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Traits are highly polygenic, 
so not simply a matter of 
identifying ~5 overlapping 

genes

Schizophrenia

Depression



Estimates genetic correlations between samples 
with varying degrees of sample overlap using 

publicly available data



• To estimate SNP Heritability:
• Regress GWAS test statistic against 

LD Scores for all SNPs (not just 
significant ones)

• To estimate Genetic Correlation:
• Regress product of GWAS test 

statistics for two different 
phenotypes against LD Scores
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Pervasive (Statistical) Pleiotropy Necessitates 
Methods for Analyzing Joint Genetic 

Architecture



Background
• Genome-wide methods are clearly suggestive of both high 

polygenicity and pervasive pleiotropy 

• Genetic correlations as data to be modeled, not simply results by 
themselves
• What data-generating process gave rise to the correlations?



Genomic SEM
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Our solution: GenomicSEM

• Apply structural equation model to estimated genetic covariance 
matrices
• Moves past family-based methods by allowing user to examine 

traits that could not be measured in the same sample

• Genomic SEM provides flexible framework for estimating limitless 
number of structural equation models using multivariate genetic 
data from GWAS summary statistics 
• Can be applied to sum stats with varying and unknown degrees 

of overlap



Short Primer on Structural Equation Modeling (SEM)



x .401 uyy .84

Imagine we knew the generating 
causal process

y = .40 x + uy x ~ (0,1)  , uy ~ (0,.84)
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x .401 uyy .84

Imagine we knew the generating 
causal process

y = .40 x + uy x ~ (0,1)  , uy ~ (0,.84)

z = .60 y + uz uz ~ (0,.64) 

z

.60

uz .64
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cov(x,y,z)pop =

1
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Implied covariance matrix
in the population



In practice, we only observe the sample data,
and we propose a model

.94

.33 1.02

.27 .62 1.02

observed covariance matrix
in a sample

1.00

.40 1.00

.24 .60 1.00

covariance matrix
in population

≈



For the proposed model,
estimate parameters from the data,
and evaluate model fit to the data

cov(x,y,z)sample =

.94

.33 1.02

.27 .62 1.02
xσ2

x uyy

z

byz

uz
1

1 σ2
uy

σ2
uz

bxy

6 unique elements in the covariance matrix being modeled
5 free model parameters
1 degree of freedom (df)



For the proposed model,
estimate parameters from the data,
and evaluate model fit to the data

cov(x,y,z)sample =

x.94 uyy

z
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1 .90

.63

.35
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cov(x,y,z)implied =

.94

.33 1.03

.20 .63 1.00



The model that we fit may include some 
variables for which we do not observe data
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F is unobserved.
Parameters are estimated from,
and fit is evaluated relative to,
the sample covariance matrix for y1-yk.



The model that we fit may include some 
variables for which we do not observe data
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Genomic SEM uses these principles to fit structural equation 
models to genetic covariance matrices derived from GWAS 

summary statistics using 2 Stage Estimation

• Stage 1: Estimate Genetic Covariance Matrix and 
associated matrix of standard errors and their co-
dependencies
• We use LD Score Regression, but any method for 

estimating this matrix (e.g. GREML) and its sampling 
distribution can be used 

• Stage 2: Fit a Structural Equation Model to the 
Matrices from Stage 1



Fitting Structural Equation 
Models to GWAS-Derived 
Genetic Covariance 
Matrices



Start with GWAS Summary Statistics for the 
Phenotypes of Interest

• No need for raw data
• No need to conduct a primary GWAS yourself: 

Download them online!
• sumstats for over 3700 phenotypes have been helpfully 

indexed at http://atlas.ctglab.nl/
• sumstats for over 4000 UK Biobank phenotypes are 

downloadable at http://www.nealelab.is/uk-biobank

http://atlas.ctglab.nl/
http://www.nealelab.is/uk-biobank


Create a genetic covariance matrix, S: an “atlas of 
genetic correlations”

Diagonal elements are
(heritabilities)

Off-diagonal elements are
coheritabilities

Stage 1 Estimation: Multivariable 
LDSC



Stage 1 Estimation: Multivariable 
LDSC

Also produced is a second matrix, V, of squared 
standard errors and the dependencies between 
estimation errors

