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Many-Level Multilevel Structural Equation Modeling:
An Efficient Evaluation Strategy
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Structural equation models are increasingly used for clustered or multilevel data in cases where
mixed regression is too inflexible. However, when there aremany levels of nesting, thesemodels can
become difficult to estimate. We introduce a novel evaluation strategy, Rampart, that applies an
orthogonal rotation to the parts of a model that conform to commonly met requirements. This
rotation dramatically simplifies fit evaluation in a way that becomes more potent as the size of the
data set increases. We validate and evaluate the implementation using a 3-level latent regression
simulation study. Then we analyze data from a statewide child behavioral health measure adminis-
tered by the Oklahoma Department of Human Services. We demonstrate the efficiency of Rampart
compared to other similar software using a latent factor model with a 5-level decomposition of latent
variance. Rampart is implemented in OpenMx, a free and open source software package.

Keywords: big data, hierarchical linear models, multilevel models, open-source software,
relational database theory

As hypotheses become more elaborate, data need to be
collected on more than one level. For example, a hypothesis
about the effect of a teacher on his or her students cannot be
tested without collecting data on both. These data are multi-
level because there is not a one-to-one relationship between
students and teacher. Because there are fewer teachers than
students, teachers are regarded as the upper level and stu-
dents as the lower level (see Figure 1).

The theoretical basis for maximum likelihood (ML) analysis
of two-level data is well-researched and many software imple-
mentations are available (du Toit & du Toit, 2008; Lee & Poon,
1998; Muthén, 1994). However, as the number of levels
increased, existingmethods experience difficulty. Here we intro-
duce Rampart (Pritikin, 2016), an efficient evaluation strategy

for many-level multilevel structural equation models. We start
with a brief review of relational database theory and describe
why the naïve approach to ML evaluation exhibits poor perfor-
mance. Next, the similarities and differences between condi-
tional probability and the relational join operator are clarified.
Rampart’s OpenMx model specification is introduced by com-
parison with lme4’s formula model specification language.
Details of the Rampart algorithm are given. To validate the
implementation, we include a three-level simulation study.
Then we analyze data from a statewide child behavioral health
measure administered by the Oklahoma Department of Human
Services. Performance on a three-level model is compared
among OpenMx, Mplus, lme4, and nlme. Finally, we
exhibit a novel latent factor model with a five-level decomposi-
tion of latent variance. We are unaware of other software,
besides OpenMx, that can efficiently estimate this model.

RELATIONAL DATABASE THEORY

Although relational databases have been in wide use since at
least the 1980s, it seems necessary to review the rudiments of
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relational theory for the statistical community as statistical
models are only recently gaining the capability to model com-
plex data. Data with complex structure are often stored in
relational databases. In preparation for storage, data are typi-
cally normalized into first normal form, eliminating redundant
or repeating data. Primary keys are assigned to uniquely iden-
tify entities. Foreign keys refer to primary keys, allowing
recovery of the relationships between the data tables by the
join of primary and foreign keys (e.g., Maier, 1983).

Formally, the relational join operator can be defined as
follows. Let R and S be tables (or data frames) that contain
rows. A row is a single unit of data, like the data for one
teacher or one student. Following standard relational data-
base theory, the join operator ( ./) is defined as

R ./ðFÞ S; r [ s ^ r 2 R ^ s 2 S ^ Fðr [ sÞf g (1)

where F is a boolean valued function. Without loss of
generality, here F tests whether primary and foreign keys
match. We omit F and write ./ðkÞ where k is the name of
the key. An example join of employee and department tables
is given in Figure 2. The result of the join of two tables can
itself be joined against another table, allowing an unlimited
number of tables to be joined together.

Two more terms are useful to describe data structure,
nested and crossed. The distinction between nested and
crossed data is useful because nested data are easier to
statistically evaluate than crossed data. Data are nested
when each lower level unit is associated with exactly one
upper level unit and there are only associations between
adjacent levels. When data are not nested then they are
crossed. One set of crossed associations need not be
organized in relation to other crossed associations.
Crossed associations can partition data in arbitrary ways.
For example, suppose a school reassigns some of its
students to different classrooms halfway through the
year. If we study the whole year, some students will
have single teachers but some will have two or more
teachers. Students with more than one teacher are
regarded as crossed.

A model of these data should account for the multilevel
structure and permit multivariate covariance modeling. Two
popular approaches, univariate multilevel regression and
structural equation modeling (SEM) each offer one but not
both of these capabilities. Multilevel regression is typically
limited to a single response variable, whereas SEM is often
limited to at most three-level models. Some effort has been
expended to combine the flexibility of both approaches
(Goldstein & McDonald, 1988; Krull & MacKinnon,
2001; McDonald, 1993; Mehta & Neale, 2005, Muthén,
1997; Raudenbush & Sampson, 1999). However, these
early attempts have not seen wide use because model eva-
luation time rapidly becomes intractable as the number of
levels increases.

A CLOSER LOOK AT MULTILEVEL COVARIANCE

Suppose the focus of our analysis is students. We want to
estimate a few constant regression coefficients to learn how
student performance depends on socioeconomic status and

FIGURE 1 Students nested within teachers. For example, Noah is Jane’s
student and Jacob is Joe’s student. There is a one-to-many relationship
between teachers and students. A different model would be needed to
accommodate students who spent some proportion of their time with each
teacher.

