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We propose the mixed model or multilevel model as a general alternative approach to existing
behavior genetic analysis—an alternative to correlation analysis, the DeFries-Fulker analysis,
and structural equation modeling. The mixed or multilevel model handles readily families of be-
havioral genetic data, which include paired sibling data (e.g., pairs of MZ and DZ twins) and
clustered sibling data (e.g., a family of more than two biological siblings) as special cases. Not
only can a family of behavioral genetic data have more than two siblings, it can also contain
multiple types of siblings (e.g., a pair of MZ twins, a pair of DZ twins, a full sibling, and a half
sibling). In contrast to the traditional approaches, the mixed or multilevel model is insensitive
to the order of the siblings in a sibling cluster. We apply our approach to a large, nationally
representative behavior genetic sample collected recently by the Add Health Study. We demon-
strate the approach through several applications using both clustered and family complex
behavioral genetic data: conventional variance decomposition analysis, analysis of interactions
between genetic and environmental influences, and analysis of the possible genetic basis for
friendship selection. We compare results from the mixed or multilevel model, Pearson’s corre-
lation analysis, and the structural equation model.

KEY WORDS: Multilevel model; hierarchical linear model; the mixed model; DF analysis; and structural
equation models.

and Faraone, 1990). Consistent with our direct obser-
vation of the resemblance in physical traits among bio-
logically related relatives, genetic studies have found
that about 70–90% of variance in height and weight is
attributable to genetic influences (Grilo and Pogue-
Geile, 1991).

Compared with pathology and physical traits,
complex human behavior appears much more en-
vironmentally determined; nevertheless, behavior
geneticists have reported genetic effects on such seem-
ingly environmentally determined behavior as parent-
ing style, rate of accident occurrence in childhood,
television viewing habits, peer groups selection, social
support, marital disruption, education attainment, and
socioeconomic status (Plomin et al., 1994; Rowe,
1994).

In this paper, we propose the mixed (Searle et al.,
1992) or multilevel model (Mason et al., 1983; Gold-
stein, 1987, 1995; Bryk and Raudenbush, 1992) as an

INTRODUCTION

There is a rapidly growing body of evidence pointing
to an important part of genetics in the determination of
human pathology, psychopathology, and physical traits.
For example, many conditions of serious psycho-
pathology have been found to run in families. Numer-
ous studies show that the risk of schizophrenia for an
offspring of a schizophrenic parent is about 13 times
as high as that in the general population (Gottesman,
1991). The risk of manic-depressive psychosis for those
with a manic-depressive parent is about 10 times as
high as that for those without such a parent (Tsuang

1 Department of Sociology, University of North Carolina at Chapel
Hill, NC.

2 Department of Biostatistics, University of North Carolina at Chapel
Hill, NC.

3 To whom correspondence should be addressed at Department of
Sociology, University of North Carolina at Chapel Hill, 27599.



alternative statistical tool for behavior genetic analysis—
an alternative to the traditional correlation analysis, the
DeFries-Fulker analysis (DeFries and Fulker, 1985;
Rodgers and McGue, 1994; Cherny et al., 1992), and
structural equation models (Neale and Cardon, 1992).
When explicit measures of genes are unavailable, be-
havior genetic analysis resorts to genetically related in-
dividuals clustered into families. In this paper, we show
that the mixed model readily handles complex sibling
structure. Treating individuals as level-one units and
families as level-two units, the mixed model can be con-
ceptualized as a two-level multilevel linear model. While
most of our presentation is in terms of the mixed model,
we will make a point of relating it to the multilevel model
because of the popularity of the latter among social
scientists.

We classify behavior genetic data into three types.
The first consists of paired sibling data such as MZ or
DZ twins. In this type of data, while the individuals
within a pair are correlated due to genetic relatedness,
the individuals across pairs are considered independent.
We refer to the second type of data as clustered be-
havior genetic data, with each cluster containing two
or more siblings. The number of siblings in a cluster
may or may not be the same across clusters. All pairs
of siblings within a cluster are genetically related in the
same way. A cluster of four full siblings is an example
of clustered behavior genetic data. Paired sibling data
can be viewed as clustered data in which every cluster
consists of two genetically related individuals. Fami-
lies of behavior genetic data are the third and the most
general type of behavior genetic data. Some families
are not only larger, containing three or more siblings,
but also more complicated genetically, containing more
than one type of sibling. Conceivably, a family may
consist of a pair of MZ twins, a pair of DZ twins, two
full siblings, a half sibling, and two step siblings. Cor-
relation analysis and the DF analysis appear unable to
handle clustered or families of behavior genetic data.
Structural equation models are a much more general
and flexible approach, though the programming re-
quired for analyzing family data is likely to be com-
plex. In the next section, we describe the mixed model.
Then we show how the mixed or multilevel linear
model can be adapted to analyze clustered behavior
genetic data, and we describe the mixed or multilevel
model for the more complex families of behavior
genetic data. In both of these sections, we demonstrate
the methodology for behavior genetic analysis using
a nationally representative genetically informative
sample collected by the Add Health Study (Bearman
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et al., 1997). In the final section, we offer concluding
remarks.

