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We propose the mixed model or multilevel model as a general alternative approach to existing
behavior genetic analysis—an alternative to correlation analysis, the DeFries-Fulker analysis,
and structural equation modeling. The mixed or multilevel model handles readily families of be-
havioral genetic data, which include paired sibling data (e.g., pairs of MZ and DZ twins) and
clustered sibling data (e.g., a family of more than two biological siblings) as special cases. Not
only can a family of behavioral genetic data have more than two siblings, it can also contain
multiple types of siblings (e.g., a pair of MZ twins, a pair of DZ twins, a full sibling, and a half
sibling). In contrast to the traditional approaches, the mixed or multilevel model is insensitive
to the order of the siblings in a sibling cluster. We apply our approach to a large, nationally
representative behavior genetic sample collected recently by the Add Health Study. We demon-
strate the approach through several applications using both clustered and family complex
behavioral genetic data: conventional variance decomposition analysis, analysis of interactions
between genetic and environmental influences, and analysis of the possible genetic basis for
friendship selection. We compare results from the mixed or multilevel model, Pearson’s corre-
lation analysis, and the structural equation model.

KEY WORDS: Multilevel model; hierarchical linear model; the mixed model; DF analysis; and structural
equation models.

INTRODUCTION and Faraone, 1990). Consistent with our direct obser-
vation of the resemblance in physical traits among bio-
logically related relatives, genetic studies have found
that about 70-90% of variance in height and weight is
attributable to genetic influences (Grilo and Pogue-
Geile, 1991).
Compared with pathology and physical traits,

complex human behavior appears much more en-
vironmentally determined; nevertheless, behavior

There is a rapidly growing body of evidence pointing

to an important part of genetics in the determination of
human pathology, psychopathology, and physical traits.
For example, many conditions of serious psycho-
pathology have been found to run in families. Numer-
ous studies show that the risk of schizophrenia for an
offspring of a schizophrenic parent is about 13 times

as high as that in the general population (Gottesman, - .
1991). The risk of manic-depressive psychosis for thosegenenmsts have reported genetic effects on such seem-
' ingly environmentally determined behavior as parent-

with a manic-depressive parent is about 10 times as.

: . ing style, rate of accident occurrence in childhood,
high as that for those without such a parent (Tsuangtelevision viewing habits, peer groups selection, social

support, marital disruption, education attainment, and
! Department of Sociology, University of North Carolina at Chapel SOC'O)econom|C status (Plomiet al., 1994; Rowe,
Hill, NC. 1994).

2 Department of Biostatistics, University of North Carolina at Chapel In this paper, we propose the mixed (Seatlal
Hill, NC. ' N

3To whom correspondence should be addressed at Department 0f19‘:?2) or multilevel model (Masoet al., 1983; Gold-
Sociology, University of North Carolina at Chapel Hill, 27599. stein, 1987, 1995; Bryk and Raudenbush, 1992) as an
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alternative statistical tool for behavior genetic analysis— et al., 1997). In the final section, we offer concluding
an alternative to the traditional correlation analysis, the remarks.

DeFries-Fulker analysis (DeFries and Fulker, 1985;

Rodgers and McGue, 1994; Cheretyal., 1992), and THE MIXED MODEL

structural equation models (Neale and Cardon, 1992).
When explicit measures of genes are unavailable, be-
havior genetic analysis resorts to genetically related in-
dividuals clustered into families. In this paper, we show Y=XB+Zu+e D
that the mixed model readily handles complex sibling
structure. Treating individuals as level-one units and
families as level-two units, the mixed model can be con-
ceptualized as a two-level multilevel linear model. While
most of our presentation is in terms of the mixed model,
we will make a point of relating it to the multilevel model
because of the popularity of the latter among social
scientists.

We classify behavior genetic data into three types.
The first consists of paired sibling data such as MZ or
DZ twins. In this type of data, while the individuals
within a pair are correlated due to genetic relatedness,imum likelihood (REML). WithG andR, B can be es-

the individuals across pairs are considered mdependenttimated via the generalized least squares. In the fol-

We refer to the second type of data as clustered be- . .
. . . - lowing sections, we will show how the general form of
havior genetic data, with each cluster containing two

L L . the mixed model (1) can be applied to specific problems
or more siblings. The number of siblings in a cluster . ) ; . .
. _in behavior genetic studies. Earlier work by Eaves and
may or may not be the same across clusters. All pairs .
L I : . Gale (1974) and Eavest al. (1978) for behavior ge-
of siblings within a cluster are genetically related in the . L .
L . netic analysis is closely related to, and may be consid-
same way. A cluster of four full siblings is an example

of clustered behavior genetic data. Paired sibling dataeer a special case of, the mixed model.
can be viewed as clustered data in which every cluster
consists of two genetically related individuals. Fami- MODELS FOR CLUSTERED BEHAVIORAL
lies of behavior genetic data are the third and the mostGENETIC DATA
general type of behavior genetic data. Some families

2 . The Model
are not only larger, containing three or more siblings,
but also more complicated genetically, containing more Clustered genetically informative data contain two
than one type of sibling. Conceivably, a family may or more of the following types of genetically related in-
consist of a pair of MZ twins, a pair of DZ twins, two dividuals: monozygotic twins, dizygotic twins, full sib-
full siblings, a half sibling, and two step siblings. Cor- lings, half siblings, and cousins. Each cluster contains
relation analysis and the DF analysis appear unable toonly one type of genetically related individual and the
handle clustered or families of behavior genetic data. individuals across clusters are independent. Treating in-
Structural equation models are a much more generaldividuals as level-one units and clusters as level-two
and flexible approach, though the programming re- units, the following two-level model without covariates
quired for analyzing family data is likely to be com- can be used to calculate the correlation for a sample of
plex. In the next section, we describe the mixed model. genetically related individuals of a single type:
Then we show how the mixed or multilevel linear V. =B tu +e
model can be adapted to analyze clustered behavior i =Bo+u; *e (2)
genetic data, and we describe the mixed or multilevel whereY; is the observed linear outcome for individual
model for the more complex families of behavior i in clusterj, B, is the intercepty; is the cluster-specific
genetic data. In both of these sections, we demonstrateandom effect, an@; is the individual-specific ran-
the methodology for behavior genetic analysis using dom effect or the OLS-like error term. The standard
a nationally representative genetically informative assumptions are thatande; are mutually independent
sample collected by the Add Health Study (Bearman N (0, §) andN (0, §) random variables. The within-