FIGURE 2 An employee table (relation or data frame) and manager table are given (upper tables). The employee and manager tables are joined by
department (lower table). For example, observe the first Employee, Harry, is in the Sales department. The manager of the Sales department is George.
Therefore, the first line of the join table is Harry, Sales, and George.
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some intervention. We specify our relationships in terms of
latent factors because we cannot measure the constructs of
interest directly. We incorporate varying (a.k.a. random;
Gelman, 2005) coefficients in the model to properly account
for teacher effects within a school, school effects within a
district, and district effects within a state. If we proceed along
these lines, the independent units of analysis are the highest
level units, perhaps entire states, because within states we
allow that everybody might have some effect on everybody
else.

It might be helpful to sketch out more concretely the
structure of our hypothetical multilevel covariance matrix.
To keep things simple, assume that the data are nested (not
crossed). We introduce the direct sum operator,

B1 �B2 ¼ B1 0
0 B2

� �

�k
i¼1

Bi ¼

B1 0 � � � 0

0 B2
..
.

..

. . .
.

0
0 � � � 0 Bk

0
BBB@

1
CCCA

to conveniently construct these matrices. Suppose we build
a covariance model S for a particular student. A classroom
of s students will have covariance matrix

T ¼ T1;1 T1;2

T2;1 �s
i¼1 Si

� �
: (2)

That is, each student is independent of other students, T1;1 is
square, and T1;2 (and T2;1) are rectangular. The quadrants
labeled with T represent the classroom model or teacher
relationships with each student. This pattern continues as we
move up levels. A school of t classrooms will have covar-
iance matrix

H ¼ H1;1 H1;2

H2;1 �t
i¼1 T i

� �
(3)

and a district of h schools will have covariance matrix

D ¼ D1;1 D1;2

D2;1 �h
i¼1 H i

� �
: (4)

Suppose we have data y from many school districts. Let
parameter vector θ; μ;Σf g with μ as a K-dimensional mean
vector (first moment) and Σ as a K � K covariance matrix
(second moment). With some regularity assumptions, the
log Gaussian density can be written as

,ðyjθÞ ¼
X
i

� 1

2
K logð2πÞ þ logð Σj jÞ½ � � 1

2
ðμ� yiÞTΣ�1ðμ� yiÞ

� �
:

(5)

The bottleneck in the evaluation of Equation 5 is the matrix
inverse of the model-implied covariance matrix Σ. Gauss-
Jordan matrix inverse requires Oðn3Þ operations and the
covariance matrix can quickly become very large. For
example, if we only have three outcomes of interest at the
student level and one variable at all the other levels then the
dimension of D still becomes large even with a modest
number of units at each level. If there are 10 students per
teacher, five teachers per school, and six schools per district,
then S is 3� 3, T is 31� 31, H is 156� 156, and D is
937� 937. Although this matrix is somewhat sparse, the
highest level unit can relate to all the lowest level units,
leaving meager opportunity for truly independent blocks. To
fit multilevel models quickly, it is essential to analyze the
structure of this matrix and devise some way to reduce its
dimension.

MODEL SPECIFICATION

In OpenMx, the universal building block of statistical models
is the MxMatrix. An MxMatrix is an object that contains
five separate R matrix layers, all of the same size: The values
matrix holds the starting (or estimated) values and is of type
double. The labels matrix is of type character and holds the
name of each element of the matrix. Matrix elements that have
the same name are constrained to be equal to one another. The
freematrix is of type logical and if an element is TRUE, then
that element is considered a free parameter during estimation.
The lbound and ubound matrices are of type double and
contain lower and upper bounds for the free parameters (Boker
et al., 2011).

In OpenMx, joins were facilitated by the addition of
joinKey and joinModel to the MxMatrix object and
the addition of primaryKey to mxData. MxMatrix
objects are always contained in an MxModel. We call this
model the MxMatrix’s home model. When a join is per-
formed, the specified joinModel is joined against the
home model using the joinKey column in the home
model to match against the primaryKey column in the
joinModel. For mxPath, a more friendly interface for
specifying MxMatrix objects, the join model is named
in the from parameter (i.e., from=‘joinModel.col-
umn’). An example might better illustrate how this works.

A Mixed Model Translated to OpenMx

Some popular R packages that implement the mixed model
(e.g., Bates, Mächler, Bolker, & Walker, 2015) follow a
model specification syntax that evolved from the notation

RELATIONAL SEM 3



for conditional probability instead of the notation used by
relational databases. Formula notation (Wilkinson &
Rogers, 1973) for specifying a regression equation was
augmented with a vertical bar clause. For example,

lmerðReaction,Daysþ DaysjSubjectð Þ;sleepstudyÞ

The left part of the regression equation, up to the
parentheses enclosing the vertical bar, follows standard
formula notation. The vertical bar clause is used to spe-
cify varying coefficients. The part after the vertical bar
(Subject) names a factor (a column in the data frame)
that partitions the data set. The formula before the vertical
bar (Days) is joined to the base model according to this
factor. Since some researchers with statistical training are
familiar with the vertical bar notation but not with rela-
tional databases, it is worth emphasizing a difference
between the two. The join operator (Equation 1) is com-
mutative. That is,

student ./ðstudent:teacherIDÞ teacher (6)

teacher ./ðstudent:teacherIDÞ student (7)

are equivalent. In contrast, P(Noah|Jane) and P(Jane|
Noah) are almost certainly different quantities (refer to
Figure 1). The way the vertical bar is used in formula
notation involves both ideas. The formula inside the par-
entheses on the left is conditional on the partitioning factor
given on the right. Data must have already been joined into
a single table, but the partitioning factor could also be
regarded as the key on which the data were joined.