THE MIXED MODEL

The general form of the mixed model is typically
described as

(1)

where Y is the vector of observed Yis, X is the matrix
of observed predictors, b is the vector of parameter for
the observed predictors, Z is the known design matrix
for the vector of unknown random effects u, and e is
the vector of random errors, ei’s (Searle, 1971; Searle
et al.,1992). The mixed model assumes that u and eare
mutually independent and each normally distributed
with E [u] 5 0, E [e] 5 0, Var[u] 5 G, and Var[e] 5 R.
Then the covariance matrix of Y is Var[Y] 5 ZGZ1 R.
The parameters in G and R can be estimated by the
method of maximum likelihood (ML) or restricted max-
imum likelihood (REML). With G and R, b can be es-
timated via the generalized least squares. In the fol-
lowing sections, we will show how the general form of
the mixed model (1) can be applied to specific problems
in behavior genetic studies. Earlier work by Eaves and
Gale (1974) and Eaves et al. (1978) for behavior ge-
netic analysis is closely related to, and may be consid-
ered a special case of, the mixed model.

MODELS FOR CLUSTERED BEHAVIORAL
GENETIC DATA

The Model

Clustered genetically informative data contain two
or more of the following types of genetically related in-
dividuals: monozygotic twins, dizygotic twins, full sib-
lings, half siblings, and cousins. Each cluster contains
only one type of genetically related individual and the
individuals across clusters are independent. Treating in-
dividuals as level-one units and clusters as level-two
units, the following two-level model without covariates
can be used to calculate the correlation for a sample of
genetically related individuals of a single type:

(2)

where Yij is the observed linear outcome for individual
i in cluster j, b0 is the intercept, uj is the cluster-specific
random effect, and eij is the individual-specific ran-
dom effect or the OLS-like error term. The standard
assumptions are that uj and eij are mutually independent
N (0, s2u) and N (0, s2e) random variables. The within-

Y u eij j ij= + +β0

Y X Zu e= b+ +



cluster or intraclass correlation can be obtained from 
r = s2

u/(s2
u + s2

e). When a sample contains pairs of MZ
twins, r would be the correlation between the twins.

Model (2) is a special case of the general mixed
model (1) and the matrices for (2) can be written as

where N is the
total number of clusters in the sample, and the total
number of elements in this vector is 

In the tradition of multilevel models, model (2) is
referred to as the combined model and the same model
is frequently represented by an equation system:

(3)

To cope with multiple types of clusters (MZ twins,
DZ twins, full siblings, half siblings, and cousins) and to
incorporate environmental influences, we expand (2) to

(4)

where t 5 m, d, f, h,or c, indicating typeof genetic re-
latedness within the clusters of individuals, and p in-
dexes P number of environmental variables, xijs. The
SAS codes for model (4) are given in Appendix 1. Al-
lowing the variance of eij to vary by genetic related-
ness (t) is crucial because the genetic theory expects
the within-cluster variance for more genetically related
clusters to be smaller. Following the standard practice
in behavior genetic analysis, we treat full siblings and
DZ twins separately even though they have the same
genetic relatedness. For a sample comprising multiple
types of clusters, the within-cluster correlation is r(t) =
s2

u(t) /(s
2
u(t) + s2

e(t)) and the within-cluster correlation for
MZ twins is r(m) = s2

u(m) /(s
2
u(m) + s2

e(m)).
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Model (4) is also a special case of the general
mixed model (1) and we give the matrices for (4) that
differ from the matrices for (2) as follows:

where zj(i) is an in-
dicator variable taking the value of 1 if the cluster type
is t, and 0 otherwise:

where rk = St zk(t) s
2
e(t).

Again, level-1 and level-2 models in (4) can be
written separately as in the multilevel model literature:

(5)

The results from model (4) or (5) can be used to
compute the within-cluster correlation by type of cluster
with or without adjusting for environmental influences.
To compute the correlations, we construct the following
system equations under the usual assumptions in behav-
ior genetic studies, including additive genetic variance,
little or no assortative mating, and equal shared envi-
ronmental influences across different types of clusters

(6)

h c

h c

h c

h c

h c

x md x m x

x md x d x

x f x f x

x h x h x

x c x c x

2 2

2 2

2 2

2 2

2 2

1 2

1 2

1 4

1 8

+ =

+ =

+ =

+ =

+ =

( ), ( ),

( ), ( ),

( ), ( ),

( ), ( ),

( ), ( ),

( )

( )

( )

( )

r

r

r

r

r

Y x
x x e

u

ij t j t ij

ij p pij ij t

j t j t

( ) ( )

( )

( ) ( )

(
.  .  .

(

= + +
+ + +

= +

β β
β β

β β

0 1 1

2 2

0 0

level 1 model)

level 2 model)

u u

G I

R

= ′

=

















=

















( , , , , ,  .  .  .  , ,  .  .  .  , ) ;

;     

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( )

u u u u u u

r
r

r

m d f h c N m N c

N

u m

u d

u c

M

1 1 1 1 1

2

2

2

1

2

J

s

s

s
O

O

and

Zj = ×1nj j m j d j f j h j cz z z z z1( , , , , ),( ) ( ) ( ) ( ) ( )

X =





















=

1

1
1

1

111 11

1 1 1

112 12

1

0 1

1 1

x x

x x
x x

x x

p

n pn

p

n N pn N

p

N N

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

;

( , , .  .  ., );

M M M

M M M

b β β β

The Mixed or Multilevel Model for Behavior Genetic Analysis 39



where h2
x is the heritability in the environment described

by x and are the proportions
of the variance owing to shared environmental influ-
ences among MZ and DZ twins, full siblings, half sib-
lings, and cousins, respectively, also in the environment
described by x. The first equation in (6) holds because
the total correlation within MZ twin pairs must be equal
to the sum of the correlation due to heritability and
the correlation due to the shared environmental influ-
ences. Given the results from (4) or (5), (6) has five
equations and five unknowns and can be solved for

