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An atlas of genetic correlations across
human diseases and traits
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Estimates genetic correlations between samples
with varying degrees of sample overlap using
publicly available data
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* To estimate SNP Heritability:

* Regress GWAS test statistic against
LD Scores for all SNPs (not just
significant ones)

To estimate Genetic Correlation:
* Regress product of GWAS test
statistics for two different
phenotypes against LD Scores



Pervasive (Statistical) Pleiotropy Necessitates

Methods for Analyzing Joint Genetic
Architecture

Analysis of shared heritability in

common disorders of the brain

The Brainstorm Consortium*t
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Fig. 1. Genetic correlations across psychiatric phenotypes. The color of each box indicates the
magnitude of the correlation, and the size of the box indicates its significance (LDSC), with
significant correlations filling each square completely. Asterisks indicate genetic correlations that are
significantly different from zero after Bonferroni correction.
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Fig. 4. Genetic correlations across brain disorders and behavioral-cognitive phenotypes. The
color of each box indicates the magnitude of the correlation, and the size of the box indicates its
significance (LDSC), with significant correlations filling each square completely. Asterisks indicate
genetic correlations that are significantly different from zero after Bonferroni correction.
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Background

 Genome-wide methods are clearly suggestive of both high
polygenicity and pervasive pleiotropy

* Genetic correlations as data to be modeled, not simply results by
themselves

* What data-generating process gave rise to the correlations?
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Our solution: GenomicSEM

* Apply structural equation model to estimated genetic covariance
matrices

* Moves past family-based methods by allowing user to examine
traits that could not be measured in the same sample

* Genomic SEM provides flexible framework for estimating limitless
number of structural equation models using multivariate genetic
data from GWAS summary statistics

* Can be applied to sum stats with varying and unknown degrees
of overlap



Short Primer on Structural Equation Modeling (SEM)



Imagine we knew the generating
causal process

1 X x 2 4i®1>.84

y=.40x+u, x~(0,1) ,u,~(0,.84)



Imagine we knew the generating
causal process

1{X¢>y<@}.84

.60

7 41—©1>.64

y=.40x+u, x~(0,1) ,u,~(0,.84)

z=.60y+u, u,~ (0,.64)



Imagine we knew the generating
causal process

Implied covariance matrix

in the population
B « R EEECEEN 41—@}.84

1.00
.60
cov(X,Y,2)pop = | 40 | 1.00
z «1@1»64 24 | .60 |1.00
y=.40x+u, x~(0,1) ,u,~(0,.84)

z=.60y+u, u,~ (0,.64)



observed covariance matrix

in a sample

.94

.33

1.02

27

.62

1.02

N

In practice, we only observe the sample data,
and we propose a model|

covariance matrix
in population

1.00
40 |1.00
.24 |1 .60 | 1.00




For the proposed model,
estimate parameters from the data,
and evaluate model fit to the data

.94

COV(X;y;Z)sampIe = .33 | 1.02

02x<x X bxy > y 4—1—@}0%\/
27 | .62 |1.02

6 unique elements in the covariance matrix being modeled
5 free model parameters
1 degree of freedom (df)



For the proposed

model,

estimate parameters from the data,
and evaluate model fit to the data

94

35

RN 41_@}.90

.61

7 41_@} .63

COV(Xry;Z)sampIe =

COV(X;y;Z)impIied =

.94

33 | 1.02

27 | .62 |1.02
.94

33 | 1.03

20 | .63 | 1.00




The model that we fit may include some
variables for which we do not observe data

o2 (= 1 for scaling)

F is unobserved.

Parameters are estimated from,

and fit is evaluated relative to,

the sample covariance matrix for y;-y,.




The model that we fit may include some
variables for which we do not observe data




Genomic SEM uses these principles to fit structural equation
models to genetic covariance matrices derived from GWAS
summary statistics using 2 Stage Estimation

e Stage 1: Estimate Genetic Covariance Matrix and
associated matrix of standard errors and their co-
dependencies

* We use LD Score Regression, but any method for
estimating this matrix (e.g. GREML) and its sampling
distribution can be used

e Stage 2: Fit a Structural Equation Model to the
Matrices from Stage 1



Fitting Structural Equation
Models to GWAS-Derived
Genetic Covariance
Matrices



Start with GWAS Summary Statistics for the
Phenotypes of Interest

* No need for raw data

* No need to conduct a primary GWAS yourself:
Download them online!

e sumstats for over 3700 phenotypes have been helpfully
indexed at http://atlas.ctglab.nl/

* sumstats for over 4000 UK Biobank phenotypes are
downloadable at http://www.nealelab.is/uk-biobank