Diagonal elements are
squared standard errors of
genetic variances and covariances

Off-diagonal elements are dependencies 
between estimation errors used to directly 
model dependencies that occur due to 
sample overlap from contributing GWASs



Example: Genetic multiple regression
EAg = b1 × SCZg + b2 × BIPg + u

SCZ

.67 BIP

.11 .30 EA

S =

(df = 0, model parameters are a simply a transformation of the matrix)

Stage 2 Estimation: Specify the SEM

uEA1

b 2

b1
ρ B
IP
,S
C
Z

BIPg

EAg

SCZ
g



EAg = -.163 × SCZg + .406 × BIPg + u

RESULTS



Example 2: Model Comparisons for  
Neuroticism

• 12 neuroticism traits from round 1 of Neale Lab 
UKB GWAS

• Goal = use model fit indices to compare common 
factor, two-factor, and three-factor model





Model 1: Common Factor Model
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Model 2



Model 3



Comparison of Model Fit Indices
BUT Model 3 fits the best for CFI, SRMR and AIC

Model 2 fits better than Model 1

Model 1 does OK…..



Incorporating Genetic 
Covariance Structure into 
Multivariate GWAS 
Discovery



Example: the p factor as a GWAS 
target



pG

1

1 1 1 1 1

.86 (.06)

.81 (.06)
.46 (.04)

.29 (.09)

.53 (.08)

.26 (.11) .35 (.11) .79 (.07) .91 (.44) .71 (.36)

SCZg BIPg MDD
g

PTSDg ANXg

uSC
Z

uBIP uMDD uPTSD uANX



Add SNP Effects to the “Atlas”

Genetic Covariances
from LDSC

Betas from
GWAS sumstats

scaled to 
covariances
using MAFs



GWAS of a Latent Factor

pG

1 1 1 1 1

.86 (.06)

.81 (.06)
.46 (.04)

.29 (.09)

.53 (.08)

.26 (.11) .35 (.11) .79 (.07) .91 (.44) .71 (.36)

SCZg BIPg MDDg PTSDg ANXg

uSCZ uBIP uMDD uPTSD uANX

rs4552973
-.045 (.008)

up1 .998 (.049)

1



• 128 lead SNPs
• 27 unique loci not previously identified in 

any of the five univariate GWA studies (   )
• 41 previously significant in a univariate 

study, but not for p-factor (      )

• 1 significant QSNP estimate (*)



Cognitive 
performance

Educational 
attainment 

Non-cog Cog 

SNP  

GWAS by subtraction

0

0

𝜆Cog–CP
𝜆Cog–EA

𝜆Non-cog–EA

βNon-cogβCog



Even if you are not 
interested in genetics:

Can now examine systems of 
relationships between a wide array of 

(rare) traits 
that could not be measured in the 

same sample



Genetics of 
Early Onset 

Schizophrenia

Genetics of 
Late Onset 

Schizophrenia

Genetics of 
Late Onset 
Anorexia 
Nervosa

Genetics of 
Early Onset 

Anorexia 
Nervosa
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Practical



Practical outline

I. Initial considerations
II. Estimating common factor models
III. Estimating user specified model
IV. Estimating multivariate GWAS in 

Genomic SEM



I. Initial Considerations



Start with GWAS Summary Statistics for the 
Phenotypes of Interest

• No need for raw data
• No need to conduct a primary GWAS yourself: 

Download them online!
Example of the top of a summary statistics file



Where to get summary statistics

• List lots of resources on the Genomic SEM Wiki:
https://github.com/MichelNivard/GenomicSEM/wiki/2.-
Important-resources-and-key-information



Things to know before getting started

1. Be sure you are using summary statistics calculated 
within a single ethnic population

• Example: PTSD on PGC web-site 

2. Be sure to use LD scores that match the ethnic 
population in sum stats

3. Typically advisable to 
only include summary 
statistics from a GWAS 
with N >= 10,000 



Things to know before getting started

4. GenomicSEM allows for varying and unknown 
degrees of sample overlap

• The user does not need to know the specific levels of overlap

5. Multivariate GWAS in Genomic SEM uses listwise 
deletion

• If certain summary statistics have low genomic coverage 
this will affect the number of SNPs available for all included 
traits

6. Make sure you are not using a pruned list of 
summary statistics (e.g., the top 5,000 hits)



Things to know before getting started

7. Both the munge and sumstats functions in 
GenomicSEM use sample size to perform 
necessary conversions. Sample size from summary 
statistics file or provided by the user. 