. Note that the proportion
of the variance due to shared environmental influences
is allowed to vary across twins, full siblings, half sib-
lings, and cousins. When a single shared environmental
parameter, c2

x, is preferred, we have an overidentified
model. In such a case, the single shared environmental
parameter c2

x may be obtained by the least-squares
method, in which the estimated correlations are regressed
on the coefficients (1, 1/2, 1/2, 1/4, and 1/8) of h2

x. The
intercept in such a regression would be c2

x.
Model (4) can be expanded to incorporate the ran-

dom effects of environmental influences

(7)

where xpij is the pth environmental influence for indi-
vidual i in cluster j; b0 is the intercept; b1, b2, . . . , bp

and u1j, u2j, . . ., upj are the fixed and random coefficients
of the environmental influences, respectively; u0j(t) and
e0ij (t) are the random effects at the cluster and individ-
ual levels, respectively; and Var(u0j(t)) = s 2

u0(t),Var(u1j)
= s 2

u1, , . . . , Var(upj) = s 2
uP,Var(e0ij (t)) = s2

e0(t). We
provide SAS codes for model (7) in Appendix 2.

Model (7) is again an application of the general
mixed model (1). In the following, we describe the ma-
trices for (7) that have not been described before:
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Viewing (7) as a combined multilevel model, we
can write level-1 and level-2 models in (7) separately as

(8)

A more complicated model may be obtained by
adding one or more environmental influences in one
or more of the level-2 models in (8). Model (7) can
be used to study the interaction between heritability
and environment or the influences of nurture on the
expression of nature. When environmental influences
such as family income and parental education do not
vary within a cluster, xpij in (7) or (8) simplifies to
xpj for all xs. Assuming Cov (upj,up´j)= 0 for pÞp´, we
have

(9)

Now the within-cluster correlation, r(t)(Yij ,Yi´j |xj), is a
function of both the type of genetic relatedness and en-
vironmental influences. Given r(t)(Yij ,Yi´j|xj) for each t
and using (6), we can calculate the level of genetic or
shared environmental influences for each measured en-
vironment.

When measures of environmental influences are
available at the contextual level (neighborhood or
school), model (7) or (8) can be expanded further in
the framework of multilevel models:

(10)

where xijk and zk are measures of environmental influ-
ences at the individual and contextual levels, respec-
tively; b1 and g1 are their fixed effects; v0k, u0jk(g), and
e0ijk(g) are random intercepts at the individual, cluster,
and contextual levels, respectively; u1jk and v1k are the
random coefficients for xijk and zk, respectively. The
covariances across individual, cluster, and contextual
levels are assumed to be zero. Model (10) is a three-
level multilevel model with individuals as level-1 units,
clusters as level-2 units, and contexts as level-3 units.

Y u x
v v u e

ijk t xijk zk jk ijk

k zk k jk t ijk t

( )

( ) ( ),
= + + = +

+ + +
β β0 1 1 1

1 0 0 0

g

r
s s s

s s s s
( )( , , )

 .  .  .

 .  .  .
| | ( )

( ) ( )

t ij i j jY Y x
x x

x x

u t u j uP Pj

u t e t u j uP Pj

= + +
+ + +

+
+

0
2

1
2

1
2 2 2

0
2

0
2

1
2

1
2 2 2

Y x

x x e

u

u

u

u

ij t j t j ij

j ij Pj Pij ij t

j t j t

j t j t

j t j t

pj t p pj t

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

(

.  .  .

(

(

(

= + +

+ + +

= +

= +

= +

= +

β β

β β

β β

β β

β β

β β

0 1 1

2 2

0 0 0

1 1 1

2 2 2

level 1 model)

level 2 model)

level 2 model)

level 2 model)K

((level 2 model)



Alternatively, model (10) can be described as a multi-
ple equation system:

(11)

For simplicity, the model has only two environmental
variables, one at the individual level and the other at the
contextual level. Adding more environmental variables
at either or both levels is straightforward.

Applications of the Models

Application Data.In this section, we present re-
sults from applications of the mixed or multilevel
model. The data sources for these applications are the
National Longitudinal Study of Adolescent Health
(Add Health). Add Health is a school-based study of
the health-related behaviors of adolescents in grades
7–12 in the United States. In 1994, the in-school ques-
tionnaire was completed by more than 90,000 adoles-
cents from 134 schools. All students who completed an
in-school questionnaire as well as those who did not
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complete a questionnaire but who were listed on a
school roster were eligible for selection into the in-
home sample. A total of 12,105 adolescents were ac-
tually interviewed in the first wave of the in-home sur-
vey from April through December of 1995.

The data for our analysis come from the kinship
sample within the Add Health Study, which has delib-
erately incorporated the behavior-genetic designs as
components in an otherwise traditional survey. The ge-
netically informative sample is composed of six groups:
MZ twins, DZ twins, full biological siblings, half bio-
logical siblings, cousins, and biologically unrelated
adolescents living in the same household. Having
screened a population of more than 90,000 adolescents,
Add Health has identified a large number of genetically
related individuals. With six degrees of genetic relat-
edness embedded in a nationally representative survey,
this Add Health genetic sample provides a unique op-
portunity to examine the contribution of genetic and
environmental influences on children’s well-being. We
use two measure for children’s well-being: intellectual
development measured by an abridged version of the
Peabody Picture Vocabulary Test-Revised (PPVT) and
grade point average (GPA).