CHR SNP BP A1 A2 INFO OR SE P Nca Nco MAF
8 rs62513865 101592213 T C 0.957 1.01461 0.0153 0.3438 59851 113154 0.07330
8 rs79043588 106973048 999 1.02122 0.0136 ©0.1231 59851 113154 0.09200
8 rsl17396518 108690829 80 1.00331 0.0080 0.6821 59851 113154 0.43500
8 rs6994300 102569817 66 0.88126 0.4243 0.7658 16823 25632 0.00556
8 rs138449472 108580746 34 0.97181 0.0598 0.6320 41253 79756 0.00852
8 rs983166 108681675 91 0.99144 0.0080 0.2784 59851 113154 0.43200

> > > - >

G Q.
G 0.9
G 0.4
G 0.7
C 0.9


http://atlas.ctglab.nl/
http://www.nealelab.is/uk-biobank

Stage 1 Estimation: Multivariable
LDSC

Create a genetic covariance matrix, S: an “atlas of
genetic correlations”

Diagonal elements are
(heritabilities)

— —

~

h’
R
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5
_O-gl,gk O-g?_,gk h/\' y

Off-diagonal elements are
coheritabilities



Stage 1 Estimation: Multivariable
LDSC

Also produced is a second matrix, V, of squared
standard errors and the dependencies between
estimation errors

[ SE(R) Diagonal elements are
cov(h,0y10)  SE(Ggi50)° squared standard errors of
SE(,,.,) genetic variances and covariances
V, = :
SE(h )
SE(0,; 4)
SE(h;)" |

Off-diagonal elements are dependencies
between estimation errors used to directly
model dependencies that occur due to
sample overlap from contributing GWASs



Stage 2 Estimation: Specify the SEM

Example: Genetic multiple regression

EAg= bleCZg‘l'bzx BIPg+U

SCZ
11 | .30 | EA 3
Q

(df = 0, model parameters are a simply a transformation of the matrix)



RESULTS

$results
lhs op
1 EA ~
2 EA ~
3 SCz
10 SCZ
11 BIP
12 EA

rhs Unstand_Est

SCZ
BIP
BIP
SCZ
BIP

EA

-0.
Q.
. 12229827
. 25020062
. 13337232
. 07559303

(SIS I

09464024
32300380

(SIS IS TGS T S I S

Unstand_SE STD_Genot
.1630718
.4063490
. 6694887
. 0000000
. 0000000
. 8970141

.076689510
.118183679
.011879865
.017482875
.013696265
.007863554

EA, = -.163 x SCZ, + .406 x BIP, + U

.669 (.065)

GI—‘I—‘SSQI

ype STD_Genotype_SE
0.
0.14867882
0.06503310
0.
0
0

13214140

06987543

.10269196
.09331176

Standardized

STD_A1l
.1630718
. 4063490
.6694887
. 0000000
. 0000000
.8970141

(S I R S

897 (.093)



Example 2: Model Comparisons for
Neuroticism

e 12 neuroticism traits from round 1 of Neale Lab
UKB GWAS

* Goal = use model fit indices to compare common
factor, two-factor, and three-factor model



Genetic Correlation Matrix

mood

mood

misery

irritability

irritability

hurt

fedup

nervous

nervous

worry

tense

embarass

embarass

nerves

lonely

guilt




Model 1: Common Factor Model

chisq df p_chisq AIC CFI SRMR
4884.104 54 0 4932.104 0.8933184 0.1095286

69 (.03) \71 (.03) \
80 (.03) Y 80 (.03)
1 1 1 1
. OO E

25 (.01) .28 (.02) 43 (.02) .35 (.03) .33 (.02) 46 (.03) .39 (.02) .36 (.03) .52.(.03) .37 (.03) .50 (.04) 37(.03)

€
O



Model 2

chisq df p_chisq AIC CFI SRMR
2758.176 53 0 2808.176 0.9402513 0.0766612
76 (.02)

93 (.02) 82 (.03) 87 (.03) 86 (.03)

78 (.03) .88 (.02)

91 (.03) .76 (.03)

.82 (.03) .86 (.03)
.75 (.03) i .86 (.03)
1 1 1 1 1 1 1 1 1 1 1
909990 offcl= 99

1
13 (.02) 18(.02)  .39(.03) 23(.02)  .42(.04) 33(.03) 24 (.03) 44.(.03) 33 (.03) 26 (.03) 26 (.03) 26 (.03)



Model 3

chisq df p_chisq AIC CFI SRMR
1879.308 51 @ 1933.308 0.9596185 0.05733665
.67 (.03)

73 (.02) 84 (.02)

.90 (.03)

97 (.02) 85 (.03)

.87 (.03) 77 (.03)

80 (.04) .91(.02)

89(.03) .90 ( 03)
.94 (.03) 78 (.03) .89 (.03)
1 1 1 1 1 .

.06 (.02) .13 (.02) 37 (. 03) .17 (.02) .38 (.03) .25 (.03) 21 (.02) 41 (.03) 27 (.02) 20 (.02) 19 (.03) 18 (.03)




Comparison of Model Fit Indices

All models are wrong, but some are
useful.