The general form of the mixed model is typically
described as

whereY is the vector of observeds, X is the matrix
of observed predictor§ is the vector of parameter for
the observed predictorg, is the known design matrix
for the vector of unknown random effeatsande is
the vector of random errors,’s (Searle, 1971; Searle
etal.,1992). The mixed model assumes thainde are
mutually independent and each normally distributed
with E[u] = 0, E[¢] = 0, Var[u] = G, and Vafe] = R.
Then the covariance matrix ¥fis VafY] = ZGZ + R.
The parameters it andR can be estimated by the
method of maximum likelihood (ML) or restricted max-
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cluster or intraclass correlation can be obtained from Model (4) is also a special case of the general
p = 02/(c%+ o). When a sample contains pairs of MZ mixed model (1) and we give the matrices for (4) that
twins, p would be the correlation between the twins.  differ from the matrices for (2) as follows:

Model (2) is a special case of the general mixed

model (1) and the matrices for (2) can be written as d X ... X O
Y = (Yll!Y211 [ -1YnlllY12! .o 'lYnNN),I WhereN |S the w M ... M S
total number of clusters in the sample, and the total x = Q Xig - Xpm 0
number of elements in this vector M = Z )L, n;: Xz - X2
M ... M g
X =1y; A Xipgn - - - Xpoyn O
B:B(); B:(BOlBll' . 'pr);
Zi=1,x:j=1 ...,N _ : .
P =) =1 Z; =Lopa(Zim), Zi Zier Zim Zico ). Wherezg is an in-
Z 0 dicator variable taking the value of 1 if the cluster type
0 5 0 ist, and O otherwise:
2
Z = O D, .
0 o O U = (Uggry, Uy, Uy, Uy U+ - - o Unys = -+ 5 Ung)'s
O O )
D ZN[| B"u(m) , D
0 0
u=(u,lUy, . .., U G=h®[ Tu@) o 0 and
e:(elllezlv L :enllvel2! oo !erINN)' E GS(C)E

G:SE|N and R:Sgh\/l M

O
In the tradition of multilevel models, model (2)is R = o f o O

referred to as the combined model and the same model @ @

is frequently represented by an equation system: f

Y; =Boj +&  (level 1 model) wherery = 3, ) 03¢
B (3) Again, level-1 and level-2 models in (4) can be
Boj =Bo+u;  (level 2model) written separately as in the multilevel model literature:

To cope with multiple types of clusters (MZ twins,

DZ twins, full siblings, half siblings, and cousins) and to  Yj = Boje + BiXy + (level 1 model)
incorporate environmental influences, we expand (2) to BoXaij +. . .+ BpXpij + &jn (5)
Bojry = Bo + Uy (level 2 model)
Yii(t) = BO + lelij + [32X2ij +. ..+
BeXpij + Uiy + 8jgy) (4) The results from model (4) or (5) can be used to

compute the within-cluster correlation by type of cluster
wheret = m, d, f, hor c, indicatingtypeof genetic re-  Wwith or without adjusting for environmental influences.
latedness within the clusters of individuals, gnoh- To compute the correlations, we construct the following
dexesP number of environmental variableg;s. The system equations under the usual assumptions in behav-
SAS codes for model (4) are given in Appendix 1. Al- ior genetic studies, including additive genetic variance,
lowing the variance og; to vary by genetic related- little or no assortative mating, and equal shared envi-
ness (t) is crucial because the genetic theory expectgonmental influences across different types of clusters
the within-cluster variance for more genetically related

clusters to be smaller. Following the standard practice hZ + Clrayx = P (m.x

in behgwor genetic analysis, we treat full siblings and (L/2)h2 +CPrayx = P (e

DZ twins separately even though they have the same

genetic relatedness. For a sample comprising multiple 1/2)hZ +CEyx = p(r)x (6)
types of clusters, the within-cluster correlatiopjis= -

yp Pdp (1/4)hZ +Cfy x = P ()

oiw/(ody + ody) and the within-cluster correlation for
MZ twins is Pm) = O'ﬁ(m)/(()'ﬁ(m) + O'g(m)). (1/8) h)% +C(2c),x = Pe)x
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whereh? is the heritability in the environment described
by x and Ci x: Cfty.x» Cihy.x» @NdCEy« are the proportions

Guo and Wang

Viewing (7) as a combined multilevel model, we
can write level-1 and level-2 models in (7) separately as

of the variance owing to shared environmental influ-
ences among MZ and DZ twins, full siblings, half sib-

. . . ; . Y.y = Boicy + B X + | 1
lings, and cousins, respectively, also in the environment 1® Boicy * BuyXu (level 1 model)
described by. The first equation in (6) holds because BojXaij +. . .+ BpiXpij + 6
the total correlation within MZ twin pairs must be equal
. o i) = Bo * Ug; | 2

to the sum of the correlation due to heritability and Boicy = Bo + Uiy (level 2model) — (g)
the correlation due to the shared environmental influ-  Baj«) =By + W (level 2 model)
ences. Given the results from (4) or (5), (6) has five -0+