Since the formula-style specification is popular, it is
hoped that the translation from it to an equivalent
OpenMx model will be an easy way for readers to quickly
grasp OpenMx model specification. While specification of
OpenMx models is more laborious than formula notation,
OpenMx makes assumptions explicit, and permits multi-
variate and latent variable models. We use the RAM para-
meterization (McArdle, 2005; McArdle & McDonald,
1984). The RAM model consists of 4 matrices, traditionally
called A (asymmetric), S (symmetric), F (filter), and M
(mean). The RAM matrices are related to the model’s
Gaussian distribution by,

μ ¼ FðI � AÞ�1M (8)

Σ ¼ FðI � AÞ�1SðI � AÞ�TFT : (9)

We create an mxModel to contain the per- Subject
model (line 3). Traditionally, the mixed model does not
permit response observations in upper levels. Hence,
upper levels in this example only contain latent variables
(line 5). The Subject model’s data contains no observa-
tions, only primary keys (line 6). Conceptually, we would
like to allow a per-Subject coefficient for intercept
and slope. It may be surprising that this is accom-
plished by estimating the variance of those varying coef-
ficients and not the coefficients themselves (line 8). We
estimate the covariance between varying intercept
and slope (line 10).

We include the upper level model as a submodel of the
base model (Line 13). Figure 3b pictorially describes this
nesting structure for multilevel models. OpenMx treats this
as equivalent to a more parallel model structure as depicted
in Figure 3a. The constant coefficients are specified starting
at Line 16. The predictor Days is included in the model as a
definition variable (a value provided by the analyst) to
function as a zero variance regression (Line 18). This war-
rants a brief digression.

In SEM, it is customary to assume a parametric distri-
bution for both predictor and response variables. In con-
trast, regression models only assume a parametric
distribution for the residuals; no distributional assumption
is made about predictors. There are pros and cons to both
approaches.
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A major advantage of assuming a distribution for pre-
dictors is that there is accounting for measurement error
(Westfall & Yarkoni, 2016) and missing data are less of a
problem (e.g., Enders & Bandalos, 2001). However, when
predictors are not missing and have no measurement error
then modeling predictors adds extra parameters for little
gain. For example, a script from the OpenMx test suite,
UnivariateRandominterceptWide.R, imple-
ments a single predictor univariate random intercept
model. The standard regression approach estimates four
parameters (residual variance, intercept, constant regres-
sion coefficient, and varying intercept variance), but
UnivariateRandominterceptWide.R also esti-
mates the mean and variance of predictor X, adding two
parameters for a total of six. The parameters that are
common among these two models have matching esti-
mates, so why estimate an extra two parameters unless
they are of substantive interest? For optimal performance,
the analyst should think carefully about whether a pre-
dictor needs to be parametrically modeled or can be
included in the model as a zero variance regression.

The connections between the per-Subject and base mod-
els are set up at Line 21. An executable version of this code
is available in the Appendix. Although the OpenMx is not
as succinct as lmer, OpenMx model could easily be
extended to incorporate multivariate data such as digit
span in addition to reaction time. Another lmer translation
example using the Orthodont data set is available in the

OpenMx test suite. All mixed models can be similarly
translated into OpenMx models. Each vertical bar clause is
implemented with a latent mxModel to specify extra var-
iance to account for the varying coefficients. These latent
OpenMx models are joined to the corresponding constant
coefficients in the base model using fixed loadings (typically
1.0).

Upper to lower level transition matrices are of type
MxMatrix and can take advantage of the usual OpenMx
capabilities. A transition matrix can contain free parameters,
definition variables, or populated values using square
bracket notation. Or for maximum flexibility: transition
matrices can be specified as the result of an mxAlgebra,
an arbitrary algebraic expression.

EFFICIENT EVALUATION

We trace through the steps involved in our novel evaluation
strategy for nested multilevel structure. We review how the
Gaussian distribution is invariant to orthogonal rotation, show
how to use the QR decomposition algorithm to create a specific
axis rotation, and introduce the novel Rampart rotation to dra-
matically improve independence in multilevel covariance
matrices. Rampart performance benefits and limitations are
described. To validate the implementation, we include a simula-
tion study.

Topological Sort

Once a relational SEM is specified, each row must be
assigned to a location in a model-wide covariance matrix
(Goldstein & McDonald, 1988). There are many possible
assignments of rows to covariance locations. One type of
ordering that offers a computational advantage is a topo-
logical sort. We can regard a relational SEM as a directed
graph. If we add the restriction that cycles are not
allowed, then we can sort the graph by dependency.
Units without dependency on other units come first and
then dependent units. For example, refer to Figure 4. This
ordering allows us to compute the model expected mean
unit-wise instead of model-wise.

Gaussian Density Rotation

An intuitive argument is given in Figure 5. Here we work
through the equations to show exactly how an orthogonal rota-
tionQ cancels out of theGaussian likelihood. The –2 log density
of a single observation x from the K-dimensional Gaussian
distribution is

K logð2πÞ þ logð Σj jÞ þ ðμ� xÞTΣ�1ðμ� xÞ: (10)

FIGURE 3 Two equivalent model specifications for students nested
within teachers nested within schools. Each rectangle corresponds to an
mxModel. An early prototype used organization (a) to specify nested
multilevel models. We finalized on (b) for mxPath–specified models.
Scheme (b) might seems backward, but it offers the advantage that each
submodel is also a valid model. This is because, for strictly nested data,
outer models cannot depend on inner models. For example, a school cannot
depend on a teacher and a teacher cannot depend on a student. This
structure is only required for mxPath–specified models. No particulat
model nesting is required for mxMatrix–specified models.