Application I: Variance Decomposition Analysis.
Table I presents parameter estimates and their standard
errors of three mixed or multilevel models of intellec-
tual development as examples of correlation analysis.
All three models can be viewed as special cases of
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Table I. Parameter Estimates and Their Standard Errors of the Mixed Models of
Intellectual Development as Examples of Correlation Analysis: Model A Allowing

a Single Across-Cluster Variance, Model B Allowing a Single Across-Cluster
Variance and Controlling for Race, and Model C Allowing Across-Cluster
Variance to Vary by Type of Genetic Relatedness and Controlling for Race

Model A Model B Model C
Parameter (se) Parameter (se) Parameter (se)

Intercept 100.6 (0.30) 104.1 (0.317) 104.0 (0.314)
Black 212.0 (0.584) 212.2 (0.565)
s 2

u, (for all types) 95.60 (5.13) 66.08 (4.12)
s 2

u(m) (MZ twins) 117.05 (14.9)
s 2

u(d) (DZ twins) 57.97 (8.33)
s 2

u( f ) (full sibs) 60.22 (6.08)
s 2

u(h) (half sibs) 54.90 (10.3)
s 2

u(c) (cousins) 39.14 (16.7)
s 2

e(m) (MZ twins) 48.41 (5.45) 52.27 (6.14) 43.84 (4.63)
s 2

e(d ) (DZ twins) 87.01 (6.22) 86.27 (6.02) 87.53 (6.58)
s 2

e( f ) (full sibs) 87.66 (4.42) 87.88 (4.38) 87.91 (4.67)
s 2

e(h) (half sibs) 94.19 (8.07) 92.93 (7.73) 95.56 (8.74)
s 2

e(c) (cousins) 132.3 (18.5) 115.4 (15.0) 121.6 (17.9)
22 logLikelihood 24591.7 24217.1 24189.5
Sample size 3129 3129 3129



model (4). Model A allows a single across-cluster vari-
ance (s2

u(t) 5 s2
u); model B is the same as the first model

except that it controls for race; and model C is the same
as model B except that it allows the across-cluster vari-
ance to vary by genetic relatedness (s2

u(t) 5 s2
u(t)). By

the likelihood ratio test, model (2) is highly significant
against model A, and model C is highly significant
against model B.

Table II presents correlation coefficients for in-
tellectual development by genetic relatedness. Column
(a) presents the correlations estimated by Pearson’s cor-
relation analysis using five race-adjusted samples each
for one type of genetic relatedness. The five race-
adjusted samples are residuals from a simple linear re-
gression with race as a single predictor (a black/white
dummy variable). The estimates indicate that the
strength of correlation varies systematically by genetic
relatedness, and these results are consistent with the
well-known findings reported previously (Plomin et al.,
1994). Columns b, c, and d are calculated from mod-
els A, B, and C of Table I, respectively. These results
indicate that varying between-cluster variance by ge-
netic relatedness is necessary for replicating the corre-
lation estimates traditionally obtained through correla-
tion analysis (column a vs. column d). In this particular
analysis, varying between-cluster variance can be jus-
tified statistically by a likelihood ratio test. These re-
sults also suggest that traditional correlation analysis
always allows the within-as well as between-cluster
variance to vary by genetic relatedness.

Application II: Genetic Basis for Friendship Se-
lection Among Adolescents.Friendship is built more on
similarity than differences. Friends are found to be sim-
ilar in height (Berkowitz, 1969), activities, needs, atti-
tudes, and personality (Berscheid and Walster, 1978).
It is hypothesized that part of the similarity is genetic.
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Friends are expected to be more genetically similar to
each other than randomly paired individuals.

Figure 1 illustrates a test of the hypothesis. Fig-
ure 1 shows the relationships among four persons: per-
son A, A’s friend, person B, and B’s friend. Person A
and A’s friend are likely to be similar with respect to
such personal characteristics as intellectual develop-
ment and certain attitudes; so are person B and B’s
friend. The friendship such as that between A and A’s
friend or B and B’s friend, however, does not clue us
in on whether any of the similarity between the two
friends is genetic.

To test the hypothesis of whether friendship has a
genetic basis, we let A and B be pairs of MZ twins, DZ
twins, full siblings, half siblings, and cousins with dif-
ferent and known genetic relatedness. If individuals do
select friends partially according to their genetic propen-
sity, we should see a positive correspondence between
the extent to which A and B are genetically related and
the strength of similarity between A’s friend and B’s
friend. For instance, we should find friends of MZ twins
significantly more similar than friends of DZ twins, and
friends of DZ twins about equally similar to friends of
full siblings. The inclusion of MZ twins and DZ twins
in the same analysis is necessary for obtaining a genetic
interpretation for friendship selection because the sim-

Table II. Correlation Coefficients Estimated by (a) Conventional
Correlation Analysis Using Separate Samples by Type of Genetic

Relatedness, (b) Based on Model A in Table I, (c) Based on Model
B in Table I, and (d) Based on Model C in Table I

Type of genetic
Correlation coefficient (number of pairs)

relatedness a b c d

MZ twins .727 (179) .664 .558 .727
DZ twins .399 (354) .524 .433 .398
Full siblings .399 (726) .522 .429 .406
Half siblings .350 (243) .504 .415 .364
Cousins .249 (89) .419 .364 .243

Fig. 1. Research design for studying genetics basis for friendship 
selection.



ilarity between A’s friend and B’s friend cannot be at-
tributed to genetic factors alone and because the simi-
larity between A and B also share certain environments.