In order to produce accurate results, this should be 
the total sample size for all included traits. 

Be wary of:
a. Summary statistics that report the effective samples
b. Publicly available summary statistics that exclude 

certain cohorts (e.g., 23andMe). 



II. Estimating Common Factor 
Models in Genomic SEM 



Three Primary Steps

1. Munge the summary statistics 
(munge)

2. Run LD-Score Regression to obtain 
the genetic covariance and 
sampling covariance matrices 
(ldsc)

3. Run the model (commonfactor)

Munge: convert 
raw data from one 

form to another



Lab

Using GWAS sumstats for:
• Schizophrenia (Pardiñas et al., 2018); N = 105,318
• Bipolar Disorder (Sklar et al., 2011); N = 16,731
• Major Depressive Disorder (Wray et al., 2018); N = 

173,005



Step 1: munge example code (done for you)



Example Munge .log file for bipolar disorder



Step 2: ldsc example code (done for you)



Step 2: ldsc example code

Populated with ld scores 
from the same ancestry



Set working directory and load in data!
Will likely print 24 warnings 

about replacing previous 
imports: OK TO IGNORE



Step 3: commonfactor example code



Pfactor$results

Parameter 
being 

estimated

Estimates and SE for 
model applied to 

genetic covariance
matrix

Estimates and SE for 
model applied to 

genetic correlation 
matrix



III. Estimate a User-Specified 
Model



Three Primary Steps

1. Munge the summary statistics 
(munge)

2. Run LD-Score Regression to obtain 
the genetic covariance and 
sampling covariance matrices 
(ldsc)

3. Specify and run the model 
(usermodel)

These two steps 
mirror that for 

models without 
SNP effects and 
need not be run 

again for the same 
traits



How to specify a model

We use the lavaan formula language, slightly extended:
Regression: 

A ~ B
(Co)variance:

A ~~ A; A ~~ B
Factor:

F1 =~ A + B + C + D
Fix a parameter:

A ~~ 1*B (the covariance between A and B is 1)

Name a parameter:
A ~~ a*B (the covariance between A and B = parameter label a)

Allows you to use model constraints for this parameter:
a > .001



Lets make that a bit more specific

Model1 <- “ A ~ B 
B ~ C”

Model2 <- “ A ~ B
A ~ C
B ~~ C”

ABC

A

B

C



Lets make that a bit more specific

Model3 <- “ F1 =~ NA*A + B + C
F1 ~~ 1*F1”

A B C

F1

1



Lets make that a bit more specific

Model3 <- “ F1 =~ 1*A + B + C”

A B C

F1

1



Lab

• Used GWAS sumstats for:
• Schizophrenia (Pardiñas et al., 2018); N = 105,318
• Bipolar Disorder (Sklar et al., 2011); N = 16,731
• Major Depressive Disorder (Wray et al., 2018); N = 

173,005
• Educational Attainment (Lee et al., 2019); N = 

766,035
• Insomnia (Jansen et al., 2019); N = 386,533



My preregistration

SCZ BIP MDD

F1

1
INSOM EA



Specify Arguments



YourModel$results

Parameter 
being 

estimated

Estimates and SE 
for model applied to 
genetic covariance

matrix

Estimates and SE for 
model applied to 

genetic correlation 
matrix matrix

Fully 
standardized 

estimates



YourModel$modelfit

• chisq: The model chi-square, reflecting index of exact fit to 
observed data, with lower values indicating better fit. 
• df and p_chisq: The degrees of freedom and p-value for the model 

chi-square. 

• AIC: Akaike Information Criterion. Can be used to compare 
models regardless of whether they are nested.