RELATIONAL SEM 5



Suppose we want to apply an orthogonal rotation Q to x.
The rotated density is,

K logð2πÞ þ logð QΣQT
�� ��Þ þ Qðμ� xÞð ÞTQΣ�1QT Qðμ� xÞð Þ:

(11)

We know that QΣQT
�� �� is equal to Σj j because QΣQT

�� �� =
Qj j Σj j QT

�� �� = Qj j QT
�� �� Σj j = 1 Σj j. For the term on the right,

we can expand the transpose, regroup, and use the fact that
Q�1 ¼ QT :

Qðμ� xÞð ÞTQΣ�1QT Qðμ� xÞð Þ (12)

ðμ� xÞTQT
� �

QΣ�1QT Qðμ� xÞð Þ (13)

ðμ� xÞT ðQTQÞΣ�1ðQTQÞðμ� xÞ (14)

ðμ� xÞT IΣ�1Iðμ� xÞ (15)

ðμ� xÞTΣ�1ðμ� xÞ: (16)

QR Decomposition

QR decomposition is a versatile procedure that can be used to
accomplish a variety of goals. QR decomposition expresses a
matrix A as the product of orthogonal matrix Q and upper
triangular matrix R. The matrix A must be m-by-n with
m � n. Here we describe how to use the QR decomposition
algorithm to create an orthogonal axis rotation that we can plug
into the Gaussian density (Equation 11). Hence, A will always
be m-by-m (square) and full rank. Let x be an arbitrary column
vector ofA of length αj j. One Householder reflection consists of

u ¼ xþ signðx1Þα 1; 0; . . . ; 0½ �T (17)

v ¼ u
uj jj j (18)

Q ¼ I � 2vvT : (19)

In Equation 17, we choose the sign to increase the magnitude
of the first entry of x. This ensures the length of u is at least α.
Vector u can be regarded as the average of the direction of x
and the target axis. Vector v is the reflection pivot. The

FIGURE 5 Observations (represented by points) in a Gaussian density.
The likelihood of these points is unaffected by axis rotation. For example,
the axis could be rotated to the tilted dashed lines without affecting the
likelihood.

FIGURE 4 Topological sort is accomplished by depth-first search (Trajan, 1976) in the opposite direction of the arrows starting from each of the lowest level
units (students in this example). Units are assigned a location (the number in the upper left) as soon as all the units that they depend on are assigned a location.
This algorithm is linear in time with the number of units.
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obtained Q will zero out all except the first row of x such that

QA ¼
α1 ? . . . ?
0
..
.

A0

0

2
664

3
775: (20)

The process is repeated on A0 until QA is upper triangular,
generating a series of rotations Q1, Q2, Qm.

To illustrate the process, let us perform a rotation to an
arbitrary basis,

A ¼
2:28
1:50 1:01
1:31 2:28 0:86

2
4

3
5: (21)

We place the basis vectors in the lower triangle because the
QR algorithm is blind to the upper triangle. The first reflec-
tion obtains

x1 ¼
2:28
1:50
1:31

2
4

3
5 (22)

α1 ¼ x1j jj j ¼ 3:03 (23)

u ¼ x1 þ signðx1;1Þα1 1; 0; . . . ; 0½ �T ¼
5:31
1:50
1:31

2
4

3
5 (24)

v ¼ u
uj jj j ¼

0:94
0:26
0:23

2
4

3
5 (25)

Q1 ¼ I � 2vvT ¼
�0:75 �0:50 �0:43
�0:50 0:86 �0:12
�0:43 �0:12 0:89

2
4

3
5: (26)

As expected, Q1 zeros all but the first entry of the first
column of A:

Q1A ¼
�3:03 �1:49 �0:37

0:59 �0:11
1:91 0:77

2
4

3
5:

We continue with the second reflection:

x2 ¼ 0:59
1:91

� �
(27)

α2 ¼ x2j jj j ¼ 2 (28)

u ¼ x2 þ signðx2;1Þα2 1; 0; . . . ; 0½ �T ¼ 2:59
1:91

� �
(29)

v ¼ u
uj jj j ¼

0:80
0:59

� �
(30)

Q2 ¼ I � 2vvT ¼
1:00

�0:29 �0:96
�0:96 0:29

2
4

3
5: (31)

Q2 is 2-by-2, but we fill it with the identity matrix to
expand it back to m-by-m. A is fully decomposed. We
obtain

Q ¼ Q2Q1 ¼
�0:75 �0:50 �0:43
0:56 �0:14 �0:82
0:35 �0:86 0:38

2
4

3
5 (32)

R ¼ Q2Q1A ¼
�3:03 �1:49 �0:37

�2:00 �0:70
0:33

2
4

3
5: (33)

However, this Q is the inverse of what we want. We want
the rotation from the identity axis to the axis described by A.
Hence, the desired rotation is QT . With a deeper under-
standing of axis rotation, we have the tools we need to
describe the Rampart rotation.

Rampart Rotation

Let us take a close look at the model in Figure 6. This
model is identified with only two teachers. With only eight
observations, the matrices are compact enough to investi-
gate the full model. First we examine the model-implied
covariance (Equation 9). Our model has no latent variables
so the F matrix is set to the identity. Parameters are
assigned arbitrary values.

RELATIONAL SEM 7



A ¼ 1:07
1:07
1:07

2
664

3
775 (34)

S ¼
0:29

0:70
0:70

0:70

2
664

3
775 (35)

Σ ¼ ðI � AÞ�1SðI � AÞ�T

¼
0:29 0:31 0:31 0:31
0:31 1:04 0:33 0:33
0:31 0:33 1:04 0:33
0:31 0:33 0:33 1:04

2
664

3
775 (36)

We obtain a 4-by-4 covariance matrix instead of 8-by-8
because both sets of teacher and students have the same
model. However, this efficiency gain of grouping by inde-
pendence does not help much if we add more students. A
classroom with a few hundred students with many observa-
tions per student requires a large covariance matrix. Observe
that Σ follows the structure described in Equation 2: 0.29
corresponds to T1;1, 0.31 to T1;2 and T2;1, 1.04 to Si, and the
rest of the entries are covariances between students induced
by having the same teacher.