- Geefzga E P Boex —

AZ QUOTES




Incorporating Genetic
Covariance Structure into

Multivariate GWAS
Discovery



Example: the p factor as a GWAS
target

The American Journal of REVIEWS AND OVERVIEWS

PsyC h I a t ry Mechanisms of Psychiatric Iliness
B 75" Voo of Pubicstion 1§

All for One and One for All: Mental Disorders in
One Dimension

Avshalom Caspi, Ph.D., Terrie E. Moffitt, Ph.D.

Clinical Psychological Science

The p Factor: One General Psychopathology - o A

Factor in the Structure of Psychiatric sagepub.
. 2 cpx.sagepub.com

Disorders? SSAGE




Genetic Correlation Matrix

SCZ
scz .86 (. 06) 53 (.08)
81 ( 06) 29 (.09)

BIP

MDD

PTSD

ANX

71 (.36)

[ ] ] ] EE——— | 26 (.11) 35 (.11)
0 0.110.220.330.44 0.550.66 0.77 0.88 0.99 1.1




Add SNP Effects to the “Atlas”

2

OsNp
L2  Genetic Covariances
Osnpgl  'h
from LDSC
S. = OsNp,g2  Og1,92 h,
Full — 5
OsNP,g3 Og1,53 Og.g3 h;
o, o, o, o e h?
SNP,gk “gl,gk “g2,gk “g3,gk k
Betas from
GWAS sumstats
scaled to

covariances
using MAFs



GWAS of a Latent Factor

Genetic Correlation Matrix
Al/ 998 (.049)

53 (.08)

0.1 0 0.1 0.2 0.3 0.4 0.510.610.710.810.911.01

71 (.36)



* 128 lead SNPs

* 27 unique loci not previously identified in
any of the five univariate GWA studies A)

357 : * 41 previously significant in a univariate

study, but not for p-factor (’ )

P-Factor
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GWAS by subtraction

BNon-cog

Cog Non-cog
/1Cog—EA
/1Cog—CP ANon-cog—EA
Cognitive Educational
performance attainment

S



Even if you are not
interested in genetics:

Can now examine systems of
relationships between a wide array of
(rare) traits
that could not be measured in the
same sample



Genetics of Genetics of

Early Onset Late Onset
Schizophrenia Schizophrenia

Genetics of Genetics of
Early Onset Late Onset
Anorexia Anorexia
Nervosa Nervosa




Genetics of Genetics of

Early Onset Late Onset
Schizophrenia Schizophrenia

Genetics of Genetics of
Early Onset Late Onset
Anorexia Anorexia
Nervosa Nervosa




Genetics of Genetics of

Early Onset Late Onset
Schizophrenia Schizophrenia

Genetics of Genetics of
Early Onset Late Onset
Anorexia Anorexia
Nervosa Nervosa




Genetics of Genetics of

Early Onset Late Onset
Schizophrenia Schizophrenia

Genetics of Genetics of
Early Onset Late Onset
Anorexia Anorexia
Nervosa Nervosa




Psychological Medicine

Genetic heterogeneity in self-reported depressive symptoms
identified through genetic analyses of the PHQ-9 nawre
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Practical outline

Initial considerations
l.  Estimating common factor models
Il. Estimating user specified model

V. Estimating multivariate GWAS in
Genomic SEM




. Initial Considerations



Start with GWAS Summary Statistics for the
Phenotypes of Interest

* No need for raw data

* No need to conduct a primary GWAS yourself:
Download them online!

Example of the top of a summary statistics file

SNP
rs62513865
rs79643588
rsl17396518

rs6994300
rs138449472
rs983166

BP Al A2

101592213
106973048
108690829
102569817
108580746
108681675

T

> > > - >

C
G
G
G
G
C

INFO OR SE
0.957 1.01461 0.0153
0.999 1.02122 0.0136
0.980 1.00331 0.0080
0.466 0.88126 0.4243
0.734 0.97181 0.0598
0.991 0.99144 0.0080

P Nca
0.3438 59851
0.1231 59851
0.6821 59851
0.7658 16823
0.6320 41253
0.2784 59851

Nco
113154
113154
113154

25632
79756
113154

MAF
0.07330
0.09200
0.43500
0.00556
0.00852
0.43200



Where to get summary statistics

e List lots of resources on the Genomic SEM Wiki:
https://github.com/MichelNivard/GenomicSEM/wiki/2 .-

Important-resources-and-key-information

What you need to know about GWAS before you get started

1. A genome wide association study (GWAS) boils down to a linear regression of a phenotype (y)
on a genetic variant, usually a single nucleotide polymorphism (x). This regression results in a
parameter estimate (beta), test statistic (Z or t) for each SNP, and information that can be used
to determine with respect to which allele the effect size is computed. When available for a
considerable portion of all SNPs, this information is sufficient to compute the heritability of the
traits and genetic correlation between traits. This information is also sufficient to fit structural
equation models to the genetic covariance between several traits.

