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n Determine extent to which genetic similarity at 
SNPs is related to phenotypic similarity

n Multiple approaches to derive unbiased estimate of 
VA captured by measured (common) SNPs
n Regression (Haseman-Elston)
n Mixed effects models (GREML)
n Bayesian (e.g., Bayes-R)
n LD-score regression

Using genetic similarity at SNPs to 
estimate VA
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(the slope of the regression is 
an estimate of h2)

Regression estimates of h2

product of centered scores 
(here, z-scores)
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Regression estimates of h2
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(the slope of the regression is 
an estimate of h2)

COV(MZ)

Regression estimates of h2
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(the slope of the regression is 
an estimate of h2)

COV(DZ)

Regression estimates of h2
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(the slope of the regression is 
an estimate of h2)

2*[COV(MZ)-COV(DZ)]
= h2 = slope

Regression estimates of h2
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(the slope of the regression is 
an estimate of h2)

Regression estimates of h2
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(the slope of the regression is 
an estimate of h2)

Regression estimates of h2

10



(the slope of the regression is 
an estimate of h2)

Regression estimates of h2snp
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n If close relatives included (e.g., sibs), h2snp ≅ h2 estimated 
from a family-based method, because great influence of 
extreme pihats. Interpret h2snp as from these designs.

n If use ‘unrelateds’ (e.g., pihat < .05):
n h2snp = proportion of VP due to VA captured by SNPs. 

Upper bound % VP GWAS can detect
n Gives idea of the aggregate importance of CVs tagged by 

SNPs
n By not using relatives who also share environmental 

effects: (a) VA estimate 'uncontaminated' by VC & VNA; (b) does 
not rely on family study assumptions (e.g., r(MZ) > r(DZ) for only 
genetic reasons)

Interpreting h2 estimated from SNPs (h2
snp)
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Comparison of approaches for 
estimating h2snp

APPROACH 
(METHOD)

ADVANTAGES DISADVANTAGES

HE-regression Fast. Point estimates 
usually unbiased

Large SEs (~30% larger than 
REML). SE estimates biased. 
Limited model building.
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Comparison of approaches for 
estimating h2snp

APPROACH 
(METHOD)

ADVANTAGES DISADVANTAGES

HE-regression Fast. Point estimates 
usually unbiased

Large SEs (~30% larger than 
REML). SE estimates biased. 
Limited model building.

LD-score 
regression

Requires only summary 
statistics; mostly robust to 
stratification/relatedness

Does not give good estimates of 
variance due to rare CVs

GREML
(e.g., GCTA

Point estimates & SEs 
usually unbiased. Well 
maintained & easy to use

Limited model-building (e.g., no 
nonlinear constraints). 
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II.  Genomic Relatedness Matrices
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• However, there will be variance around these 
expectations. We will use this variance to get leverage
on estimating             .𝑉!,#$%



Genomic Relatedness Matrices

• OpenMx does not compute GRMs from raw 
genotype data—use GCTA, plink, etc.

• Going from genotypes to GRM can be more 
complicated—correction for possible uneven LD 
around trait-relevant loci¹.

• Possible to use >1 GRM in analysis—bin markers 
by, e.g.
– Chromosome.
– Allele frequency.
– Biological pathway.

¹Speed, D., et al.  (2013). AJHG,  91, 1011-1021.  doi: 10.1016/j.ajhg.2012.10.010. 20



III.  GREML           
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GREML Model 
(here, n=3, q=2 fixed effects, m=3 SNPs)

3
-5
2

1 -1.2
1         0.8
1 0.4

*=

design matrix 
of fixed effects 
(intercept & 1 
covariate)

fixed 
effects

observed 
y
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GREML Model 
(here, n=3, q=2 fixed effects, m=3 SNPs)
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GREML Model 
(here, n=3, q=2 fixed effects, m=3 SNPs)
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GREML Model 
(after removing fixed effects on y)

-.64
-2.58
3.21 = * +

design matrix for SNP effects =

SNP 
effect
s

residuals
residuals 
y
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GREML Model 
(after removing fixed effects on y)

-.64
-2.58
3.21 = * +

design matrix for SNP effects =

SNP 
effect
s

residuals
residuals 
y
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1.15   2.10   -.68
-.58    -.23     .03
1.15    -.23     .03

𝐲 − 𝐗𝛃 = 𝐖𝐮 + 𝐞

We aren’t interested in estimating each ui because m >> 
n usually, and because such individual estimates would 
be unreliable. Instead, estimate the variance of ui.