Observe that λ, the regression from teacher to student, is
a single parameter that is some function of the mean of the
students. This is true regardless of the number of students.
Instead of dispersing the information about the mean across
all the students, suppose we could rotate the data such that
the mean was already computed and readily available. In
fact, we can.

Let us use a QR decomposition find an orthogonal rota-
tion to column basis vectors:

1:00 2:00
1:00 �1:00 1:00
1:00 �1:00 �1:00

2
4

3
5 (37)

These vectors are not normalized to unit length to make
it easier to understand the construction. The first vector
obtains a value proportional to the mean. The remaining
basis vectors consist of an arbitrary orthogonal contrast,
Helmert contrasts in this case. QR decomposition
obtains

QT ¼
�0:58 �0:58 �0:58
0:82 �0:41 �0:41

�0:71 0:71

2
4

3
5: (38)

We apply this rotation to the three student values associated
with the first teacher,

QT
0:69
�2:03
�0:98

2
4

3
5 ¼

1:34
1:79
0:74

2
4

3
5: (39)

The mean of the first three students is –0.77. The value
obtained (1.34) is � ffiffiffi

3
p

times the mean. The wrong sign is
due to rotational indeterminacy. We can take � QT instead
of QT . The

ffiffiffi
3

p
factor results from the need to preserve the

length of the original vector,
ffiffiffi
3

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12 þ 12

p
. The

remaining values reflect the variance,

1:79 0:74½ � 1:79
0:74

� �
3� 1

¼ Var
0:69
�2:03
�0:98

2
4

3
5 ¼ 1:88: (40)

With the data rotated, a corresponding rotation to the
covariance matrix is required to leave the density function
unchanged. We rotate the teacher-to-student regressions.
Note that the value of these regressions are equal for all
students because they reflect a single parameter λ. Hence,
the regressions have zero variance and all of the links to the
students, besides the first, are replaced by zero and the first
link is multiplied by

ffiffiffi
3

p
to counterbalance the data rotation

(see Figure 7). Because S remains as in Equation 35, the
rotated model matrices are

FIGURE 6 A simple multilevel model with 5 parameters: σ2teacher , μteacher,
σ2student , μstudent , and λ. A teacher’s three students have exactly the same
model–implied distribution.
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A� ¼
1:85

2
66664

3
77775; (41)

Σ ¼ ðI � A�Þ�1SðI � A�Þ�T

¼
0:29 0:54
0:54 1:71

0:70
0:70

2
664

3
775: (42)

Now the model-implied covariance matrix with the rotated
basis is block diagonal. Thus, this rotation dramatically
increases the independence in the model-implied distribu-
tion. Regardless of the number of students, interdependent
blocks of the covariance matrix need never be larger than 2-
by-2 (and most are 1-by-1). Moreover, this algorithm can be
applied recursively in more complex models with many
levels such that most of the nonzero regions in a very
large multilevel covariance structure (e.g., Equation 4)
become independent. Note that the rotated A� matrix
(Equation 41) is only used to compute the covariance
(Equation 9). Although A also appears in the computation
of the expected means (Equation 8), this equation uses the

unrotated A. The residuals are rotated, not (somehow) the
predicted means (refer to Equation 11).

To extend this univariate approach to multiple indicators
per students, we rotate each indicator independently. Because
the orthogonal contrasts are identical and in the same order for
each indicator, not only is the variance preserved but also the
covariance! Hence, there is no limit on the complexity of the
student model. The only requirement is that all student models
must be identical and have the same single parent.

Sufficient Statistic Formula for the Gaussian Density

A challenge with evaluation of the Gaussian density
(Equation 5) is that, taking the naïve approach, the covar-
iance dimension is the total number of observations in the
model, potentially a very large number. One common way
to speed up evaluation of the Gaussian likelihood function is
to use the sufficient statistic formula. Suppose we have data
of N independent observations of K-variate units. Let μ and
Σ be the model expected mean vector and covariance
matrix, respectively. Let m and S be the mean vector and
covariance matrix of the data, respectively. The sufficient
statistic formula is

� 2 log LðdatajθÞ ¼ NK logð2πÞ þ N logðjΣjÞ
þ ðN � 1ÞtrðΣ�1SÞ þ Nðμ�mÞTΣ�1ðμ�mÞ: (43)

The derivation of this formula is given in many textbooks and
omitted here (e.g., Bollen, 1989). The advantage of this for-
mula is that the maximum dimension of the covariance matrix
isK regardless of the number of unitsN. However, this formula
is only applicable when the units are independent and identical
(including identical missingness patterns). Fortunately,
Rampart dramatically improves the prospects for application
of the sufficient statistic formula. Most of the lowest level units
are rotated such that the expected mean is zero and with an
identical expected covariance. These units, regardless of num-
ber, can be evaluated in constant time per evaluation.

Rampart and Definition Variables

To apply Rampart, the upper to lower level transition
matrix must be exactly the same for all lower level units.
Constant transition matrices, possibly with free parameters,
pose no difficulty. However, no attempt is made to check
whether this condition holds when the transition matrix is
an mxAlgebra or contains square bracket populated
values. If definition variables appear in the transition
matrix, then an attempt is made to group them by value.
Another common use for definition variables is to specify
zero variance regressions. Because these regressions do not
affect the covariance, units that differ only in mean struc-
ture are Rampart rotated and evaluated using the Gaussian
log density (Equation 5). That is, Σ�1 is computed once

FIGURE 7 Figure 6 after Rampart rotation is applied to unlink all but one
student from the teacher. Note that the student data (not shown) requires a
corresponding rotation to preserve the value of the likelihood.
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for all i and then we reuse Σ�1 for the quadratic form

ðμ� yiÞTΣ�1ðμ� yiÞ over each i.