g

You need the full or very lightly cleaned summary statistics generated from a GWAS, so if the
authors provide summary statistics only for the top 5.000 SNPs, or even the top 100.000
“pruned” SNPs this is not sufficient. Often if you get in touch with the authors, they have a
mechanism for you to obtain the full summary statistics. Sometimes this may involve you
agreeing not to identify the participants in their study. Sometimes you may need to sign some
documents.

w

You need to know whether the GWAS was a logistic regression, or a linear regression. Note that
not all case/control studies use logistic regression. This is because logistic regression can be
computationally prohibitive if sample sizes are huge. When a dichotomous outcome (e.g. a
case/control trait) is analyzed using a linear regression, this is called a “linear probability model"
and it is strictly speaking misspecified. The function sumstats does know how to deal with this
scenario, and please see the package help for instructions. The package also can deal with a
GWAS of a continuous trait being analyzed using linear regression (use the oLs flagin

sumstats to indicate which GWAS are of continuous traits), or a case/control traits analyzed
using logistic regression (the default in sumstats ). Another issue is the use of “linear mixed
models” (LMM) in GWAS. These models are used to guard against populations stratification, and

Where to get GWAS summary statistics.

Below is a brief, and incomplete list of links to consortia data pages, where summary statistics are
available.

1. The PGC (Psychiatric Genomics Consortium), has analyzed all common DSM-IV axis-I psychiatric
disorders (MDD, Schizophrenia, ADHD, OCD, Bipolar Disorder and more)

2. The SSGAC (Social Sciences Genetic Association Consortium) performs genome wide association
studies of a variety of social and psychological traits like education, personality, and
reproductive behavior.

w

. The Nealelab quickly ran and published online GWAS of >4000 traits that were measured as
part of the UK Biobank. These traits include many disease (ICD-10 diagnostic codes, both self
reported and based on hospital data), social traits (e.g. social deprivation), personality traits (e.g.
neuroticism), cognition (e.g. memory) and many more (from snoring to the propensity to drive
to fast). The Nealelab ran these GWAS very quickly and as a service to the field. Their GWAS of
case/control traits use linear regression (linear probability model). Please read their extensive
read me which describes their GWAS analysis in detail.

~

The CCACE (Centre for Cognitive Ageing and Cognitive Epidemiology has published GWAS on
assorted personality traits, cognitive traits, and tiredness.

v

. Members of the CTGlab (Complex Trait Genetics Lab) published several high quality GWAS on
1Q, insomnia and other traits.

6. The GPC (Genetics of Personality Consortium) published several, slightly dated, GWAS on the
"Big 5" personality scales.

7. The EGG (Early Growth Genetics) Consortium performs GWAS of traits related to early growth.
8. The GIANT consortium publishes GWAS, mainly about antropomorpic traits.

9. The ENIGMA consortium which has published GWAS of subcortical brain volumes and
hippocampal volumes.



Things to know before getting started

1. Be sure you are using summary statistics calculated
within a single ethnic population

* Example: PTSD on PGC web-site

2. Be sure to use LD scores that match the ethnic
population in sum stats

. : PTSD Download Al
3. Typ|Ca I |y advisable to All participants Download AA
. African Americans (AA) | Download EA
only include summary  european Ancestry (EA) Sownload FAA
. . Female African American(FAA) | Download FEA
statistics from a GWAS e furopean (Fea Sownload FTE
: — Female Trans Ethnic (FTE) Download MAA
Wlth N >= 101000 Male African American (MAA) | Download MEA
Male European Ancestry (MEA) | Download MTE
Male Trans Ethnic (MTE)




Things to know before getting started

4. GenomicSEM allows for varying and unknown
degrees of sample overlap
 The user does not need to know the specific levels of overlap

5. Multivariate GWAS in Genomic SEM uses listwise
deletion

* |If certain summary statistics have low genomic coverage
this will affect the number of SNPs available for all included
traits

6. Make sure you are not using a pruned list of
summary statistics (e.g., the top 5,000 hits)



Things to know before getting started

7. Both the munge and sumstats functions in
GenomicSEM use sample size to perform
necessary conversions. Sample size from summary
statistics file or provided by the user.

In order to produce accurate results, this should be
the total sample size for all included traits.

Be wary of:
a. Summary statistics that report the effective samples

b. Publicly available summary statistics that exclude
certain cohorts (e.g., 23andMe).



