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Using genetic similarity at SNPs to
estimate V,

Determine extent to which genetic similarity at
SNPs 1s related to phenotypic similarity

Multiple approaches to derive unbiased estimate of
V, captured by measured (common) SNPs

m  Regression (Haseman-Elston)

m  Mixed effects models (GREML)
m  Bayesian (e.g., Bayes-R)
0

LD-score regression



Regression estimates of h?
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Regression estimates of h?
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Interpreting h? estimated from SNPs (h%g,,)

m If close relatives included (e.g., sibs), h%;,, = h? estimated

from a family-based method, because great influence of
extreme pihats. Interpret h%;,; as from these designs.

m [f use ‘unrelateds’ (e.g., pihat < .05):

m h? . = proportion of Vj due to V, captured by SNPs.
Upper bound % Vp, GWAS can detect

m Gives idea of the aggregate importance of CVs tagged by
SNPs

m By not using relatives who also share environmental

effects: (a) V, estimate 'uncontaminated' by Ve & Vy,. (b) does
not rely on family study assumptions (e.g., r(MZ) > r(DZ) for only
genetic reasons)



Comparison of approaches for
estimating h?,

APPROACH ADVANTAGES DISADVANTAGES
(METHOD)
HE-regression Fast. Point estimates Large SEs (~30% larger than
usually unbiased REML). SE estimates biased.
Limited model building.
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Comparison of approaches for
estimating h?,

APPROACH
(METHOD)

ADVANTAGES

DISADVANTAGES

HE-regression

Fast. Point estimates
usually unbiased

Large SEs (~30% larger than
REML). SE estimates biased.
Limited model building.

LD-score &=
regression

Requires only summary
statistics; mostly robust to

. -’f”; stratification/relatedness

Does not give good estimates of
variance due to rare CVs

Point estimates & SEs
usually unbiased. Well
maintained & easy to use

Limited model-building (e.g., no
nonlinear constraints).
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II. Genomic Relatedness Matrices



Genomic Relatedness Matrices

Consider S, an Nxm matrix of genotypes expressed as
reference-allele counts, where N is the number of
participants and m is the number of markers (SNPs, say):
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N O N R




Genomic Relatedness Matrices

Let W denote S, after its columns have been standardized to
have zero mean and unit variance. That is, the ijth element
of Wis

Sij = 28;

\/2391'(1 - 7))

Wij =

where p; is the reference-allele frequency of marker j.



Genomic Relatedness Matrices

The GRM is then

1
G=—WWT
m

and thus is an NxN matrix of genomic-relatedness coefficients.
These coefficients are “allele-frequency-weighted” I1BS
coefficients.

In a random sample from a homogenous, randomly-mating
population:

e The diagonal elements are expected to equal 1.

o The off-diagonals are expected to equal zero.

* However, there will be variance around these
expectations. We will use this variance to get leverage
on estimating Vs syp.



Genomic Relatedness Matrices

* OpenMx does not compute GRMs from raw
genotype data—use GCTA, plink, etc.

* Going from genotypes to GRM can be more
complicated—correction for possible uneven LD
around trait-relevant loci'.

e Possible to use >1 GRM in analysis—bin markers
by, e.g.
— Chromosome.
— Allele frequency.
— Biological pathway.

'Speed, D., et al. (2013). AJHG, 91,1011-1021. doi: 10.1016/j.ajhg.2012.10.010.



I1l. GREML



GREML Model

(here, n=3, g=2 fixed effects, m=3 SNPs)
y=Xp+Wu+e
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covariate)



GREML Model

(here, n=3, g=2 fixed effects, m=3 SNPs)
y=Xp+Wu+e
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observed design matrix
y of fixed effects

(intercept & 1
covariate)

GREML Model

(here, n=3, g=2 fixed effects, m=3 SNPs)
y=Xp+Wu+e

//\nxm\\

*

it
B,

fixed
effects

+

1.15 2.10 -.68
-58 -23 .03
1.15 -23 .03

design matrix for SNP effects =

X — 2p,
\/zpi(l - D;)

*

i e
U, 1
o+ A
U, €,
U, €,

SNP residuals
effects
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GREML Model