Latent Regression Parameter Recovery Simulation
Study

To validate the accuracy of Rampart, a parameter recovery
simulation study was conducted on a three-level latent regres-
sion model (Figure 4). In addition, the first student indicator
was set to missing with 20% probability. The simulation
study focused on the correctness of Rampart, comparing
Rampart with the simple application of Equation 5. Elapsed
time was not compared between evaluation approaches.

Two sets of true parameters (θ1 and θ2) were randomly
chosen and data generated. Random numbers of students
were assigned to each class and random numbers of
teachers were assigned per school. Parameter θ1 was
associated with seven schools, 38 teachers, and 293 stu-
dents. Parameter θ2 was associated with seven schools, 37
teachers, and 296 students. This was the smallest three-
level data set that we found empirically identified for
most replications.

Two hundred Monte Carlo replications were run for each
condition (Algorithm� θ). For each replication, data were gen-
erated from the true parameters. The number of units, which
lower level units were linked to which upper level units, and

data missingness patterns were identical for all replications. The
model was optimized against these data to obtain ML estimate

θ̂, using the true parameters θtrue as starting values. For R
replications, Monte Carlo bias and variance are

MCbias; R�1
XR
r¼1

θ̂r

" #
� θtrue (44)

MCvar;Varðθ̂Þ: (45)

After every replication, the information matrix was esti-
mated by two-iteration Richardson extrapolation of the cen-
tral difference. The condition number of the information
matrix is the maximum singular value divided by the mini-
mum singular value and provides a rough gauge of the
stability of a solution (Luenberger & Ye, 2008, p. 239).
Replications were excluded from further analysis when the
condition number of the information matrix was greater than
five median absolute deviations from the median. For θ1,
190 trials converged. The maximum absolute differences in
bias, variance, and deviance were 2:58� 10�7,
1:66� 10�7, and 1:18� 10�8, respectively. For θ2, 172
trials converged. The maximum absolute differences in

FIGURE 8 A three-level latent regression model. All levels use an identical 5 indicator factor model with the loading to the first indicator fixed to 1.0, freely
estimated means, free factor variance, and homogeneous error variance. Regressions are estimated from school to teacher and from teacher to school. There are
11 parameters per level and two between level–regressions for a total of 35 parameters. Indicator error variance does not need to be homogeneous. More
complex error structures are possible, but were not included in this study. Manifest indicators are not shared by levels, but are unique to their level. For
example, teacher indicators might include level of education and years of service.
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bias, variance, and deviance were 3:21� 10�7,8:49� 10�7,
and 1:33� 10�8; respectively.

APPLICATION

Many statistical software packages have been published. To
compare the performance of Rampart with existing methods,
we examined the most popular software packages that might
permit ML fitting of a five-level SEM. EQS, xxM, and
Stata/GLLAMM almost offered the sought functionality, but
not quite.

EQS (Bentler, 2006, chap. 11) offers many-level SEM
using a two-stage estimation (Chou, Bentler, & Pentz,
2000). However, this simpler analytical approach cannot
offer the theoretically optimal properties of ML estimation.
Hence, we gave no further attention to EQS.

Available only as a binary for the Microsoft Windows
operating system, an R extension xxM offers many-level
multilevel SEM (Mehta, 2013). During the development of
Rampart, comparisons were made across different software
to ensure that the same estimates were obtained for a variety
of example models. Examples were drawn from Mplus
(Muthén, 2010, chap. 9) and xxM. OpenMx, xxM, and
Mplus agreed on all ML solutions except for one model.
xxM had difficulty with Mplus example 9.23, “Three-level
growth model with a continuous outcome and one covariate
on each of the three levels.” Some of the parameters at
Level 2 seemed stuck at their starting values. We contacted
author Paras Mehta about this defect in July 2016, but still
have not received a resolution. Although xxM is free to
download, it is not open source. Therefore, we could not
determine whether the difficulty was caused by an error in
our model specification or a bug in xxM. Due to our doubt
about the correctness of the implementation, we reluctantly
excluded xxM from our performance comparison.

In theory, Stata/GLLAMM can evaluate many-level
SEM models. However, elapsed time for model evaluation
is expected to be large. Adaptive quadrature is used to
integrate out the random effects. This approach scales expo-
nentially with the number of quadrature points: qr for q
quadrature points and r random effects (Rabe-Hesketh,
Skrondal, & Pickles, 2004). Stata/GLLAMM was not
included in our performance comparison given that its per-
formance was unlikely to be competitive.

To demonstrate Rampart’s performance we examined a
large-scale study of child behavioral health with OpenMx
2.7, Mplus 7.3, lme4 1.1.12, and nlme 3.1.128. As part of
an ongoing state contract between the University of Oklahoma
Health Sciences Center and the Oklahoma Department of
Human Services (OKDHS), each child in foster care receives
a monthly screening across a broad spectrum of behavioral
health outcomes. For children between 4 and 17 years old a
primary component of this screening is the Pediatric Symptom
Checklist (PSC; Jellinek et al., 1988).

Between May 2015 and December 2016, the PSC was
administered 14,436 times on 6,076 children in OKDHS cus-
tody by 1,280 case workers. Workers were spread over 83
county offices and managed by 34 district offices. The goal of
this example is merely to decompose the sources of variation in
the PSC total score due to each of these five nested levels:
occasions, children, workers, counties, and districts. As a pre-
cursor to the five-level model, a three-level variance decom-
positionwas specified inlme4, nlme,Mplus, and OpenMx.
The three-level example was chosen primarily for demonstra-
tion purposes. Mplus cannot estimate models with more than
three levels, and lme4 could not estimate any model on these
data with more than three levels.1 It is therefore not intended to
be the best model for these data, but rather a preliminary model
that will be extended later.