In this application, we test the hypothesis using
data from the Add Health Study. The Add Health Study
has taken measures not only on a large number of ge-
netically related individuals but also on their friends
themselves. We estimate the correlation between A’s
friend and B’s friend by type of genetic relatedness be-
tween A and B after controlling for potential con-
founding effects. Age can be one such effect. The ge-
netic relatedness within a pair of DZ twins is the same
as that within a pair of full siblings. The two types of
pairs, however, differ in the age difference between the
two members of a pair. This possible age effect can be
easily incorporated in the analysis.

We use the following model for the analysis 
outlined:

(12)

Model (12) is a special case of model (4) presented ear-
lier. Adjusting for age, the correlation between A’s
friend and B’s friend with respect to Yij for a particular
genetic relatedness t is estimated by rt = s2

ut / (s
2
ut = s2

et).
Our hypothesis is that rm is considerably larger than rd

and rf, that rd and rf are approximately equal, that rd

and rf are larger than rh, and that rh is larger than rc.
In this particular application, the outcome variable

Yij is GPA. We expect that our hypothesis will find
more support in data consisting of only same-gender
friendships than in data consisting of only different-
gender friendships. We have a same-gender friendship
when A and A’s friend or B and B’s friend are of the
same gender. When an adolescent looks for a different-
gender friend, his or her criterion may be different from
those when the adolescent looks for a same-gender
friend. Similar GPA may be more important for a same-
gender friendship, whereas physical attractiveness may
be more important for a different-gender friendship.

Table III presents the estimates of correlations be-
tween A’s friend and B’s friend with respect to GPA
by genetic relatedness and by whether the friendship is
between the same gender or different gender. The find-
ings are consistent with our expectations. When the
friendships are between the same gender, the correla-
tion between MZ twins’ friends (.566) is much larger
than those between DZ twins’ friends (.223) and full
siblings’ friends (.266), which, in turn, are larger than
those for half siblings’ friends (.060) and cousins’
friends (0). The same pattern is not evident in the
different-gender data.

Y age u eij t ij j t ij t( ) ( ) ( )= + + +β β0 1

Application III: Interactions Between Environment
and Heritability. It is hypothesized that social condi-
tions modulate the expression of biological or genetic
predispositions (Bouchard et al., 1990; Rowe et al.,
forthcoming; Udry, 1996). Genes provide the potential,
but whether the potential can be realized is determined
by environmental conditions. The interactions between
genetics and environment can be illustrated dramati-
cally by comparing Asian immigrants to the United
States and U.S.-born Asians. Studies have found that
because of lifestyle and diet, U.S.-born Asians are twice
as likely as Asian immigrants to suffer from prostate
cancer (Cook et al., 1999) and that Asian American
adolescents born in the United States are more than
twice as likely to be obese as are adolescents who im-
migrated recently (Popkin and Udry, 1998).

Within a society, individuals may enjoy different
levels of opportunities or face different levels of soci-
etal constraint with respect to a particular behavior. It
is probably less likely for a minority child growing up
in an urban ghetto than a middle-class child of equal
genetic potential growing up in an affluent suburban
area to succeed in getting a first-rate education and a
middle-class income.

In application III, we test the hypothesis that dis-
advantaged environments decrease the influences of her-
itability and increase the influences of shared environ-
ments on children’s intellectual development. This
hypothesis can be tested explicitly by comparing the
level of heritability in advantaged environments with that
in disadvantaged environments via (7) and (9), examin-
ing environmental factors one at a time while control-
ling for the influences of other environmental factors.

Table IV presents fixed effects and the variances
of random effects from a mixed or multilevel model of
intellectual development measured by PPVT on
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Table III. The Mixed or Multilevel Model Estimates of Correlations
Between A’s Friend and B’s Friend with Respect to Grade Point

Average by Genetic Relatedness and by Whether the Friendship Is
Between the Same Gender or Different Gender (also see Fig. 1)

Correlation coefficient

Genetic relatedness Same gender Different gender

MZ twins .567 .399
DZ twins .223 .316
Full siblings .266 .180
Half Siblings .060 .200
Cousins .000 .023
Sample size 1924 1386



selected environmental variables using a genetic sam-
ple of MZ twins, DZ twins, full siblings, half siblings,
and cousins. The mixed model has included four envi-
ronmental variables: logarithm of family income, black
with white as the reference group, mother’s education,1

and Aid to Families with Dependent Children (AFDC).
AFDC is a dummy variable coded as 1 if the family re-
ceived AFDC at the time of the survey and 0 otherwise.
The fixed effects of all of these environmental vari-
ables are consistent with previous research. Of the vari-
ances of the random coefficients of the environmental
variables, only black is statistically significant. This
random coefficient is interpreted by the calculations
presented in Table V.

Using the parameter estimates from Table IV and
Eq. (9), we calculated heritability (h2) and proportions
of the variance owing to shared environmental influ-
ences among MZ and DZ twins (c2

(md)), full siblings
(c2

(f)), half siblings (c2
(h)), and cousins (c2

(c)) by race
(Table V). The values of the environmental variables
other than black are set at the sample means. The her-
itability among African Americans (.488) with respect
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to intellectual development is about 14.8% less than
that for whites (.573). On the other hand, the shared
environmental effects for African Americans are con-
siderably larger than those for whites regardless of the
type of clusters. The shared environmental effects for
whites are small, at most a few percentage points of the
total effects. Assuming that the environments for in-
tellectual development for African Americans are still
less favorable than those for whites after controlling
for family income, mother’s education, and welfare re-
ceipt, these results are consistent with our hypothesis.
The disadvantaged environments appear to have pre-
vented African Americans from fully realizing their ge-
netic potentials for intellectual development and to have
increased the relative importance of shared environ-
mental influences.