Il. Estimating Common Factor
Models in Genomic SEM



hree Primary Steps

ny th fatisti Munge: convert
- viunge the summary StatisStiCs raw data from one

(munge) form to another

2. Run LD-Score Regression to obtain
the genetic covariance and
sampling covariance matrices

(1dsc)

3. Run the model (commonfactor)



Lab

Using GWAS sumstats for:
 Schizophrenia (Pardinas et al., 2018); N = 105,318
* Bipolar Disorder (Sklar et al., 2011); N = 16,731

* Major Depressive Disorder (Wray et al., 2018); N =
173,005



Step 1: munge example code (done for you)

#STEP 1: MUNGE THE FILES.
#Takes four necessary arguments:

#files = the name of the summary statistics files
files<-c("SCZ HM3.txt", "BIP HM3.txt", "MDD HM3.txt")
#hm3 = the name of the reference file to use for

alligning effects to same ref allele across traits
hm3<-"w hm3.noMHC.snplist"

#trait.names = names used to create the .sumstats.gz
output files
trait.names<-c("SCZ HM3","BIP HM3","MDD HM3")

#N = total sample size for traits
N<-c (105318, 16731, 173005)

#Run the munge function. This will create three
.sumstats.gz files (e.g., SCZ HM3.sumstats.gz).
munge (files=files,hm3=hm3, trait.names=trait.names, N=N)



Example Munge .log file for bipolar disorder

Munging file: BIP_HM3.txt

Interpreting the snpid column as the SNP column.

Interpreting the al column as the Al column.

Interpreting the a2 column as the A2 column.

Interpreting the or column as the effect column.

Interpreting the info column as the INFO column.

Interpreting the pval column as the P column.

Interpreting the CEUaf column as the MAF (minor allele frequency) column.

Merging file: BIP_HM3.txt with the reference file: w_hm3.noMHC.snplist

1063333 rows present in the full BIP_HM3.txt summary statistics file.

@ rows were removed from the BIP_HM3.txt summary statistics file as the rs-ids for these rows were
not _nresent _in _the reference file

The effect column was determined to be coded as an odds ratio (OR) for the BIP_HM3.txt summary
statistics file. Please ensure this is correct.

703 TOW(S) Were removed Trom the BIP_HAM3.LTtXt Summary Statlistics Tile dueé to the errect allele (AIL)
column not matching Al or A2 in the reference file.

1 row(s) were removed from the BIP_HM3.txt summary statistics file due to the other allele (A2)
column not matching Al or A2 in the reference file.

260291 rows were removed from the BIP_HM3.txt summary statistics file due to INFO values below the
designated threshold of 0.9

44230 rows were removed from the BIP_HM3.txt summary statistics file due to missing MAF
information or MAFs below the designated threshold of 0.01

758608 SNPs are left in the summary statistics file BIP_HM3.txt after QC.

I am done munging file: BIP_HM3.txt

The file is saved as BIP_HM3.sumstats.gz in the current working directory.




Step 2: ldsc example code (done for you)

#STEP 2: RUN LD-SCORE REGRESSION

#Takes four necessary arguments:

#traits = the name of the .sumstats.gz traits
traits<-c("SCZ HM3.sumstats.gz", "BIP HM3.sumstats.gz",
"MDD HM3.sumstats.gz")

#sample.prev = the proportion of cases in sum stats. For
quantitative traits list NA
sample.prev <- c(.39,.45,.35)

#population.prev = lifetime prevalence of the traits
(pull from existing literature)
population.prev <- c(.01,.01,.16)



Step 2: ldsc example code

#1d = folder of LD scores used as predictors in ldsc
ld <- "eur w 1ld chr/"

#wld = folder of LD scores used as welghts in ldsc
(almost always same file as 1d)

wld <- "eur w 1d chr/"
#trait.names = optional fifth argument to list trait names
trait.names<-c("SCzZ", "BIP", "MDD")

#Run the ldsc function
PSYCH COV<-ldsc(traits=traits, sample.prev=sample.prev,
population.prev=population.prev, ld=1ld, wld=wld,

trait.names=trait.names)

Populated with Id scores
from the same ancestry




Set working directory and load in data!

#load in the package Will likely print 24 warnings

require(GenomicSEM) - about replacing previous
imports: OK TO IGNORE

#load in the example ldsc objects that we will use for the practical
setwd("")

load("GenomicSEMPractical .RData")



Step 3: commonfactor example code

#STEP 3: ESTIMATE THE COMMON FACTOR MODEL
#requires only one necessary argument:
#covstruc = the output from the ldsc function
covstruc<-PSYCH COV

#an optional second argument can be provided for the
estimation method
estimation<-"DWLS"

#run the commonfactor model below
PFactor <- commonfactor (covstruc=covstruc,estimation=

estimation)

#Print PFactor results
PFactor$Sresults




PfactorSresults

lhs op rhs Unstandardized_Estimate Unstandardized_SE Standardized_Est Standardized_SE

F1 =~ SCZ
F1 =~ BIP
F1 =~ MDD
SCZ ~~ SCZ
BIP ~~ BIP
MDD ~~ MDD

Parameter
being

estimated

0.48075155
0.38467648
0.12139721
0.01481074
0.11636844
0.08635352

0.051804457
0.040843715
0.015659093
0.049701537
0.038587291
0.007587214

Estimates and SE for
model applied to
genetic covariance

matrix

0.96942110
0.74818767
0.38181492
0.06022274
0.44021521
0.85421737

0.10446213
0.07944017
0.04925052
0.20209397
0.14597353
0.07505346

Estimates and SE for

model applied to

genetic correlation
matrix



. Estimate a User-Specified
Vodel




Three Primary Steps

These two steps
mirror that for
models without
SNP effects and
need not be run
again for the same
traits