The lme4 syntax for this three-level model is

psc3 <- lmer(PSC_TOTAL ~ 1 + (1 |workerId/childId),
data=ds)

The nlme syntax is similar. Full parameter estimates
are reported in the left half of Table 1. As can be seen in
Table 1, there is broad agreement between the estimates
from lme4, nlme, and OpenMx, but the upper level var-
iance estimates from Mplus appear to overestimate the
child-level variance and underestimate the worker-level var-
iance. The estimation time from OpenMx on this example is
comparable to that of lme4 and nlme but about 10 times
faster than Mplus. Because the parameter estimates in the
three-level model are quite similar to those in the five-level
model, we only interpret those from the five-level example.

The nlme syntax for a five-level variance decomposition
of the PSC is

psc5 <- lme(PSC_TOTAL ~ 1,
random= ~1 |districtId/countyId/workerId/childId,
data=ds)

This model was run in nlme and OpenMx. The para-
meter estimates are shown in the right half of Table 2.
Again, nlme and OpenMx obtain approximately the same
parameter estimates. In this case, there is evidence of a
slight performance advantage for OpenMx. The largest
source of variation is across children. The within-child
(and thus, across time) variation is captured by the residual
variance. There also appears to be an important amount of
variability at the worker level. The district level seems to
have more variation than the county level.

The previous examples of three- and five-level models
showed that Rampart in OpenMx has similar performance to

1A four-level model in lme4 was attempted, but after 30 minutes of
running and using 24 GB of RAM on a 64-bit Windows machine, R
crashed.
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dedicated mixed effect software that can only estimate univari-
ate models. However, Rampart also applies equally well to
multivariate outcomes. The original version of the PSC is
known to have three subscales: attention problems (e.g., has
trouble paying attention), internalizing behavior problems (e.g.,
worries a lot), and externalizing behavior problems (e.g., teases
others). Specific to this population, three additional items were
added to assess any trauma symptoms (e.g., gets very upset
when reminded of traumatic events). Thus, the PSC as adminis-
tered in this sample has four subscales that relate to a common
overall factor. Hence, a factor model was built at the lowest
level, and then the variance of this factor was decomposed
according to the same structure as the five-level variance decom-
position of the PSC sum score that was used previously.

Table 2 shows the results of estimating the five-level factor
variance decomposition of the PSC. The scale of the latent PSC
variable was set by fixing the factor loading on the Attention

subscale to 1.0. The Internalizing and Trauma subscales have
somewhat lower factor loadings compared to the Attention and
Externalizing loadings. The factor mean is now on the scale of
the Attention score instead of the PSC sum score that was
reported in Table 1. The overall pattern of variance across the
levels is maintained across both examples. The largest compo-
nent of variance is due to variation across children with sub-
stantial contributions from both the time (residual) and worker
levels. As before, there is relatively little contribution of variance
from the county and district levels, but there might be some
evidence that there is more variation due to different districts
than to different counties. The variation at the county and district
levels could be due to differences in training practices, regional
variation in the interpretation of PSC items, and differences in
policies surrounding PSC administration particular to individual
offices.

This five-level factor variance decomposition is not readily
possible in standard univariate mixed effects programs (e.g.,
nlme and lme4). Because of the number of levels, this model
is not possible in Mplus. We acknowledge that four-level
models can be fit in a three-level program when the lowest
level is made with a wide data structure (Muthén & Muthén,
2010, chap. 9). However, this is computationally inefficient and
generally works best for a univariate outcome. To run the uni-
variate example using the PSC sum score as a 4-level model, we
would need 21 variables at the lowest level because several
children were observed 21 times. To run the multivariate exam-
ple as a four-level model in this waywould require 4� 21 ¼ 84
variables on the lowest level. Mpluswas about 10 times slower
than OpenMx on the univariate example. We infer based on this
observation that Mpluswould perform poorly on an 84-variate
example, and still would not match the five-level factor variance
decomposition shownhere. In summary, thefive-level univariate
variance decomposition shows that Rampart can match the
performance of dedicated mixed effect programs on large, heav-
ily nested data. The five-level factor variance decomposition
shows that Rampart can then exceed these programs, and other
multilevel SEM programs, by fitting more complicated variance
structures for more outcomes across more levels than possible
with other software.

TABLE 1
Variance Decomposition of the Pediatric Symptom Checklist in Common Mixed Effects Programs

3-Level 5-Level

lme4 nlme Mplus OpenMx nlme OpenMx

District variance — — — — 0.913 0.874
County variance — — — — 0.096 0.122
Worker variance 9.235 9.235 1.063 9.231 8.247 8.202
Child variance 32.255 32.255 39.914 32.234 32.257 32.239
Residual variance 17.946 17.946 17.922 17.960 17.939 17.955
Intercept 10.103 10.103 10.003 10.116 10.115 10.125
Estimation time (sec) 11.14 2.21 53.40 4.66 15.68 12.28

Note. Code to take advantage of shared memory parallel processing was disabled, reduce the variance in estimation time.