. . iy = i K | 2
equations and five unknowns and can be solved for Paio =Pz * teiy (level 2 modef)
hZ, CZrety x» Cety.x» Clhy.x» AN CEy . Note that the proportion By = Bp + Ugiy (level 2 model)

of the variance due to shared environmental influences
is allowed to vary across twins, full siblings, half sib- A more complicated model may be obtained by
lings, and cousins. When a single shared environmentaladding one or more environmental influences in one
parameterg?, is preferred, we have an overidentified or more of the level-2 models in (8). Model (7) can
model. In such a case, the single shared environmentabe used to study the interaction between heritability
parametercz may be obtained by the least-squares and environment or the influences of nurture on the
method, in which the estimated correlations are regressedxpression of nature. When environmental influences
on the coefficients (1, 1/2, 1/2, 1/4, and 1/8n@fThe such as family income and parental education do not
intercept in such a regression woulddde vary within a clusterx,; in (7) or (8) simplifies to
Model (4) can be expanded to incorporate the ran- x,; for all xs. Assuming Covu,;,u,;)=0 forp#p, we

dom effects of environmental influences have
Yio=BotBuxaij +BaXai+. . +BXpij Xy + (7) 0l FOIE F L ol
Xoji .. L+ i Gt i + m LY LX) = u ul”j uP NPy 9
Uy Xzij Upj Xpij t Uojcty T Eijt) Po (Y- ¥ |1 | i) ‘Tﬁom +U§0m + Gflxﬁ + . .+oﬁpx§j ( )

wherex,; is thepth environmental influence for indi-
viduali in clusterj; Bo is the interceptBy, B, . .. ,Bp
anduy;, Uy, . . ., Uy are the fixed and random coefficients
of the environmental influences, respectivelyy, and
€0y are the random effects at the cluster and individ-
ual levels, respectively; and Vag(;) = oﬁo(t),Var(ulj)
= 0'51, Yo e ey Var(,lpj) = U%p,var(eou([)) = O'Zeo(t). We
provide SAS codes for model (7) in Appendix 2.
Model (7) is again an application of the general
mixed model (1). In the following, we describe the ma-
trices for (7) that have not been described before:

Now the within-cluster correlatiom)(Y;,Yi;|X), is a
function of both the type of genetic relatedness and en-
vironmental influences. Givepy,(Yj,Yijlx;) for eacht

and using (6), we can calculate the level of genetic or
shared environmental influences for each measured en-
vironment.

When measures of environmental influences are
available at the contextual level (neighborhood or
school), model (7) or (8) can be expanded further in
the framework of multilevel models:

UXay C Xey Zim) Ziy ZicH Zihy ZioH
Z,= UM M M M M M ML ik = Bo + Buxijk ¥ 12 = UjiXije + (10)
n; j - Xenyj Zimy Zi@) Zict) Zity Zico) Vikzk + Vok + Uojka) +» Coijct)
U=(Usy, Uzy, - -+ Up1, Uoamyy Uoays - - -+ Uorey -+ + - Uans wherex;, andz, are measures of environmental influ-
Uzn, - - -Hen Uongmy: Yoy - - - Uone) and ences at the individual and contextual levels, respec-
5 tively; B, andvy, are their fixed effectsyg, Uy, and
Corig ijk(g) @re random intercepts at the individual, cluster,
E O 5 and contextual levels, respectively; andv;, are the
0 Ouw ) random coefficients foky and z, respectively. The
G= 'N®D Ouom) covariances across individual, cluster, and contextual
O o Zoa) levels are assumed to be zero. Model (10) is a three-
% O , level multilevel model with individuals as level-1 units,
T 40(c) clusters as level-2 units, and contexts as level-3 units.
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Alternatively, model (10) can be described as a multi- complete a questionnaire but who were listed on a
ple equation system: school roster were eligible for selection into the in-
home sample. A total of 12,105 adolescents were ac-

” =By + B X
ik = Boiwco * BrieXi (level 1 model) tually interviewed in the first wave of the in-home sur-
T Yz t Gijct) vey from April through December of 1995.
_ The data for our analysis come from the kinship
K = + Uy level 2 model
Boikco = Box * Uoikcy ( ) sample within the Add Health Study, which has delib-
Bujk = B + Uk (level 2 model) (12) erately incorporated the behavior-genetic designs as
Box = Bo + Vo (level 3 model) cor_npone_nts inan otherW|seltrad|t|onaI survey. The ge-
netically informative sample is composed of six groups:

Y = Y1+ Vi (level 3 model) MZ twins, DZ twins, full biological siblings, half bio-

logical siblings, cousins, and biologically unrelated
adolescents living in the same household. Having
screened a population of more than 90,000 adolescents,
Add Health has identified a large number of genetically
related individuals. With six degrees of genetic relat-
edness embedded in a nationally representative survey,
this Add Health genetic sample provides a unique op-
portunity to examine the contribution of genetic and
Application Data.In this section, we present re- environmental influences on children’s well-being. We
sults from applications of the mixed or multilevel use two measure for children’s well-being: intellectual
model. The data sources for these applications are thalevelopment measured by an abridged version of the
National Longitudinal Study of Adolescent Health Peabody Picture Vocabulary Test-Revised (PPVT) and
(Add Health). Add Health is a school-based study of grade point average (GPA).
the health-related behaviors of adolescents in grades  Application I: Variance Decomposition Analysis.
7-12 in the United States. In 1994, the in-school ques-Table | presents parameter estimates and their standard
tionnaire was completed by more than 90,000 adoles-errors of three mixed or multilevel models of intellec-
cents from 134 schools. All students who completed antual development as examples of correlation analysis.
in-school questionnaire as well as those who did not All three models can be viewed as special cases of

For simplicity, the model has only two environmental
variables, one at the individual level and the other at the
contextual level. Adding more environmental variables
at either or both levels is straightforward.