(after removing fixed effects on y)
y—XB=Wu-+e

A

64 1.15 2.10 -.68 i e,
-2.58 = |-.58 -.23 .03 * Al + | A
3.21 1.15 -23 .03 U, €,
i e
residuals = > :
y X, — 2pl SNP residuals

\/217,- (1 — pi) :ffect
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GREML Model

(after removing fixed effects on y)
y—XB=Wu-+e

A

64 1.15 2.10 -.68 i e,
258 | =|-58 -23 .03 i G A
3.21 1.15 -23 .03 U, €,
i e
residuals = > :
y X, — 2pl SNP residuals
effect
V2p,(-p) ;

We aren't interested in estimating each u; because m >>
n usually, and because such individual estimates would
be unreliable. Instead, estimate the variance of u..




GREML Model

(after removing fixed effects on y)
y—XB=Wu-+e

A

-.64 1.15 2.10 -.68 * U, €,
-2.58 = |-.58 -23 .03 A | A
3.21 1.15 -23 .03 U, €,
U e
residuals ~ > :
y X, — 2pl SNP residuals
effect
J2n.(1—p)) .

We assume u ~ N(0,0'f)

m o 2
. lo-u —mo-u 27

=

and therefore O'i =



GREML Model

(we treat u as random and estimate O'f and thus O‘i )
var(y | X) = WW'g?2 + 1o/
= WW7 (g% /m) + Io?

_ 2

= Gof + lof
41 1.65 -2.05 1.02 -.01 -.02 2 1 0 O 2
1.656.66 -8.28 = |-01100 .02 |04 + |0 1 0 |[Og
-2.05-8.28 10.3 -02 .02 .38 0 0 1
observed n-by-n Genomic Relationship Matrix (GRM) Identity
var/covar matrix at measured SNPs. Each element = matrix

of residuals y

A 1 (-x,“ _2pi)(-xi _zpi)
= _Z,- J k
m zpi(l—pi)
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GREML Model

(we treat u as random and estlmate O' and thus O‘A )

var(y | X) = 2+ Iof?

— T 2

= WW (O’A /m) + lo}

= Go; + lo?
41 1.65 -2.05 1.02 -.01 52 1 00 )
1.656.66 -8.28 = |-011.00 02 Oy + |0 10 |[0Op
-2.05-8.28 10.3 ~02 .02 .98 0 01

)\ }
! !

observed var/covar

REML find values of O}%& Uezthat maximizes the likelihood of the
observed data. Intuitively, this makes the observed and implied

var-covar matrices be as similar as possible.

implied var/covar



Individual QC

Remove individuals missing > ~.02

Remove close relatives (e.g., --grm-cutoff 0.05)

— Correlation between pi-hats and shared environment
can inflate h% , estimates

Control for stratification (usually 5 or 10 PCs)

— Different prevalence rates (or ascertainments) between
populations can show up as h% |

Control for plates and other technical artifacts

— Be careful if cases & controls are not randomly placed on
plates (can create upward bias in h% )



Big picture: Using SNPs to estimate h?

m Independent approach to estimating h?

m  Different assumptions than family models. Increasingly tortuous
reasoning to suggest traits aren’t heritable because
methodological flaws

m When using SNPs with same allele frequency distribution
as CVs, provides unbiased estimate of h?

m When using common (array) SNPs to estimated
relatedness, generally provides downwardly biased
estimate of h?

= “Still missing” h? (h%g,,;;, — h%,,) provides insight into the
importance of rare variants, non-additive, or biased h2famﬂy.

m  But not a panacea. Biases still exist. Issues need to be
worked out (e.g., assortative mating, etc.).



I1l. Combining GREML & SEM.



GSEM!

* R package by Beate St Pourcain
(https://gitlab.gwdg.de/beate.stpourcain/gsem ).

* 1 dedicated function each for fitting CommPthwy,
IndePthwy, & “Cholesky”.

* Specialized—fast & lean.

* Uses fast BLAS (e.g., ATLAS) for good
performance.

e ML fit.
e Path-coefficient parameterization.