TABLE 2
Estimates From a Five-Level Variance Decomposition With a Factor

Model of the Pediatric Symptom Checklist at the Lowest Level

Matrix To From Estimate SE

A Attention PSC 1.000 –
A Internalizing PSC 0.585 0.005
A Externalizing PSC 1.224 0.007
A Trauma PSC 0.303 0.003
S Attention Attention 3.358 0.057
S Internalizing Internalizing 3.076 0.042
S Externalizing Externalizing 4.284 0.077
S Trauma Trauma 1.558 0.020
S PSC PSC 0.558 0.030
M 1 PSC 3.254 0.069
childModel.S childVar childVar 3.315 0.092
workerModel.S workerVar workerVar 0.818 0.082
countyModel.S countyVar countyVar 0.005 0.046
districtModel.S districtVar districtVar 0.085 0.047

Note. PSC= Pediatric Symptom Checklist. Standard errors (SEs) are
derived from an information matrix approximated by finite differences with
Richardson extrapolation (Gilbert & Varadhan, 2012; Richardson, 1911).
No attempt was made to correct the SEs for the structure of the data (e.g.,
Schaalje, McBride, & FeUingham, 2002).
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DISCUSSION

Rampart, a novel approach to speed evaluation of nested
multilevel structure, is introduced. Translation from an lme4
model formula into an equivalent OpenMx model serves as a
didactic example to introduce OpenMx-style model specifica-
tion. A latent regression parameter recovery simulation study
was conducted to demonstrate the correctness of the Rampart
implementation. Among similar software examined—EQS,
xxM, Stata/GLLAMM, Mplus, lme4, and nlme—none
could surpass Rampart for factor analysis with five- and more-
level latent variance decomposition. Rampart works at the
granularity of a set of two or more lower level models asso-
ciated with a single upper level model. Missing data and
definition variables can be accommodated by partitioning the
data into identical missingness patterns and identical model
specifications, then applying the algorithm to each partition.

The Rampart rotation requires that lower level units be
associated with exactly one upper level unit. For many data
sets, this is an onerous restriction. However, it is not clear
how to relax this restriction. More research is needed to
determine whether models for crossed data can be rotated in
such a way as to increase evaluation efficiency or if some
other transformation might be more fruitful.

With axis rotation firmly situated in continuous space,
Rampart is limited to continuous indicators. It is not clear
whether Rampart can be adapted to ordinal probit indicators
(e.g., Mehta, Neale, & Flay, 2004) or generalized categorical
response models. Item parceling is one way that ordinal
indicators can currently be accommodated (e.g.,
Matsunaga, 2008). However, many researchers have cau-
tioned that parceling adds nuisance variability (e.g., Nasser
& Wisenbaker, 2003; Sterba & MacCallum, 2010).

Whereas large sample inference can rely on the asymp-
totic results of large sample theory, much prior research on
small sample inference is limited to the mixed model (i.e.,
univariate with no latent factors). It is unclear whether
prior research on small sample inference generalizes to
relational SEM. There could be complications because
relational SEM models do not take into account the loss
of degrees of freedom from constant coefficients (Patterson
& Thompson, 1971). Most research to date on addressing
this bias has focused on the mixed model where there is a
clear delineation between constant and varying coeffi-
cients. Due to the efficiency of Rampart, it is now feasible
to create relational SEM models that are nested many
levels deep with some response observations at each
level. It is not clear whether the distinction between con-
stant and varying coefficients applies in the circumstance
where a middle-level coefficient is somewhat varying and
somewhat constant. Inspired by Bayesian sampling meth-
ods, the use of a Wishart prior to correct bias in an ML
point estimation context seems like a promising line of
investigation (Chung, Gelman, Rabe-Hesketh, Liu, Dorie,
2015). More research is needed to establish whether this

approach can profitably be applied to relational SEM or
whether a different approach is more suitable.

The join operator in OpenMx supports one-to-many rela-
tionships but omits support for unlimited many-to-many rela-
tionships such as can be recorded in a relational database
using a linking table. For example, a classroom membership
table might contain foreign keys for both teachers and stu-
dents. A linking table facilitates many-to-many relationships:
a teacher with many students and a student with many
teachers. Although there is no problem with linking tables
from the standpoint of the join operator, it is problematic
from a modeling point of view because the maximum number
of teachers per student is not fixed. Definition variables are a
simple way to parameterize models using data. Some kind of
more intricate parameterization mechanism might be devised
to connect an arbitrary number of units together in a default
way without requiring the analyst to specify explicitly how,
for instance, a five teacher and six student model should look.

A conspicuous missing feature in Rampart is the ability to
estimate varying slopes (random slopes), latent interactions, or
quadratic terms (e.g., Kelava, Nagengast, & Brandt, 2014).
This is a glaring deficiency given the popularity of moderation
models (e.g.. Baron & Kenny, 1986). Fortunately, it seems
likely that some approaches might mesh well with Rampart
and permit estimation of quadratic effects without interfering
with Rampart rotation (e.g., Klein & Moosbrugger, 2000).

Although Rampart was developed in the context of ML
point estimation, there is nothing in the algorithm specific to
ML. Rampart could offer similar efficiency gains in the context
of Bayesian SEM (e.g., Muthén & Asparouhov, 2012). We
look toward the Stan community (Carpenter et al., 2016) for
fruitful developments along these lines in the future.

Our software implementation is part of OpenMx. OpenMx
is a free and open-source software originally designed for
SEM. OpenMx runs inside the R statistical programming
environment in all major computing environments. To help
organize a community around the project, the OpenMx team
maintains a Web site at http://openmx.psyc.virginia.edu that
hosts binary and source versions of the software and several
forms of tutorials and reference documentation (Neale et al.,
2016). OpenMx is now capable of estimating relational SEM
models efficiently using Rampart rotation. Multivariate SEM
models of large data sets, such as entire school districts, might
have been considered intractable due to the required estimation
time. With Rampart, these data sets can now be revisited and
estimated with relative efficiency.
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