Table IV. Fixed Effects and the Variances of Random Effects from a Mixed or
Multilevel Model of Intellectual Development on Selected Environmental Variables:

MZ Twins, DZ Twins, Full Siblings, Half Siblings, and Cousins

Random
effects

(variance Standard Fixed effects Standard
components) errors (coefficients) errors

Intercept 89.81 1.48
Income 1.52 0.39
Black 22.22 9.35 29.87 0.65
Mother education 0.49 0.39 2.46 0.23
AFDC 24.63 17.19 22.77 1.07
s 2

u(m) (MZ twins) 77.25 15.08
s 2

u(d) (DZ twins) 39.84 11.21
s 2

u( f ) (full sibs) 25.19 7.68
s 2

u(h) (half sibs) 19.97 12.36
s 2

u(c) (cousins) 5.20 19.75
s 2

e(m) (MZ twins) 45.14 5.71
s 2

e(d) (DZ twins) 81.50 7.10
s 2

e( f ) (full sibs) 85.39 5.11
s 2

e( h) (half sibs) 101.73 10.73
s 2

e(c) (cousins) 107.71 19.06
logL 19427.16
Sample size 2545

1 Mother’s education is coded from 0 through 6 and treated as a
continuous variable: never went to school 5 0, ,8th grade 5 1,
8–11th grades 5 2, high school graduate or equivalent 5 3, some
college 5 4, college graduate 5 5, and professional training be-
yond four-year college 5 6.

Table V. Estimated Heritability (h2) and Proportions of the
Variance Owing to Shared Environmental Influences Among

MZ and DZ Twins (c2
dm), Full Siblings (c2

f ), Half
Siblings (c 2

h), and Cousins (c2
c ) by Race

h2 c2
dm c2

f c2
h c2

c

Blacks* .488 .214 .144 .243 .18
Whites .573 .077 2.015 .065 .028

*Other observed variables are set at the sample means.



MODELS FOR COMPLEX FAMILY
BEHAVIORAL GENETIC DATA

The Model

Earlier, we show how clustered data vis-à-vis paired
data can be handled readily by the mixed or multilevel
model. In this section, we propose a version of the mixed
or multilevel model that handles more complex family
behavioral genetic data. The complexity arises when
three or more siblings in a family form pairs that have
different degrees of genetic relatedness. Suppose that a
family has siblings A, B, and C. Siblings A and B are a
pair of MZ twins. Siblings A and C are a pair of full sib-
lings. So are siblings B and C. Clearly, this family of
siblings is no longer clustered data where all possible
pairs are genetically related the same way. A more com-
plicated sibling structure in a family may consist of more
different sibling pairs or clusters. For example, a family
may consist of siblings A, B, C, D, E, F, and G. A and
B are a pair of MZ twins. C and D are a pair of DZ twins.
E and F are full siblings to each other and to A, B, C, or
D. G is a half sibling to everybody else.

Our model for the complex sibship structure in a
family is another special case of model (1). We start
with a model equivalent to model (4) that estimates
both the within and between variances for the five dif-
ferent types of siblings while adjusting for the envi-
ronmental influences:

(13)

where Var(*uj (c)) = *s2
u0(c), Var(*uj (h)) = *s2

u0(h),
Var(*uj(f)) = *s2

u0(f), Var(*uj(d)) = *s2
u0(d), and Var(*uj(m))

= *s2
u0(m). The SAS codes for model (13) can be found

in Appendix 3. The model assumes rc , rh , rf , rd

, rm. Model (13) can also be used to analyze clustered
data. The relationship between model (4) and model (13)
can be shown through the relationship of the between
variances of model (4) and model (13) when the two
models are used to analyze the same data:

(14)

In this section, we only present matrices for
model (13) that differ from those for model (4). To
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accommodate the complex family sibship structures,
we construct a new design matrix Z that has zjs on the
main diagonal and 0s elsewhere. The zj is family spe-
cific. For a family that has one cousin, one half sib-
ling, one full sibling, two DZ twins, and two MZ
twins, the zj is

where the five columns are the five indicator variables
zc, zh, zf, zd and zm, representing the coding for the
cousin, the half sibling, the full sibling, the two DZ
twins, and the two MZ twins, respectively; the rows
within a family are sorted so that genetically less-related
siblings go first; alternatively, the rows can be sorted
so that the genetically most-related siblings go first:

u = (*u1(c),*u1(h),*u1( f ),*u1(d),*u1(m), . . ., *uN(c), . . . 
*uN(m))

´;

and

To include the random effects of environmental
influences, we extend model (13) to obtain

(15)

The SAS codes for this model are given in Appendix 4.
Similar to model (7), model (15) does not allow the
random slopes to vary by sibling types, although vary-
ing these slopes is possible. For a family that has one
cousin, one half sibling, one full sibling, two DZ twins,
and two MZ twins, the zj for (15) is

z
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and the matrices u and G are, respectively,

u = (u11, . . ., u1p, *u1(c), *u1(h), *u1(f ), *u1(d ), *u1(m),
. . . ,*uN1, . . .  *uNP, *uN(c), . . . ,*uN(m))

´; and

Using parameter estimates from (15), we can
calculate the correlation between two siblings of the
same type:

(16)

Models (13) and (15) may be conceptualized as
two-level multilevel models with siblings as level-1
units and families as level-2 units. However, these are
not conventional multilevel models, in which all pairs
of observations in the same cluster are correlated in the
same way. In contrast, models (13) and (15) allow the
observations in the same family to have various degrees
of correlation. Our models for complex family behav-
ioral genetic data may be considered an extension of
conventional multilevel models.