GREML Model 
(after removing fixed effects on y)

-.64
-2.58
3.21 = * +

design matrix for SNP effects =

SNP 
effect
s

residuals
residuals 
y
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1.15   2.10   -.68
-.58    -.23     .03
1.15    -.23     .03

𝐲 − 𝐗𝛃 = 𝐖𝐮 + 𝐞

We assume

and therefore  



GREML Model 
(we treat u as random and estimate       and thus       )

= +
Genomic Relationship Matrix (GRM) 
at measured SNPs. Each element = 

Identity 
matrix

observed n-by-n 
var/covar matrix 
of residuals y

.41  1.65  -2.05
1.65 6.66  -8.28
-2.05 -8.28 10.3

1 0    0
0     1    0
0     0    1
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GREML Model 
(we treat u as random and estimate       and thus       )

= +
.41  1.65  -2.05
1.65 6.66  -8.28
-2.05 -8.28 10.3

1 0    0
0     1    0
0     0    1
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1.02  -.01 -.02
-.01 1.00     .02
-.02 .02 .98

var 𝐲 | 𝐗 = 𝐖𝐖!𝜎"# + 𝐈𝜎$#

= 𝐖𝐖! 𝜎%#/𝑚 + 𝐈𝜎$#

= 𝐆𝜎%# + 𝐈𝜎$#

observed var/covar implied var/covar 

REML find values of      &      that maximizes the likelihood of the 
observed data. Intuitively, this makes the observed and implied 
var-covar matrices be as similar as possible.

𝜎%# 𝜎$#

𝜎%# 𝜎$#



• Remove individuals missing > ~.02
• Remove close relatives (e.g., --grm-cutoff 0.05)

– Correlation between pi-hats and shared environment 
can inflate h2

snp estimates

• Control for stratification (usually 5 or 10 PCs)
– Different prevalence rates (or ascertainments) between 

populations can show up as h2
snp

• Control for plates and other technical artifacts
– Be careful if cases & controls are not randomly placed on 

plates (can create upward bias in h2
snp)

Individual QC
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n Independent approach to estimating h2
n Different assumptions than family models. Increasingly tortuous 

reasoning to suggest traits aren’t heritable because 
methodological flaws 

n When using SNPs with same allele frequency distribution 
as CVs, provides unbiased estimate of h2

n When using common (array) SNPs to estimated 
relatedness, generally provides downwardly biased 
estimate of h2

n “Still missing” h2 (h2family – h2snp) provides insight into the 
importance of rare variants, non-additive, or biased h2family. 

n But not a panacea. Biases still exist. Issues need to be 
worked out (e.g., assortative mating, etc.). 

Big picture: Using SNPs to estimate h2
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III.  Combining GREML & SEM.
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GSEM1

• R package by Beate St Pourcain
(https://gitlab.gwdg.de/beate.stpourcain/gsem ).

• 1 dedicated function each for fitting CommPthwy, 
IndePthwy, & “Cholesky”.

• Specialized—fast & lean.
• Uses fast BLAS (e.g., ATLAS) for good 

performance.
• ML fit.
• Path-coefficient parameterization.

331St Pourcain et.al. (2018).  Biological Psychiatry 83: 598-606

https://gitlab.gwdg.de/beate.stpourcain/gsem


mxGREML

• OpenMx feature.

• Available in OpenMx
since v2.2 (June 2015).

• Still being developed.
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IV.  mxGREML Design

35



Overview of GREML in OpenMx

• All participants’ scores on all phenotypes get 
“stacked” into a single vector, y.