Applications of the Models

Table I. Parameter Estimates and Their Standard Errors of the Mixed Models of
Intellectual Development as Examples of Correlation Analysis: Model A Allowing
a Single Across-Cluster Variance, Model B Allowing a Single Across-Cluster
Variance and Controlling for Race, and Model C Allowing Across-Cluster
Variance to Vary by Type of Genetic Relatedness and Controlling for Race

Model A Model B Model C

Parameter (se) Parameter (se) Parameter (se)
Intercept 100.6 (0.30) 104.1 (0.317) 104.0 (0.314)
Black —12.0 (0.584) —12.2 (0.565)
a2, (for all types) 95.60 (5.13) 66.08 (4.12)
0 4m (MZ twins) 117.05 (14.9)
0 %q) (DZ twins) 57.97 (8.33)
o 1y (full sibs) 60.22 (6.08)
og(h) Ehalf §ib§) igig ((123))
o & (cousins . .
03 (MZ twins) 48.41 (5.45) 52.27 (6.14) 43.84 (4.63)
0 34y (DZ twins) 87.01 (6.22) 86.27 (6.02) 87.53 (6.58)
o %) (full sibs) 87.66 (4.42) 87.88 (4.38) 87.91 (4.67)
o 3y (half sibs) 94.19 (8.07) 92.93 (7.73) 95.56 (8.74)
a3 (cousins) 132.3 (18.5) 115.4 (15.0) 121.6 (17.9)
—2 logLikelihood 24591.7 24217.1 24189.5

Sample size 3129 3129 3129
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model (4). Model A allows a single across-cluster vari- Friends are expected to be more genetically similar to
ance (%) = o3); model B is the same as the first model each other than randomly paired individuals.
except that it controls for race; and model C is the same Figure 1 illustrates a test of the hypothesis. Fig-
as model B except that it allows the across-cluster vari-ure 1 shows the relationships among four persons: per-
ance to vary by genetic relatednes$y( = oZy). By son A, A’s friend, person B, and B’s friend. Person A
the likelihood ratio test, model (2) is highly significant and A’s friend are likely to be similar with respect to
against model A, and model C is highly significant such personal characteristics as intellectual develop-
against model B. ment and certain attitudes; so are person B and B’s
Table Il presents correlation coefficients for in- friend. The friendship such as that between A and A’s
tellectual development by genetic relatedness. Columnfriend or B and B’s friend, however, does not clue us
(a) presents the correlations estimated by Pearson’s corin on whether any of the similarity between the two
relation analysis using five race-adjusted samples eachriends is genetic.
for one type of genetic relatedness. The five race- To test the hypothesis of whether friendship has a
adjusted samples are residuals from a simple linear regenetic basis, we let A and B be pairs of MZ twins, DZ
gression with race as a single predictor (a black/white twins, full siblings, half siblings, and cousins with dif-
dummy variable). The estimates indicate that the ferent and known genetic relatedness. If individuals do
strength of correlation varies systematically by genetic select friends partially according to their genetic propen-
relatedness, and these results are consistent with thaity, we should see a positive correspondence between
well-known findings reported previously (Plongnal., the extent to which A and B are genetically related and
1994). Columns b, c, and d are calculated from mod- the strength of similarity between A’s friend and B’s
els A, B, and C of Table I, respectively. These results friend. For instance, we should find friends of MZ twins
indicate that varying between-cluster variance by ge- significantly more similar than friends of DZ twins, and
netic relatedness is necessary for replicating the corre-friends of DZ twins about equally similar to friends of
lation estimates traditionally obtained through correla- full siblings. The inclusion of MZ twins and DZ twins
tion analysis (column a vs. column d). In this particular in the same analysis is necessary for obtaining a genetic
analysis, varying between-cluster variance can be jus-interpretation for friendship selection because the sim-
tified statistically by a likelihood ratio test. These re-
sults also suggest that traditional correlation analysis

always allows the within-as well as between-cluster As the genetic relatedl!ess
variance to vary by genetic relatedness. between A and B varies,
Application Il: Genetic Basis for Friendship Se-
lection Among Adolescent&riendship is built more on
similarity than differences. Friends are found to be sim- ﬁ%%
ilar in height (Berkowitz, 1969), activities, needs, atti-
tudes, and personality (Berscheid and Walster, 1978). |
It is hypothesized that part of the similarity is genetic. PGI'SOH A Person B
Table II. Correlation Coefficients Estimated by (a) Conventional !
Correlation Analysis Using Separate Samples by Type of Genetic !
Relatedness, (b) Based on Model A in Table |, (c) Based on Model
B in Table I, and (d) Based on Model C in Table |

Correlation coefficient (number of pairs) A's Friend| B's Friend
Type of genetic
relatedness a b c d W
MZ twins 727 (179) 664 .558 727
DZ twins 399 (354) 524 433 398 does the similarity between A’s friend and
Full siblings .399 (726) .522 429 .406 B, ﬁ’l d d]]] l 9
Half siblings 350 (243) 504 415 364 § Iriend vary correspondingfy !
Cousins .249 (89) 419 .364 .243

Fig. 1. Research design for studying genetics basis for friendship
selection.
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ilarity between A’s friend and B’s friend cannot be at- Table lll. The Mi)_(ed or Multileve_l Mode_l Estimates of Correlatiqns

tributed to genetic factors alone and because the simi- Between A’s Friend and B’s Friend with Respect to Grade Point