Applications of the Models

In this section, we apply models (13) and (15) to
the complex family data from the Add Health Study.
This sample includes not only white and black students
but also students from other ethnic groups. Of the 4999
students in the sample, more than 13% are found to live
in a family that has a complex sibling structure or a
family that consists of more than one type of sibling. The
actual percentage of the students living in a family with
a complex sibling structure must be substantially higher
than 13%. Because of the study design, the Add Health
data underrepresent the complexity of sibship structure
in American families. The Add Health Study is a school-
rather than household-based study. The study includes
students from the 7th grade to the 12th grade. Siblings
from the same family were included in the study only
when they were in these grades and when they went to
the schools under study at the time of the survey. Our
methodology should be considerably more useful for
sibling data from household surveys.
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In Table VI, we present the estimated fixed effects
and variances of random effects and their standard errors
from two mixed or multilevel models of intellectual de-
velopment. Model (13) is a basic model of variance de-
composition. Model (15) estimates parameters that may
be used to calculate the differential heritability asso-
ciated with the white population and the nonwhite pop-
ulation. By the likelihood ratio test, the two additional
parameters of nonwhite and the variance of nonwhite
are highly significant. Table VII presents correlation

Table VI. Estimated Fixed Effects and Variances of Random
Effects and Their Standard Errors from Two Mixed or Multilevel

Models of Intellectual Development Using Complex Family
Behavioral Genetic Data. The Model Numbers Correspond to the
Equation Numbers in the Text. Model (13) Is a Basic Variance
Decomposition Model and Model (15) Estimates the Interaction

Between Environment and Heritability

Model (13) Model (15)

Fixed effects
Intercept 98.4 (.24) 102.3 (.28)
Minorities 29.22 (.45)

Random effects
*s 2

u0(m) (MZ twins) 0.0 0.0
*s 2

u0(d) (DZ twins) 54.0 (17.8) 71.0 (16.4)
*s 2

u0( f ) (full sibs) 24.5 (13.3) 32.5 (11.1)
*s 2

u0(h) (half sibs) 0.0 0.0
*s 2

u0(c) (cousins) 31.1 (16.1) 28.3 (13.3)
*s 2

u0(u) (unrelated) 59.3 (11.2) 14.7 (9.3)
s 2

e( m) (MZ twins) 48.9 (4.2) 49.2 (4.3)
s 2

e( d) (DZ twins) 101.7 (6.4) 100.9 (6.3)
s 2

e( f ) (full sibs) 93.2 (4.1) 95.7 (4.3)
s 2

e( h) (half sibs) 117.8 (9.3) 118.2 (9.3)
s 2

e( c) (cousins) 161.4 (19.9) 165.8 (20.1)
s 2

e( u) (cousins) 127.6 (10.4) 132.1 (11.0)
Minorities 35.1 (7.6)
22logL 40058.2 39657.3
Sample size 4999 4999

Table VII. Correlation Coefficients Calculated from Parameters
Estimated from Models (13) and (15) Using Complex Family

Behavior Genetic Data

Correlation coefficient

Type of genetic
Model (15)

relatedness Model (13) Majorities Minorities

MZ twins .775 .748 .786
DZ twins .624 .590 .643
Full siblings .550 .441 .536
Half siblings .431 .266 .397
Cousins .360 .205 .320
Unrelated .317 .100 .274



coefficients calculated from parameters estimated from
models (13) and (15). Model (15) yields two sets of cor-
relation coefficients, one for the white population and
the other for the nonwhite population. The implied her-
itabilities for the white and nonwhite populations are
.32 and .28, respectively, with that for the white popu-
lation only slightly larger than that for nonwhite popu-
lation. This may be explained partially by the large num-
ber of Asians in the nonwhite population.

COMPARING WITH STRUCTURAL
EQUATION MODELS

In this section, we compare results from structural
equation models, mixed or multilevel models, and Pear-
son’s correlation analysis. Structural equation models
(Neale and Cordon, 1992) have been established as the
main methodological approach for behavioral genetic
analysis. For the comparative analysis, we have ex-
tracted a sample of MZ (179) and DZ (353) twin pairs
from the Add Health Study.

The basic structural equation model for paired data
(figure omitted) has three latent variables representing,
respectively, genetic, shared environmental, and non-
shared environmental influences. The model usually
has two outcome variables for the two siblings in a pair.
Three parameters would be estimated for the effects of
the latent variables on the outcome variables. Two ad-
ditional parameters would be used to reflect the genetic
relatedness and the common environment, respectively,
of the two siblings in a pair. A SEM variance decom-
position model would include two setups like this, one
for MZ twins and the other for DZ twins. A SEM her-
itability/environment interaction model with the envi-
ronment indexed by two-category dummy variables
would include four setups with one for each combina-
tion of sibling type and environment category.

The first three columns of Table VIII display cor-
relation coefficients from the variance decomposition
model from the structural equation analysis, the mixed
or multilevel analysis, and Pearson’s correlation analy-
sis. The three sets of results are almost identical. The
fourth and fifth columns of Table VIII provide corre-
lation coefficients from a heritability/environment in-
teraction model from the structural equation analysis
and the mixed or multilevel analysis. The social envi-
ronment is indexed by a two-category variable on
mother’s education. L-edu indicates a high school ed-
ucation or low, and H-edu indicates at least some col-
lege education. The heritability estimates for the two
education groups may be calculated from these corre-
lation estimates. The results from the two types of
analysis are very similar.