• Input dataset is in “vanilla” wide format--has 1 
row per individual:

y     x
[1,]  7.3119 -0.33
[2,]  0.5069 -0.64
[3,] -1.8111 -0.78
[4,] -8.7180 -0.12
[5,]  6.5651 -0.81
[6,] -2.2380 -0.14
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Overview of GREML in OpenMx

• All participants’ scores on all phenotypes get 
“stacked” into a single vector, y.

• “Definition variables” not allowed/needed.
– User specifies onto which covariates each 

phenotype is to be regressed.
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Overview of GREML in OpenMx

• All participants’ scores on all phenotypes get 
“stacked” into a single vector, y.

• “Definition variables” not allowed/needed.
• Ordinal phenotypes (incuding binary) must be 

treated as though continuous.
– (You correct the h² estimate for this fact later.)
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Overview of GREML in OpenMx

• All participants’ scores on all phenotypes get 
“stacked” into a single vector, y.

• “Definition variables” not allowed/needed.
• Ordinal phenotypes (incuding binary) must be 

treated as though continuous.
• User must specify model for y.

– Mean of y conditioned on covariates, which are 
columns of matrix X.

– var(y | X) is covariance matrix, V, which user must 
define.
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GREML: New, Big Idea

• In previous analyses we’ve done so far in 
OpenMx, the unit of analysis was the family 
(e.g., twin pair).

• But if we can use DNA to determine the weak 
genetic resemblance among classically 
unrelated individuals, we can treat the entire 
sample as one large, extended “family”.

• Thus, in GREML, the whole sample is one case, 
and the sole unit of analysis.
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GREML in OpenMx: assumptions

1. Conditional on covariates X, phenotype 
vector y is a single draw from a multivariate-
normal distribution having (in general) dense 
covariance matrix, V.

2. Random effects are normally distributed.
3. GLS regression (using V-1) is adequate model 

for phenotypic mean.
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V.  mxGREML Implementation
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Overview of mxGREML Feature

0.  Condensed matrix slots.

1.  GREML expectation & (incl. automated data-
structuring). 

2.  GREML fitfunction.
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Large Matrices and Memory Efficiency

• Demo script…
• Main idea—when your OpenMx script involves 

large matrices that contain no free parameters:
1. Place 

options(mxCondenseMatrixSlots=TRUE)
near beginning of script.

2. Always access slots of MxMatrix objects with $, and 
never with @.

44



GREML Expectation

• Compatible with GREML fitfunction and ML 
fitfunction (but…).

• In OpenMx terms, requires raw continuous 
data...

• But, strictly speaking, does not require raw 
genotypic or phenotypic data--at minimum, 
you need:
– 1 or more GRMs.
– Phenotype scores with covariates partialled out.
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GREML Expectation

• Compatible with GREML fitfunction and ML 
fitfunction (but…).

• In OpenMx terms, requires raw continuous 
data.

• User tells it:
– Which algebra/matrix is V.
– Arguments for data-structuring.
– Whether & how to resize V at runtime due to 

missing data.
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Imagine we have 3 participants and 3 phenotypes, and we’re using 
the same covariate, x, for all 3 phenotypes…

blockByPheno=TRUE, staggerZeroes=TRUE
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GREML fitfunction

• Support for analytic derivatives (which we will 
not do).

• Otherwise, use SLSQP, which can calculate 
numeric fitfunction derivatives in parallel.
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mxGREML Practical

• In the interest of time, we will fit a very simple 
monophenotype AE model…

• See also: 
https://github.com/RMKirkpatrick/mxGREMLd
emos .
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https://github.com/RMKirkpatrick/mxGREMLdemos


Miscellaneous—stuff we didn’t cover

• Be careful using GREML with any kind of 
ascertained sample.

• Use of >1 GRM (or other such “relatedness 
matrix”).

• Computational shortcuts available for simple 
models (e.g., diagonalization).

• Technical aspects of computing GRMs.
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