1St Pourcain et.al. (2018). Biological Psychiatry 83: 598-606 33


https://gitlab.gwdg.de/beate.stpourcain/gsem

MxGREML

 OpenMx feature.

e Available in OpenMx
since v2.2 (June 2015).

» Still being developed.
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IV. mxGREML Design



Overview of GREML in OpenMx

e All participants’ scores on all phenotypes get
“stacked” into a single vector, vy.

* |[nput dataset is in “vanilla” wide format--has 1
row per individual:

)/ X
'1,] 7.3119 -0.33
'2,] ©.5069 -0.64
'3,] -1.8111 -0.78
4,] -8.7180 -0.12
'5,] 6.5651 -0.81
6,] -2.2380 -0.14




Overview of GREML in OpenMx

e “Definition variables” not allowed/needed.

— User specifies onto which covariates each
phenotype is to be regressed.



Overview of GREML in OpenMx

e Ordinal phenotypes (incuding binary) must be
treated as though continuous.

— (You correct the h? estimate for this fact later.)



Overview of GREML in OpenMx

e User must specify model fory.

— Mean of y conditioned on covariates, which are
columns of matrix X.

— var(y | X) is covariance matrix, V, which user must
define.



GREML: New, Big Idea

* |n previous analyses we’ve done so far in
OpenMx, the unit of analysis was the family

(e.g., twin pair).
* But if we can use DNA to determine the weak
genetic resemblance among classically

unrelated individuals, we can treat the entire
sample as one large, extended “family”.

* Thus, in GREML, the whole sample is one case,
and the sole unit of analysis.



GREML in OpenMx: assumptions

1. Conditional on covariates X, phenotype
vector y is a single draw from a multivariate-
normal distribution having (in general) dense
covariance matrix, V.

2. Random effects are normally distributed.

3. GLS regression (using V') is adequate model
for phenotypic mean.



V. mxGREML Implementation



Overview of mxGREML Feature

. Condensed matrix slots.

. GREML expectation & (incl. automated data-
structuring).

. GREML fitfunction.



Large Matrices and Memory Efficiency

* Demo script...

* Main idea—when your OpenMXx script involves
large matrices that contain no free parameters:
1. Place
options (mxCondenseMatrixS1lots=TRUE)
near beginning of script.

2. Always access slots of MxMatrix objects with $, and
never with @.



GREML Expectation

 Compatible with GREML fitfunction and ML
fitfunction (but...).

* In OpenMx terms, requires raw continuous
data...

e But, strictly speaking, does not require raw
genotypic or phenotypic data--at minimum,

you heed:
— 1 or more GRM:s.
— Phenotype scores with covariates partialled out.



GREML Expectation

* User tells it:
— Which algebra/matrix is V.
— Arguments for data-structuring.

— Whether & how to resize V at runtime due to
missing data.



Imagine we have 3 participants and 3 phenotypes, and we’re using
the same covariate, x, for all 3 phenotypes...

blockByPheno=TRUE, staggerZeroes=TRUE

CALC, 1 x, 0 0 0 O
ALC, 1l x, 0 0 0 O
ALC, I x, 0 0 0 O
CAN, 0 0 1L x 0 O
y =| CAN, X=[0 0 x, 0 0
CAN, 0 O x;, 0 0
NIC, 0 0 0 0 1 x
NIG, 0 0 0 0 1 x,
| NG 00 0 0 1 x




GREML fitfunction

e Support for analytic derivatives (which we will
not do).

e Otherwise, use SLSQP, which can calculate
numeric fitfunction derivatives in parallel.



MXGREML Practical

* |[n the interest of time, we will fit a very simple
monophenotype AE model...

e See also:
https://github.com/RMKirkpatrick/mxGREMLd

emaos .



https://github.com/RMKirkpatrick/mxGREMLdemos

Miscellaneous—stuff we didn’t cover

Be careful using GREML with any kind of
ascertained sample.

Use of >1 GRM (or other such “relatedness
matrix”).

Computational shortcuts available for simple
models (e.g., diagonalization).

Technical aspects of computing GRMs.



Acknowledgements

NIH grant DA026119

Mike Neale (PI)

Lindon Eaves

Mike Hunter & Joshua Pritikin

The rest of the OpenMx Development Team



