$$

and thus is an N×N matrix of genomic-relatedness coefficients. These coefficients are "allele-frequency-weighted" IBS coefficients.

In a random sample from a homogenous, randomly-mating population:

- The diagonal elements are expected to equal 1.
- The off-diagonals are expected to equal zero.
- However, there will be variance around these expectations. We will use this variance to get leverage on estimating $V_{A,SNP}$.

- OpenMx does not compute GRMs from raw genotype data—use GCTA, plink, etc.
- Going from genotypes to GRM can be more complicated—correction for possible uneven LD around trait-relevant loci¹.
- Possible to use >1 GRM in analysis—bin markers by, e.g.
 - Chromosome.
 - Allele frequency.
 - Biological pathway.

¹Speed, D., et al. (2013). *AJHG*, *91*, 1011-1021. doi: 10.1016/j.ajhg.2012.10.010.

III. GREML

We aren't interested in estimating each u_i because m >> n usually, and because such individual estimates would be unreliable. Instead, estimate the <u>variance</u> of u_i . ²⁶

REML find values of $\sigma_A^2 \& \sigma_e^2$ that maximizes the likelihood of the observed data. Intuitively, this makes the observed and implied var-covar matrices be as similar as possible.

Individual QC

- Remove individuals <u>missing</u> > ~.02
- Remove <u>close relatives</u> (e.g., --grm-cutoff 0.05)
 - Correlation between pi-hats and shared environment can inflate h²_{snp} estimates
- Control for <u>stratification</u> (usually 5 or 10 PCs)
 - Different prevalence rates (or ascertainments) between populations can show up as h²_{snp}
- Control for <u>plates</u> and other technical artifacts
 - Be careful if cases & controls are not randomly placed on plates (can create upward bias in h²_{snp})

Big picture: Using SNPs to estimate h²

- Independent approach to estimating h²
 - Different assumptions than family models. Increasingly tortuous reasoning to suggest traits aren't heritable because methodological flaws
- When using SNPs with same allele frequency distribution as CVs, provides unbiased estimate of h²
 - When using common (array) SNPs to estimated relatedness, generally provides downwardly biased estimate of h²
 - Still missing" $h^2 (h_{family}^2 h_{snp}^2)$ provides insight into the importance of rare variants, non-additive, or biased h_{family}^2 .
 - But not a panacea. Biases still exist. Issues need to be worked out (e.g., assortative mating, etc.).

III. Combining GREML & SEM.

GSEM¹

- R package by Beate St Pourcain (<u>https://gitlab.gwdg.de/beate.stpourcain/gsem</u>).
- 1 dedicated function each for fitting CommPthwy, IndePthwy, & "Cholesky".
- Specialized—fast & lean.
- Uses fast BLAS (e.g., ATLAS) for good performance.
- ML fit.
- Path-coefficient parameterization.

mxGREML

- OpenMx feature.
- Available in *OpenMx* since v2.2 (June 2015).
- Still being developed.

IV. mxGREML Design

- All participants' scores on all phenotypes get "stacked" into a single vector, y.
- Input dataset is in "vanilla" wide format--has 1 row per individual:

yx[1,]7.3119-0.33[2,]0.5069-0.64[3,]-1.8111-0.78[4,]-8.7180-0.12[5,]6.5651-0.81[6,]-2.2380-0.14

- All participants' scores on all phenotypes get "stacked" into a single vector, **y**.
- "Definition variables" not allowed/needed.
 - User specifies onto which covariates each phenotype is to be regressed.

- All participants' scores on all phenotypes get "stacked" into a single vector, **y**.
- "Definition variables" not allowed/needed.
- Ordinal phenotypes (incuding binary) must be treated as though continuous.

- (You correct the h^2 estimate for this fact later.)

- All participants' scores on all phenotypes get "stacked" into a single vector, **y**.
- "Definition variables" not allowed/needed.
- Ordinal phenotypes (incuding binary) must be treated as though continuous.
- User must specify model for **y**.
 - Mean of y conditioned on covariates, which are columns of matrix X.
 - var(y | X) is covariance matrix, V, which user must define.

GREML: New, Big Idea

- In previous analyses we've done so far in OpenMx, the unit of analysis was the family (e.g., twin pair).
- But if we can use DNA to determine the weak genetic resemblance among classically unrelated individuals, we can treat the entire sample as one large, extended "family".
- Thus, in GREML, the whole sample is one case, and the sole unit of analysis.

GREML in OpenMx: assumptions

- Conditional on covariates X, phenotype vector y is a single draw from a multivariatenormal distribution having (in general) dense covariance matrix, V.
- 2. Random effects are normally distributed.
- GLS regression (using V⁻¹) is adequate model for phenotypic mean.

V. mxGREML Implementation

Overview of mxGREML Feature

0. Condensed matrix slots.

1. GREML expectation & (incl. automated datastructuring).

2. GREML fitfunction.

Large Matrices and Memory Efficiency

- Demo script...
- Main idea—when your OpenMx script involves large matrices that contain no free parameters:
 - 1. Place

options (mxCondenseMatrixSlots=TRUE)
near beginning of script.

2. Always access slots of MxMatrix objects with \$, and never with @.

GREML Expectation

- Compatible with GREML fitfunction and ML fitfunction (but...).
- In OpenMx terms, requires raw continuous data...
- But, strictly speaking, does not require raw genotypic or phenotypic data--at minimum, you need:
 - 1 or more GRMs.
 - Phenotype scores with covariates partialled out.

GREML Expectation

- Compatible with GREML fitfunction and ML fitfunction (but...).
- In OpenMx terms, requires raw continuous data.
- User tells it:
 - Which algebra/matrix is V.
 - Arguments for data-structuring.
 - Whether & how to resize V at runtime due to missing data.

Imagine we have 3 participants and 3 phenotypes, and we're using the same covariate, *x*, for all 3 phenotypes...

blockByPheno=TRUE, staggerZeroes=TRUE

	$\begin{bmatrix} ALC_1 \end{bmatrix}$		1	x_1	0	0	0	0
	ALC_2		1	X_2	0	0	0	0
	ALC_3		1	<i>x</i> ₃	0	0	0	0
	CAN_1		0	0	1	X_1	0	0
y =	CAN_2	$\mathbf{X} =$	0	0	1	X_2	0	0
	CAN_3		0	0	1	<i>x</i> ₃	0	0
	NIC_1		0	0	0	0	1	x_1
	NIC_2		0	0	0	0	1	<i>x</i> ₂
	NIC_3		0	0	0	0	1	<i>x</i> ₃ _

GREML fitfunction

- Support for analytic derivatives (which we will not do).
- Otherwise, use SLSQP, which can calculate numeric fitfunction derivatives in parallel.

mxGREML Practical

- In the interest of time, we will fit a very simple monophenotype AE model...
- See also:

https://github.com/RMKirkpatrick/mxGREMLd emos.

Miscellaneous—stuff we didn't cover

- Be careful using GREML with any kind of ascertained sample.
- Use of >1 GRM (or other such "relatedness matrix").
- Computational shortcuts available for simple models (e.g., diagonalization).
- Technical aspects of computing GRMs.

Acknowledgements

- NIH grant DA026119
- Mike Neale (PI)
- Lindon Eaves
- Mike Hunter & Joshua Pritikin
- The rest of the OpenMx Development Team