Iarity between A and B also share certain environments Average by Genetic Relatedness and by Whether the Friendship Is
In thi licati test the h thesi .~ Between the Same Gender or Different Gender (also see Fig. 1)
n this application, we test the hypothesis using

data from the Add Health Study. The Add Health Study Correlation coefficient

has taken measures not only on a large number of ge-

netically related individuals but also on their friends Genetic relatedness Same gender Different gender
themselves. We: estimate the correlgtion between A’'s, . o 567 399

friend and B’s friend by type of genetic relatedness be- pz wins 223 316

tween A and B after controlling for potential con- Full siblings .266 .180
founding effects. Age can be one such effect. The ge-Half Siblings -060 -200

netic relatedness within a pair of DZ twins is the same Cousins -000 023

as that within a pair of full siblings. The two types of sample size 1924 1386

pairs, however, differ in the age difference between the
two members of a pair. This possible age effect can be

easily incorporated in the analysis. Application IlI: Interactions Between Environment
We use the following model for the analysis and Heritability. It is hypothesized that social condi-
outlined: tions modulate the expression of biological or genetic

_ predispositions (Bouchareit al., 1990; Roweet al.,

Yioy = Bo + B1208; + U + € (12) forthcoming; Udry, 1996). Genes provide the potential,
Model (12) is a special case of model (4) presented ear-but whether the potential can be realized is determined
lier. Adjusting for age, the correlation between A’s by environmental conditions. The interactions between
friend and B’s friend with respect ¥ for a particular genetics and environment can be illustrated dramati-

genetic relatednesss estimated by, = 02,/ (62, = 02). cally by comparing Asian immigrants to the United
Our hypothesis is thai, is considerably larger tham States and U.S.-born Asians. Studies have found that
and p;, thatpy and p; are approximately equal, thp§ because of lifestyle and diet, U.S.-born Asians are twice
andp; are larger thapy,, and thaip, is larger thamp.. as likely as Asian immigrants to suffer from prostate

In this particular application, the outcome variable cancer (Cooket al., 1999) and that Asian American
Y;; is GPA. We expect that our hypothesis will find adolescents born in the United States are more than
more support in data consisting of only same-gendertwice as likely to be obese as are adolescents who im-
friendships than in data consisting of only different- migrated recently (Popkin and Udry, 1998).
gender friendships. We have a same-gender friendship ~ Within a society, individuals may enjoy different
when A and A’s friend or B and B’s friend are of the levels of opportunities or face different levels of soci-
same gender. When an adolescent looks for a different-etal constraint with respect to a particular behavior. It
gender friend, his or her criterion may be different from is probably less likely for a minority child growing up
those when the adolescent looks for a same-gendeiin an urban ghetto than a middle-class child of equal
friend. Similar GPA may be more important for a same- genetic potential growing up in an affluent suburban
gender friendship, whereas physical attractiveness mayarea to succeed in getting a first-rate education and a
be more important for a different-gender friendship. middle-class income.

Table Il presents the estimates of correlations be- In application Ill, we test the hypothesis that dis-
tween A’s friend and B’s friend with respect to GPA advantaged environments decrease the influences of her-
by genetic relatedness and by whether the friendship isitability and increase the influences of shared environ-
between the same gender or different gender. The find-ments on children’s intellectual development. This
ings are consistent with our expectations. When the hypothesis can be tested explicitly by comparing the
friendships are between the same gender, the correlalevel of heritability in advantaged environments with that
tion between MZ twins’ friends (.566) is much larger in disadvantaged environments via (7) and (9), examin-
than those between DZ twins’ friends (.223) and full ing environmental factors one at a time while control-
siblings’ friends (.266), which, in turn, are larger than ling for the influences of other environmental factors.
those for half siblings’ friends (.060) and cousins’ Table IV presents fixed effects and the variances
friends (0). The same pattern is not evident in the of random effects from a mixed or multilevel model of
different-gender data. intellectual development measured by PPVT on
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Table IV. Fixed Effects and the Variances of Random Effects from a Mixed or
Multilevel Model of Intellectual Development on Selected Environmental Variables:
MZ Twins, DZ Twins, Full Siblings, Half Siblings, and Cousins

Random
effects
(variance Standard Fixed effects Standard
components) errors (coefficients) errors

Intercept 89.81 1.48
Income 1.52 0.39
Black 22.22 9.35 -9.87 0.65
Mother education 0.49 0.39 2.46 0.23
AFDC 24.63 17.19 —-2.77 1.07
0 &m (MZ twins) 77.25 15.08
o & (half sibs) 19.97 12.36
o3 (cousins) 5.20 19.75
0 4m (MZ twins) 45.14 5.71
o3 (DZ twins) 81.50 7.10
o3ty (full sibs) 85.39 5.11
o3 (half sibs) 101.73 10.73
03¢ (cousins) 107.71 19.06
logL 19427.16
Sample size 2545

selected environmental variables using a genetic sam+o intellectual development is about 14.8% less than
ple of MZ twins, DZ twins, full siblings, half siblings, that for whites (.573). On the other hand, the shared
and cousins. The mixed model has included four envi- environmental effects for African Americans are con-
ronmental variables: logarithm of family income, black siderably larger than those for whites regardless of the
with white as the reference group, mother’s education, type of clusters. The shared environmental effects for
and Aid to Families with Dependent Children (AFDC). whites are small, at most a few percentage points of the
AFDC is a dummy variable coded as 1 if the family re- total effects. Assuming that the environments for in-
ceived AFDC at the time of the survey and 0 otherwise. tellectual development for African Americans are still
The fixed effects of all of these environmental vari- less favorable than those for whites after controlling
ables are consistent with previous research. Of the vari-for family income, mother’s education, and welfare re-
ances of the random coefficients of the environmental ceipt, these results are consistent with our hypothesis.
variables, only black is statistically significant. This The disadvantaged environments appear to have pre-
random coefficient is interpreted by the calculations vented African Americans from fully realizing their ge-
presented in Table V. netic potentials for intellectual development and to have
Using the parameter estimates from Table 1V and increased the relative importance of shared environ-
Eqg. (9), we calculated heritabilitqhd) and proportions  mental influences.
of the variance owing to shared environmental influ-
ences among MZ and DZ twins{{g), full siblings
(c%)), half siblings €%,), and cousinsdf;) by race