The SEM heritability/environment interaction
model is quite unrestrictive in the sense that it estimates
one set of parameters for each group defined by sibling
type and education. In comparison, the mixed models
we presented in Tables IV and VI are more restrictive,
in which the random effects of environmental variables
are assumed to be invariant across sibling type. In order
to make the two analyses comparable, we estimated a
mixed model for Table VIII that allows the random ef-
fect for education to vary by sibling type. It should be
pointed out that the SEM analysis is not insensitive to
the order of the two siblings in a twin pair. A change
of the order for some or all of the twin pairs may well
change the results substantially.

CONCLUDING REMARKS

Through the three applications, we have demon-
strated some of the advantages of the mixed model for
behavior genetic studies. The mixed model appears to
be a promising alternative to existing approaches usu-
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Table VIII. Comparing Results from Structural Equation Models (SEM), Mixed Models,
and Pearson’s Correlation Analysis of Intellectual Development

Correlation coefficients

Variance decomposition models G*E interaction models

Types of siblings SEM Mixed Pearson (pairs) SEM Mixed

MZ twins .75 .76 .76 (179)
DZ twins .51 .50 .50 (353)
MZ twins /H-edu .77 .75
DZ twins /H-edu .51 .51
MZ twins /L-edu .73 .72
DZ twins /L-edu .47 .46



ally employed in behavior genetic studies. Various ver-
sions of the mixed model can be estimated by SAS,
HLM, Mln, and other commercial statistical packages.
An important issue that needs to be dealt with is spe-
cific hypothesis testing regarding h2 and c2, heritabil-
ity and shared environmental influences, respectively.
Rather than estimated directly by the mixed model,
these two quantities are calculated on the basis of
several model-estimated parameters. Conventional
straightforward hypothesis testing, therefore, is un-
available. Our preliminary work has shown that the
delta method and bootstrap resampling are two feasi-
ble approaches to this issue, but both require additional
computing and programming. The applications de-
scribed in this article have probably only touched a
small portion of what the mixed model is capable of in
the context of behavior genetic analysis. Our predic-
tion is that the application list will be extended quickly
once social scientists interested in behavior genetic
analysis become familiar with the methodology.

APPENDIXES

(1) SAS codes for model (4)

PROC MIXED NOCLPRINT NOITPRINT COVTEST;
CLASS CLUSTER_ID TYPE;
MODEL PPVT 5 X1 X2 / SOLUTION;
RANDOM INTERCEPT / SUBJECT 5 CLUSTER_ID
GROUP 5 TYPE;
REPEATED / GROUP 5 TYPE;
RUN;

In line one, NOCLPRINT and NOITPRRINT are output
controls. With COVTEST, PROC MIXED provides z test
results for the random parameters. Line 2 declares
CLUSTER_ID and TYPE as categorical variables. In line
3, we have the outcome variable on the left side of the
equal sign and the list of observed variables on the right
side whose fixed effects will be estimated. With SOLU-
TION, SAS prints out the estimates for fixed effects. Line
4 tells SAS to estimate a variance for random effects at
the cluster level with each cluster indicated by CLUS-
TER_ID, and SAS estimates one such variance for each
sibling TYPE. Line 5 tells SAS to estimate a variance
for the random errors at the individual level, and SAS
estimates one such variance for each TYPE of siblings.

(2) SAS codes for model (7)

PROC MIXED NOCLPRINT NOITPRINT COVTEST;
CLASS CLUSTER_ID TYPE;
MODEL PPVT 5 X1 X2 / SOLUTION;
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RANDOM INTERCEPT / SUBJECT 5 CLUSTER_ID 
GROUP 5 TYPE;

RANDOM X1 X2 / SUBJECT 5 CLUSTER_ID;
REPEATED / GROUP 5 TYPE;

These SAS codes are the same as the previous ones
except the new line 5 that asks SAS to estimate random
slopes for X1 and X2 at the cluster level.

(3) SAS codes for model (13)

DATA A;
SET IN.SIBDATA;
Z1 5 1;
Z2 5 (TYPE . 1);
Z3 5 (TYPE . 2);
Z4 5 (TYPE . 3);
Z5 5(TYPE 5 5);
PROC MIXED NOCLPRINT NOITPRINT COVTEST;
CLASS FAMILY_ID TYPE;
MODEL PPVT 5 X1 X2 / SOLUTION;
RANDOM Z1 – Z5 / SUBJECT 5 FAMILY_ID TYPE

5 UN(1);
REPEATED / GROUP 5 TYPE;

Line 2 points to the input SAS dataset. The next five
lines creates the Z matrix for model (13). Line 11 asks
SAS to estimate the five variances described in model
(13). These variances need to be cumulated to obtain
the between variance for each TYPE of sibling.

(4) SAS codes for model (15)

DATA A;

SET IN.SIBDATA;
Z1 5 1;
Z2 5 (TYPE . 1);
Z3 5 (TYPE . 2);
Z4 5 (TYPE . 3);
Z5 5 (TYPE 5 5);
PROC MIXED NOCLPRINT NOITPRINT COVTEST;
CLASS FAMILY_ID TYPE;
MODEL PPVT 5 X1 X2 / SOLUTION;
RANDOM Z1–Z5 / SUBJECT 5 FAMILY_ID TYPE

5 UN(1);
RANDOM X1 X2 / SUBJECT 5 FAMILY_ID;
REPEATED / GROUP 5 TYPE;
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