• CFI: Comparative Fit Index. Higher = better. > .90 = 
acceptable fit; > .95 = good model fit 

• SRMR: Standardized Room Mean Square Residual. Lower = 
better. < .10 = acceptable fit; < .05 = good fit



Delete Input for MY.model and run 
your own!



PRACTICAL: You Take Control

•As away of preregistering them, 
write your model down on paper

•Remember five variable names are: 
SCZ, BIP, MDD, EA, INSOM



IV. Multivariate GWAS in Genomic SEM



Four Primary Steps

1. Munge the summary statistics 
(munge)

2. Run LD-Score Regression to obtain the 
genetic covariance and sampling 
covariance matrices (ldsc)

3. Prepare the summary statistics for 
multivariate GWAS (sumstats)

4. Run the multivariate GWAS 
(commonfactorGWAS; userGWAS)

These two steps 
mirror that for 

models without 
SNP effects and 
need not be run 

again for the same 
traits



Lab

Using GWAS sumstats for:
• Schizophrenia (Pardiñas et al., 2018); N = 105,318
• Bipolar Disorder (Sklar et al., 2011); N = 16,731
• Major Depressive Disorder (Wray et al., 2018); N = 

173,005

• Pre-subset summary statistics downloaded online to 
100 HapMap3 SNPs 
• Not necessary (inadvisable) in practice; pragmatic just for 

workshop



Step 3: sumstats example code



Example sumstats .log file



GWAS functions 
combine the two

• GenomicSEM GWAS functions automatically combine 
output from Steps 2 and 3
• Creates as many covariance matrices as there are SNPs 

across traits

Behind the scenes

Step 2: Run ldsc
Step 3: Run sumstats

+ =



Step 4a: commonfactorGWAS
example code

• To save memory, saves only the effect of the SNP 
on the common factor



First five rows of the output
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𝑒V1! 𝑒V2! 𝑒V3! 𝑒V4! 𝑒V5!

λV1

λV2 λV3 λV4
λV5

F
G

SNPm𝜎SNP!

1
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λV2 λV3 λV4
λV5

"𝑏SNPm,V1

"𝑏SNPm,V2
"𝑏SNPm,V3 "𝑏SNPm,V4 "𝑏SNPm,V5

• Asks to what extent the effect of the SNP operates through the 
common factor
• 𝜒" distributed test statistic, indexing fit of the common pathways 

model against independent pathways model

uV
1

uV
2

uV
3

uV
4

uV
5

V1
g

1111

V2
g

V3
g

V4
g

V5
g

V1
g
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g
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1 1 1 1 1

Estimates of SNP level 
heterogeneity (QSNP)



Troubleshooting



Step 4b: userGWAS example code



Step 4b: userGWAS example code



If there’s time…
play around with some anthropometric traits

Note that you do not 
need to include all 

variables in the model



• BMI = Body Mass Index
• WHR = Waist Hip Ratio
• Waist = Waist Circumference
• Hip = Hip circumference
• CO = childhood obesity
• Height = Height
• BL = Birth Length
• BW = Birth Weight
• IHC = Infant Head Circumference

Variable Names





• Parallel processing for both userGWAS and 
commonfactorGWAS is available

• Parallel is the same as serial processing, except that 
it takes an additional cores argument specifying 
how many cores to use

• Ideal run-time scenario: split jobs across computing 
nodes on a cluster and run in-parallel
• All runs are independent of one another!

Final Notes



Overview

• Genomic SEM is ready for use today!
• Ask questions on our google forum
• https://groups.google.com/forum/#!forum/genomic-sem-users

• Lots can be done using existing, openly available GWAS 
summary statistics

• Models are flexible and up to the user

• Use Genomic SEM to derive sumstats for novel phenotypes 
for use in PGS analyses

https://groups.google.com/forum/


• See paper at: rdcu.be/bvn7t
• See github at: 

https://github.com/MichelNivard/GenomicSEM
• See tutorials at: 

https://github.com/MichelNivard/GenomicSEM/wi
ki

Resources

https://t.co/1oaEDcEEJu
https://github.com/MichelNivard/GenomicSEM
https://github.com/MichelNivard/GenomicSEM/wiki
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