) . Table V. Estimated Heritability If¥) and Proportions of the
(Table V). The values of the environmental variables

Variance Owing to Shared Environmental Influences Among

other than black are set at the sample means. The her- MZ and DZ Twins €3.), Full Siblings ¢?), Half
itability among African Americans (.488) with respect Siblings €7), and Cousinsd?) by Race
h? Cim c? c? c2
1 Mother’s education is coded from O through 6 and treated as a
continuous variable: never went to scheol, <8th grade= 1, Blacks* 488 214 144 243 18
8-11th grades- 2, high school graduate or equivalent3, some Whites 573 077 —-.015 065 028

college= 4, college graduate 5, and professional training be-
yond four-year college= 6. *Other observed variables are set at the sample means.
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MODELS FOR COMPLEX FAMILY accommodate the complex family sibship structures,
BEHAVIORAL GENETIC DATA we construct a new design matéxhat hass on the
The Model main diagonal gnd Os elsewhere. 'IZhE:'s family spe- .
cific. For a family that has one cousin, one half sib-
Earlier, we show how clustered data vis-a-vis paired ling, one full sibling, two DZ twins, and two MZ
data can be handled readily by the mixed or multilevel twins, thez is

model. In this section, we propose a version of the mixed m 0 0 0 O
or multilevel model that handles more complex family L1 0 0 O
behavioral genetic data. The complexity arises when M 1 1 0 oC
three or more siblings in a family form pairs that have z = h 1 1 1 ot
different degrees of genetic relatedness. Suppose that a El 111 oE
family has siblings A, B, and C. Siblings A and B are a 1 1 1 1 1

pair of MZ twins. Siblings A and C are a pair of full sib- %1 11 1 1%

lings. So are siblings B and C. Clearly, this family of

siblings is no longer clustered data where all possible where the five columns are the five indicator variables
pairs are genetically related the same way. A more com-Z., Z, Z, Zg and z,,, representing the coding for the
plicated sibling structure in a family may consist of more cousin, the half sibling, the full sibling, the two DZ
different sibling pairs or clusters. For example, a family twins, and the two MZ twins, respectively; the rows
may consist of siblings A, B, C, D, E, F, and G. A and within a family are sorted so that genetically less-related
B are a pair of MZ twins. C and D are a pair of DZ twins. siblings go first; alternatively, the rows can be sorted
E and F are full siblings to each other and to A, B, C, or so that the genetically most-related siblings go first:

D. G is a half sibling to everybody else. — /x " * % * .

Our model for the complex sibship structure in a E - ()'l.Jl(c)' R G Ol U C
family is another special case of model (1). We start N7
with a model equivalent to model (4) that estimates and
both the within and between variances for the five dif-

ferent types of siblings while adjusting for the envi- ¥ 0 fo(e) O
. X * 2

ronmental influences: G = L/® E Ouo(h) o S

Yig = Bo + Buxy +. . .+ PeXpy + *Ujg + H *Uﬁo(m)H

Uiy + Uiy + *Ujay + *Ujy + & (13)
To include the random effects of environmental

where Var(Uq) = *ofoe, Var(tin) = *olop), influences, we extend model (13) to obtain
Var(* uj(f)) = *O-EIO(f)! Var(*ul'(d)) = *O'ﬁo(d), and Val’(’ul(m))
= *0%om- The SAS codes for model (13) can be found Y = Bo + Zp-1 BpXpij + TPy UpXpj + Zil
in Appendix 3. The model assumgs<< p, < p; < pq Ui + €
< pm Model (13) can also be used to analyze clustered oo
data. The relationship between ”"!Ode' (4) and model (13)The SAS codes for this model are given in Appendix 4.
can be shown through the relationship of the betweenSimilar to model (7), model (15) does not allow the

variances of model (4) and model (13) when the two random slopes to vary by sibling types, although vary-
models are used to analyze the same data: ing these slopes is possible. For a family that has one
0l0= Lo cousin, one half sibling, one full sibling, two DZ twins,
and two MZ twins, the, for (15) is

(15)

2 _ % 2 2
Tuom= " Ouoeyt ™ Tuogn)

Xi - -.- Xp;p 1 0 0 0O O
2 =gk *gl +*al 14 [ X1 P1j
ooty =TT o™ e (14) X2 --- Xey; 1 1 0 0 OC
UEO(:):*050(0)+*UEO(h)+*0-50(“+*0-50(d) DX13]- e XP3j 11 10 OE
2 _ %, 2 2 2 2 2 Z = X - - - Xpgj 11110
— % +ox +* + % +ox ] J ]
T yo(m) T yo(c) T yochy T uoct) T yo(d) T yo(m) Bxlsj o Xp5j 1 1 1 1 OE
In this section, we only present matrices for %ij S Xpgp 11101 1%
model (13) that differ from those for model (4). To Xizj - - - X7 101111
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and the matrices andG are, respectively, Table VI. Estimated Fixed Effects and Variances of Random
Effects and Their Standard Errors from Two Mixed or Multilevel
U= (U, - .« Ugp, ¥Usye, *Usgy, *Usg), *Usy, *Uygm, Models of Intellectual Development Using Complex Family
« U - - - MU FUnGg - - ,*uN(m)) : and Behavioral Genetic Data. The Model Numbers Correspond to the