3. Specify and run the model
(usermode]l)



How to specify a model

We use the lavaan formula language, slightly extended:
Regression:
A~B
(Co)variance:
A~ A, A~ B
Factor:
F1=~A+B+C+D
Fix a parameter:
A ~~ 1*B (the covariance between A and B is 1)

Name a parameter:
A ~~ a*B (the covariance between A and B = parameter label a)

Allows you to use model constraints for this parameter:
a>.001



Lets make that a bit more specific

Modell <-“A~B

B~ C” C\‘c EB s A F

Model2 <-“A~B
B
B ~ Y C” C




Lets make that a bit more specific

Model3 <- “F1 ==~ NA*A+B+C
F1 ~~ 1*F1”




Lets make that a bit more specific

Model3 <-“F1=1*A+B +C”




Lab

* Used GWAS sumstats for:
 Schizophrenia (Pardinas et al., 2018); N = 105,318
* Bipolar Disorder (Sklar et al., 2011); N = 16,731

* Major Depressive Disorder (Wray et al., 2018); N =
173,005

e Educational Attainment (Lee et al., 2019); N =
766,035

* Insomnia (Jansen et al., 2019); N = 386,533



My preregistration

MY .model<-"F1=~NA*SCZ+BIP+MDD

F1~~1*F1
INSOM~F1
EA~INSOM"

L



Specify Arguments

#STEP 3: SPECIFY AND RUN USER MODEL

#Takes two necessary arguments:

#1. covstruc = the output from multivariable ldsc

#in this example = ldsc results for Schizophrenia, Bipolar, MDD, EA, and Insomnia
covstruc<-PRAC_COV

#2. model = the user specified model
MY .model<-"F1=~NA*SCZ+BIP+MDD
Fl~~1*F1

INSOM~F1

EA~INSOM"

#estimation = an optional third argument specifying the estimation method to use
estimation<-"DWLS"

#std.lv = optional fourth argument specifying whether variances of latent variables should be set to 1
std.lv=FALSE

#Run your model
YourModel<- usermodel(covstruc=covstruc, model=MY.model,estimation=estimation,std.lv=std.1lv)



YourModelSresults

Parameter
being

estimated
lhs op rhs
F1 =~ SCZ

F1 =~ BIP

F1 =~ MDD

F1 ~~ F1
SCZ ~~ SCZ
BIP ~~ BIP
MDD ~~ MDD
EA ~~ EA

EA ~ INSOM
INSOM ~~ INSOM
INSOM ~ F1

Estimates and SE
for model applied to
genetic covariance

7\

Unstand_Est

Q.
.38395469
.12622644
. 00000000
.02232836
.11533845
.08482525
.10068370
.50012902
.04648542
.00904497

SO0 ree

S

47126308

matrix

0.049303074480831
0.0402934507361647
0.0153598110078367

0.0471686012314039
0.0382930314300862
0.00768672483793622
0.00235251255367696

0.00300630225091781

Estimates and SE for

. Fully
mOd,el applied FO standardized
genetic correlation estimates
matrix matrix
Unstand_SE STD_Genotype STD_Genotype_SE STD_ALlL
0.7915818 0.0612497026504305 0.7915817
0.8222514 0.0651918967406813 0.8222512
0.5023109 0.0475709212458088 ©0.5023109
1.0000000 1.0000000
0.3733984 0.100780802429095 0.3733984
0.3239031 0.134336803656722 ©.3239029
0.7476836 0.0824663432925547 0.7476837
0.8959785 0.0440255986189161 0.8959782
0.0388279618666308 -0.3220857 0.0204667735439688 -0.3225241
0.9918926 0.0268569076127303 0.9891972
0.1040779 0.0192029404218759 0.1039364

0.00519588588484769



YourModelSmodelfit

chisq df p_chisq
186.8647 5 1.827715e-38

AIC
206 .8647

CFI
0.800525

SRMR
0.141147

 chisq: The model chi-square, reflecting index of exact fit to

observed data, with lower values indicating better fit.

» df and p_chisq: The degrees of freedom and p-value for the model

chi-square.

e AIC: Akaike Information Criterion. Can be used to compare

models regardless of whether they are nested.

* CFl: Comparative Fit Index. Higher = better. > .90 =
acceptable fit; > .95 = good model fit

* SRMR: Standardized Room Mean Square Residual. Lower =

better. < .10 = acceptable fit; < .05 = good fit




Delete Input for MY.model and run
your own!