Equation Numbers in the Text. Model (13) Is a Basic Variance

D)'Sl 0 Decomposition Model and Model (15) Estimates the Interaction
0 0] 0 Between Environment and Heritability
2
G = |N®E Ouwp . s S Model (13) Model (15)
0 Tuo(c) 0
(@) Fixed effects
% * O'SO(m) % Intercept 98.4 (.24) 102.3 (.28)
Minorities —9.22 (.45)
Using parameter e;timates from (1.5)_, we can random effects
calculate the correlation between two siblings of the *¢2y, (MZ twins) 0.0 0.0
same type: *0 2oy (DZ twins) 54.0 (17.8) 71.0 (16.4)
*a 2ot (full sibs) 24.5 (13.3) 32.5 (11.1)
P (5. Y, %)) = *a 2,1y (half sibs) 0.0 0.0
*a2o(¢ (cousins) 31.1 (16.1) 28.3 (13.3)
Mmxg2  + 5P 52 x2 *o 2., (unrelated) 59.3 (11.2) 14.7 (9.3)
t=c O u0(t) p=1 T upXpj 50w :
5 R 5 (16) 0% m (MZ twins) 48.9 (4.2) 49.2 (4.3)
Oeory T Z:c O Lo +zp:10-upxpj 044 (DZ twins) 101.7 (6.4) 100.9 (6.3)
) o (full sibs) 93.2 (4.1) 95.7 (4.3)
Models (13) and (15) may be conceptualized as ¢, (half sibs) 117.8 (9.3) 118.2 (9.3)
two-level multilevel models with siblings as level-1 % (cousins) 161.4 (19.9) 165.8 (20.1)
. o . 2 i
units and families as level-2 units. However, these are 7w (_‘i_ous'”s) 127.6 (10.4) 3153%17%1-0)
not conventional multilevel models, in which all pairs _g‘lggl_'es 40058.2 3'96(57'3),
of observations in the same cluster are correlated in thegample size 4999 4999
same way. In contrast, models (13) and (15) allow the
observations in the same family to have various degrees _ )
of correlation. Our models for complex family behav- In Table VI, we present the estimated fixed effects
ioral genetic data may be considered an extension of2nd variances of random effects and their standard errors
conventional multilevel models. from two mixed or multilevel models of intellectual de-
velopment. Model (13) is a basic model of variance de-
Applications of the Models composition. Model (15) estimates parameters that may

be used to calculate the differential heritability asso-

In this section, we apply models (13) and (15) to ciated with the white population and the nonwhite pop-
the complex family data from the Add Health Study. ulation. By the likelihood ratio test, the two additional
This sample includes not only white and black students parameters of nonwhite and the variance of nonwhite
but also students from other ethnic groups. Of the 4999are highly significant. Table VII presents correlation
students in the sample, more than 13% are found to live
in a family that has a complex sibling structure or a Table VII. Correlation Coefficients Calculated from Parameters
family that consists of more than one type of sibling. The  Estimated from Models (13) and (15) Using Complex Family
actual percentage of the students living in a family with Behavior Genetic Data
a complex sibling structure must be substantially higher
than 13%. Because of the study design, the Add Health

Correlation coefficient

data underrepresent the complexity of sibship structure Model (15)
in American families. The Add Health Study is a school- TYPe of genetic — —
rather than household-based study. The study includesre'atecjness Model (13) Majorities Minorities
students from the 7th grade to the 12th grade. Siblingsmz twins 775 748 786
from the same family were included in the study only DZ twins 624 .590 643
when they were in these grades and when they went to;ml'fSibbllith -222 -ggé -233

: alt siplings . . .
the schools under study at the time of the survey. OurCousins 9 360 05 320

methodology should be considerably more useful for . iaied

et .317 .100 274
sibling data from household surveys.
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coefficients calculated from parameters estimated from The first three columns of Table VIII display cor-
models (13) and (15). Model (15) yields two sets of cor- relation coefficients from the variance decomposition
relation coefficients, one for the white population and model from the structural equation analysis, the mixed
the other for the nonwhite population. The implied her- or multilevel analysis, and Pearson’s correlation analy-
itabilities for the white and nonwhite populations are sis. The three sets of results are almost identical. The
.32 and .28, respectively, with that for the white popu- fourth and fifth columns of Table VIII provide corre-
lation only slightly larger than that for nonwhite popu- lation coefficients from a heritability/environment in-
lation. This may be explained partially by the large num- teraction model from the structural equation analysis

ber of Asians in the nonwhite population. and the mixed or multilevel analysis. The social envi-

ronment is indexed by a two-category variable on
COMPARING WITH STRUCTURAL mother’s education. L-edu indicates a high school ed-
EQUATION MODELS ucation or low, and H-edu indicates at least some col-

. _ lege education. The heritability estimates for the two
In this section, we compare results from structural education groups may be calculated from these corre-

equation models, mixed or multilevel models, and Pear- |ation estimates. The results from the two types of
son’s correlation analysis. Structural equation models analysis are very similar.

(Neale and Cordon, 1992) have been established as the  The SEM heritability/environment interaction
main methodological approach for behavioral genetic model is quite unrestrictive in the sense that it estimates
analysis. For the comparative analysis, we have ex-one set of parameters for each group defined by sibling
tracted a sample of MZ (179) and DZ (353) twin pairs type and education. In comparison, the mixed models
from the Add Health Study. we presented in Tables IV and VI are more restrictive,
The basic structural equation model for paired data jn which the random effects of environmental variables
(figure omitted) has three latent variables representing, are assumed to be invariant across sibling type. In order
respectively, genetic, shared environmental, and non-to make the two analyses comparable, we estimated a
shared environmental influences. The model usually mixed model for Table VIl that allows the random ef-

has two outcome variables for the two siblings in a pair. fect for education to vary by sibling type. It should be
Three parameters would be estimated for the effects ofppinted out that the SEM analysis is not insensitive to

the latent variables on the outcome variables. Two ad-the order of the two siblings in a twin pair. A change
ditional parameters would be used to reflect the geneticof the order for some or all of the twin pairs may well
relatedness and the common environment, respectively change the results substantially.

of the two siblings in a pair. A SEM variance decom-
position model would include two setups like this, one
for MZ twins and the other for DZ twins. A SEM her-

itability/environment interaction model with the envi- Through the three applications, we have demon-

ronment indexed by two-category dummy variables strated some of the advantages of the mixed model for
would include four setups with one for each combina- behavior genetic studies. The mixed model appears to
tion of sibling type and environment category. be a promising alternative to existing approaches usu-

CONCLUDING REMARKS

Table VIII. Comparing Results from Structural Equation Models (SEM), Mixed Models,
and Pearson’s Correlation Analysis of Intellectual Development

Correlation coefficients

Variance decomposition models G*E interaction models
Types of siblings SEM Mixed Pearson (pairs) SEM Mixed
MZ twins .75 .76 .76 (179)
DZ twins .51 .50 .50 (353)
MZ twins/H-edu 77 .75
DZ twins/H-edu .51 .51
MZ twins/L-edu .73 .72

DZ twins/L-edu A7 .46
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ally employed in behavior genetic studies. Various ver- RANDOM INTERCEPT / SUBJECTE CLUSTER_ID
sions of the mixed model can be estimated by SAS, GROUP= TYPE:

HLM, Min, and other commercial statistical packages. RANDOM X1 X2 / SUBJECT= CLUSTER_ID;
An important issue that needs to be dealt with is spe-REPEATED / GROUP= TYPE;

cific hypothesis testing regardirg and c?, heritabil- _
ity and shared environmental influences, respectively. 11€S€ SAS codes are the same as the previous ones
Rather than estimated directly by the mixed model except the new line 5 that asks SAS to estimate random

these two quantities are calculated on the basis ofS/OPes for X1 and X2 at the cluster level.

several model-estimated parameters. Conventional(3) SAS codes for model (13)
straightforward hypothesis testing, therefore, is un-
available. Our preliminary work has shown that the
delta method and bootstrap resampling are two feasi-SET IN.SIBDATA;

ble approaches to this issue, but both require additionatél = 1,

computing and programming. The applications de- 22 = (TYPE> 1);

scribed in this article have probably only touched a Z3 = (TYPE > 2);

small portion of what the mixed model is capable of in Z4 = (TYPE > 3);

the context of behavior genetic analysis. Our predic- £° =(TYPE = 5);

tion is that the application list will be extended quickly PROC MIXED NOCLPRINT NOITPRINT COVTEST;
once social scientists interested in behavior geneticCLASS FAMILY_ID TYPE;

analysis become familiar with the methodology. MODEL PPVT = X1 X2 / SOLUTION;
RANDOM Z1 - 75/ SUBJECT= FAMILY_ID TYPE

DATA A;

= UN(1);
APPENDIXES REPEATED / GROUP= TYPE;
(1) SAS codes for model (4) Line 2 points to the input SAS dataset. The next five

lines creates the Z matrix for model (13). Line 11 asks

SAS to estimate the five variances described in model
(13). These variances need to be cumulated to obtain
the between variance for each TYPE of sibling.

PROC MIXED NOCLPRINT NOITPRINT COVTEST;
CLASS CLUSTER_ID TYPE;

MODEL PPVT = X1 X2 / SOLUTION;

RANDOM INTERCEPT / SUBJECT CLUSTER_ID

GROUP= TYPE; (4) SAS codes for model (15)
REPEATED / GROUP= TYPE;
RUN; DATA A;

In line one, NOCLPRINT and NOITPRRINT are output

controls. With COVTEST, PROC MIXED providesest SET IN.SIBDATA;

results for the random parameters. Line 2 declaresZl = 1;

CLUSTER_ID and TYPE as categorical variables. In line Z2 = (TYPE > 1);

3, we have the outcome variable on the left side of theZ3 = (TYPE > 2);

equal sign and the list of observed variables on the rightZ4 = (TYPE > 3);

side whose fixed effects will be estimated. With SOLU- Z5 = (TYPE = 5);

TION, SAS prints out the estimates for fixed effects. Line PROC MIXED NOCLPRINT NOITPRINT COVTEST;
4 tells SAS to estimate a variance for random effects atCLASS FAMILY_ID TYPE;

the cluster level with each cluster indicated by CLUS- MODEL PPVT = X1 X2 / SOLUTION;

TER_ID, and SAS estimates one such variance for eachRANDOM Z1-Z5 / SUBJECT= FAMILY_ID TYPE
sibling TYPE. Line 5 tells SAS to estimate a variance = UN(1);

for the random errors at the individual level, and SAS RANDOM X1 X2 / SUBJECT= FAMILY_ID;
estimates one such variance for each TYPE of siblings. REPEATED / GROUP= TYPE;

(2) SAS codes for model (7) ACKNOWLEDGMENTS
PROC MIXED NOCLPRINT NOITPRINT COVTEST; This work was supported by the Department of
CLASS CLUSTER_ID TYPE; Sociology and the Carolina Population Center at the

MODEL PPVT= X1 X2 / SOLUTION; University of North Carolina at Chapel Hill, the W. T.



The Mixed or Multilevel Model for Behavior Genetic Analysis
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