PRACTICAL: You Take Control

* As away of preregistering them,
write your model down on paper

e Remember five variable names are:
SCZ, BIP, MDD, EA, INSOM



V. Multivariate GWAS in Genomic SEM



Four Primary Steps

These two steps
mirror that for
models without
SNP effects and
need not be run
again for the same

3. Prepare the summary statistics for traits

multivariate GWAS (sumstats)

4. Run the multivariate GWAS
(commonfactorGWAS,; userGWAS)



Lab

Using GWAS sumstats for:
 Schizophrenia (Pardinas et al., 2018); N = 105,318
* Bipolar Disorder (Sklar et al., 2011); N = 16,731

* Major Depressive Disorder (Wray et al., 2018); N =
173,005

* Pre-subset summary statistics downloaded online to
100 HapMap3 SNPs

* Not necessary (inadvisable) in practice; pragmatic just for
workshop



Step 3: sumstats example code

#STEP 3: PREPARE SUMMARY STATISTICS FOR MULTIVARIATE GWAS

#Takes four necessary arguments:

#1. files = the name of the summary statistics file

##**note that these are drastically reduced subsets of SNPs for the practical only
files<-c("SCZ_100.txt", "BIP_100.txt", "MDD_100.txt")

#2. ref = the name of the reference file used to obtain SNP MAF
#**note again that this is a drastically reduced subset of SNPs
ref="reference.1000G.subset.txt"

#3. trait.names = the name of the files to be used in
trait.names=c("SCZ","BIP","MDD")

#4. se.logit = whether the standard errors are on an logistic scale
se.logit<-c(T,T,T)

#run the sumstats function below
p_sumstats <- sumstats(files=files,ref=ref ,trait.names=trait.names,se.logit=se.logit)



Example sumstats .log file

The preparation of 3 summary statistics for use in Genomic SEM began at: 2020-03-01 19:22:24
Reading in reference file

Applying MAF filer of 0.01 to the refernece file.

Reading summary statistics for SCZ_100.txt BIP_100.txt MDD_100.txt . Please note that this step
usually takes a few minutes due to the size of summary statistic files.

All files loaded into R!

Preparing summary statistics for file: SCZ_100.txt

Interpreting the SNP column as the SNP column.

Interpreting the Al column as the Al column.

Interpreting the A2 column as the A2 column.

Interpreting the OR column as the effect column.

Interpreting the SE column as the SE column.

Interpreting the P column as the P column.

Merging file: SCZ_100.txtwith the reference file: reference.1000G.subset.txt

100 rows present in the full SCZ_100.txt summary statistics file.

4 rows were removed from the SCZ_100.txt summary statistics file as the rsIDs for these SNPs
were not present in the reference file.

The effect column was determined to be coded as an odds ratio (OR) for the SCZ_100.txt summary
statistics file based on the median of the effect column being close to 1. Please ensure the
interpretation of this column as an OR is correct.

No INFO column, cannot filter on INFO, which may influence results

Performing transformation under the assumption that the effect column is either an odds ratio or
logistic beta (please see output above to determine whether it was interpreted as an odds ratio)
and the SE column is a logistic SE (i.e., NOT the SE of the odds ratio) for: SCZ_100.txt

96 SNPs are left in the summary statistics file SCZ_100.txt after QC and merging with the
reference file.



Behind the scenes

* GenomicSEM GWAS functions automatically combine
output from Steps 2 and 3
* Creates as many covariance matrices as there are SNPs

across traits
Step 3: Run sumstats GWAS functions

Step 2: Run ldsc combine the two

1

SCz 1
SNP
SCZ SNP
SCz
SCz
BIP —
BIP c—
BIP

MDD

MDD

MDD



Step 4a: commonfactorGWAS
example code

#STEP 4a: RUN THE MULTIVARIATE GWAS
#commonfactorGWAS takes only two necessary arguments
#1. covstruc = the output from the ldsc function
covstruc<-PSYCH_COV

#2. SNPs = output from sumstats function
SNPs<-p_sumstats

#3. estimation = optional third argument specifying estimation method to be used
estimation<-"DWLS"

#4. parallel = optional argument specifying whether it should be run in parallel
#set to FALSE here just for the practical
parallel<-FALSE

#5. SNPSE = optional argument specifying level of SNPSE
SNPSE<-.005

#run the multivariate GWAS below
pfactor_GWAS<-commonfactorGWAS(covstruc=covstruc, SNPs=SNPs, estimation = estimation,parallel=parallel,SNPSE=SNPSE)

* To save memory, saves only the effect of the SNP
on the common factor



First five rows of the output

SNP CHR BP MAF Al A2 i lhs op rhs est se_c Z_Estimate
rsl@00073 1 157255396 0.4165010 A G 1 F1 ~ SNP 4.647717e-05 0.005422914 0.008570516
rslo00050 1 162736463 0.1471170 C T 2 F1 ~ SNP 3.241612e-03 0.007496856 0.432396172
rsl@eees3 2 12790328 0.0904573 C T 3 F1 ~ SNP -1.541138e-03 0.009178166 -0.167913549
rsl@000lc 2 235690982 0.0815109 A G 4 F1 ~ SNP -2.282467e-04 0.009616981 -0.023733716
rsl@ee0l?7 2 235691089 0.4671970 C A 5 F1 ~ SNP 2.508369e-04 0.005269484 0.047601800

Pval_Estimate Q Q.df Q_pval| fail warning
0.9931618| 0.3635681 2 0.8337814 0 0
0.6654535| 1.16708%6 2 0.5579172 0 0
0.8666513| 0.7315481 . 2 0.6936595 0 0
0.9810650| 2.6301119 - 2 0.2684593 0 0
0.9620336| 0.3491709 2 0.8398051 /) 0



Estimates of SNP level

heterogeneitx ( S QSMBZ

* Asks to what extent the effect of the SNP operates through the
common factor

e y? distributed test statistic, indexing fit of the common pathways
model against independent pathways model




Troubleshooting

##look at fail messages (@ = good to go)
table(pfactor_GWASS$fail)

#look at warning messages
table(pfactor_GWAS$warning)



Step 4b: userGWAS example code

#STEP 4b: RUN A USER SPECIFIED MULTIVARIATE GWAS
#userGWAS takes three necessary arguments:

#1. covstruc = the output from the ldsc function
covstruc<-PSYCH_COV

#2. SNPs = output from sumstats function
SNPs<-p_sumstats

#3. model = the model to be run

#going to troubleshoot estimated ov variances are negative
#by adding model constraint for all residuals to be above @
model<-"F1=~SCZ+BIP+MDD

F1~SNP

SCZ~~a*SCZ

BIP~~b*BIP

MDD~~c*MDD

a > .001

b > .001

c > .001"



Step 4b: userGWAS example code

#4. modelchi = optional argument whether you want model chi-square for the individual model
#default = FALSE
modelchi<-FALSE

#5. estimation = optional argument specifying estimation method to be used
estimation<-"DWLS"

#6. sub = optional argument specifying component of model output to be saved
sub<-"F1~SNP"

#7. SNPSE = optional argument specifying value of standard error for SNP
SNPSE<-.005

#8. parallel = optional argument specifying whether it should be run in parallel
#set to FALSE here just for the practical
parallel<-FALSE

#run the multivariate GWAS below
pfactor_GWAS2<-userGWAS(covstruc=covstruc, SNPs=SNPs, model=model,modelchi=modelchi,
estimation = estimation,sub=sub,SNPSE=SNPSE,parallel=parallel)



f there’s time...
olay around with some anthropometric traits

##H#IF theres time Note that you do not
load("Anthro_LDSC.RData") .
need to include all

colnames(anthro$S) « . _
variables in the model

covstruc<-anthro

#2. model = the user specified model
anthro.model<-""

#estimation = an optional third argument specifying the estimation method to use
estimation<-"DWLS"

#std.lv = optional fourth argument specifying whether variances of latent variables should be set to 1
std.lv=FALSE

#Run your model
AnthroModel<- usermodel(covstruc=covstruc, model=anthro.model,estimation=estimation,std.lv=std.1lv)



Variable Names

* BMI = Body Mass Index

* WHR = Waist Hip Ratio

* Waist = Waist Circumference

* Hip = Hip circumference

 CO =childhood obesity

* Height = Height

 BL =Birth Length

* BW = Birth Weight

* |HC = Infant Head Circumference



Standardized
11(.03)

(7

95 (.02) \ 39.(03) 41 (.03) / o on
.56 (.03) 1.00 (.02) .64 (.05) 77 (.07)
71 (.04) 58 (.08)
1 1 1 l l l
: \_/
09 (.02) 69 (.06) 50 (.11) <.01(.01) 13 (.03) 59 (.06) o P




Final Notes

 Parallel processing for both userGwAs and
commonfactorGwAsS is available

* Parallel is the same as serial processing, except that
it takes an additional cores argument specifying
how many cores to use

* |deal run-time scenario: split jobs across computing
nodes on a cluster and run in-parallel
* All runs are independent of one another!



Overview

* Genomic SEM is ready for use today!
* Ask questions on our google forum
* https://sgroups.google.com/forum/#!forum/genomic-sem-users

* Lots can be done using existing, openly available GWAS
summary statistics

* Models are flexible and up to the user

* Use Genomic SEM to derive sumstats for novel phenotypes
for use in PGS analyses


https://groups.google.com/forum/

Resources

 See paper at: rdcu.be/bvn7t

e See github at:
https://github.com/MichelNivard/GenomicSEM

e See tutorials at:
https://github.com/MichelNivard/GenomicSEM/wi
ki



https://t.co/1oaEDcEEJu
https://github.com/MichelNivard/GenomicSEM
https://github.com/MichelNivard/GenomicSEM/wiki
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