Introducing polygenic risk scores into the twin design

Estimating r_{AC} and MR twin model

Conor V. Dolan

Boulder 2020

What is var(A) again ? (in a simple model assuming linkage equilibrium)

(in a simple model assuming linkage equilibrium)

pheno_i =
$$a_0 + a_1^* QTL_{A1i} + a_2^* QTL_{A2i} + ... + a_N^* QTL_{ANi} + e_i$$

var(A) = $s_{Ph_QTL(A)}^2 = a_1^{2*} s_{QTLA1}^2 + a_2^{2*} s_{QTLA2}^2 + ... + a_N^{2*} s_{QTLAN}^2$

Suppose you have measured QTL_1 to QTL_{10} and you have reliable GWAS estimates of a_1 to a_{10} : \hat{a}_1 to \hat{a}_{10}

$$PRS_{i} = \hat{a}_{1}^{*}QTL_{A1i} + \hat{a}_{2}^{*}QTL_{A2i} + ... + \hat{a}_{10}^{*}QTL_{ANi}$$

$$1 \text{ to } 10$$

$$var(A^{*}) = a_{11}^{2*}s^{2}_{QTLA11} + a_{12}^{2*}s^{2}_{QTLA12} + ... + a_{N}^{2*}s^{2}_{QTLAN}$$

$$var(A) = var(P) + var(A^{*})$$

$$11 \text{ to } N$$

The risk score PGS renders part of the latent A observable.

Include polygenic risk scores in the ACE twin model to estimate r_{AC}

 $var(pheno) = a^{2} + c^{2} + e^{2}$

var(pheno) = $a^{*2} + p^2 + c^2 + e^2$

Identical models

the standard deviation of PRS is s

the variance of PRS is s²

Nmz = Ndz = 1000 exact data simulation

Standard model ACE

	LB	est	UB		LB
ACE.A[1,1]	0.490	0.600	0.714	A*+P	0.492
ACE.C[1,1]	0.198	0.300	0.399	С	0.202
ACE.E[1,1]	0.471	0.500	0.532	E	0.471

var(pheno) = .60 + .30 + .50

Standard model ACE with P

	LB	est	UB
A*+P	0.492	0.600	0.711
С	0.202	0.300	0.396
E	0.471	0.500	0.532
P	0.047	0.060	0.075
A*	0.433	0.540	0.650

var(pheno) = .54 + .06 + .30 + .50

.60 in standard model is decomposed into .060 (P) and .540 (A) $R^2 = .06/60$ genetic level 10% $R^2 = .06/1.4$ R² phenotypic level 4.28%

Phenotype usually includes measurement error which is absorbed by E. Here we assume that the PRS is error free. If it is not and we know the reliability (r_{pp}) , we can include that info. The parameter b is fixed to equal:

$$b_{p} = V{var(P) * (1-r_{pp})}$$

Can we estimate r_{AC} , which not identified in the standard ACE model?

What motivation?

Motivation: Fading C... Is it fading parental influence? Is the decrease in C due to decrease in C proper + **decrease in r**_{AC}

Tucker-Drob & Bates (2015)

 $c^{2} + 2*a*c*r_{AC}$

What is decreasing?

 $c^2 \text{ or } r_{AC} \text{ in}$ 2*a*c*r_{AC}

probably both

If r_{AC} > 0 the C variance in the ACE model is overestimated

If A is correlated with (rather than interacting with) an environmental variable, say C, with correlation r_{AC} then the expected trait variance is $Var(T)=a^2$ + $c^2 + 2ac \times r_{AC} + e^2$ and the expected twin covariances are

$$\begin{aligned} Cov(T_1, T_2) &= a^2 Cov(A_1, A_2) + c^2 Cov(C_1, C_2) \\ &+ e^2 Cov(E_1, E_2) + ac Cov(A_1, C_2) + ac Cov(A_2, C_1) \end{aligned}$$

$$= a^{2} + c^{2} + 2ac \times r_{AC} \text{ for MZ twins}$$
$$= a^{2}/2 + c^{2} + 2ac \times r_{AC} \text{ for DZ twins}$$

Homework: Check

as $Cov(A_1, C_2) = Cov(A_2, C_1) = r_{AC}$.

Purcell (2002) Twin Research Volume 5 Number 6 pp. 554-571

"INTERPLAY"	unmodeled biases		
r(AC)	C		
r(AE)	А		
AxC	А		
AxE	E		

AxE??? what's that? (Slide 14 mod)

"don't reify variance components"

you can have a long discussion about the magnitude of variance of A in IQ (but a very short discussion about the proposition var(A) = 0) **Motivation:** Is $r_{AC}>0$ of interst? Parent influence the environmental of children (recent interest via 'transmitted' – 'non transmitted alleles" design), gives rise to r_{AC} in the offspring (w).

Random mating version

Keller et al (2009) **Twin Research and Human Genetics** Volume 12 Number 1 pp. 8–18.

whence w?

recent interest via 'transmitted' – 'non transmitted alleles" design

What are the transmitted alleles, what are the untransmitted alleles?

Upshot in the offspring (C = F&S in slide 15)

r_{AC} not identified

r_{AC} identified ?

Simulation model

Fitted model

here r_{AC} = .105 (model right) and R² of the PGS is .03 (that is .03 effect in the full model)

DZ covariance matrix (r=.542) T1 T2 T1 1.639 0.888 T2 0.888 1.639

MZ covariance matrix (r=.694) T1 T2 T1 1.639 1.139 T2 1.139 1.639 Lots of C!

2*.542 - .694 = .39

"39% is due to C"

LBestUBACE.A[1,1]0.3490.5000.658ACE.C[1,1]0.4890.6380.784ACE.E[1,1]0.4590.5000.546

Nmz = Ndz = 1000

	LB	est	
rac	003	0.105	
E	0.459	0.500	
Ρ	0.023	0.050	
A*	0.302	0.450	
С	0.319	0.505	
A	0.349	0.500	

UB

0.242

0.546

0.088

0.604

0.678

0.658

	LB	est	UB
rac	-	fixed 0	-
E	0.459	0.500	0.546
Ρ	0.057	0.079	0.106
A*	0.306	0.453	0.607
С	0.452	0.596	0.737

Fix $r_{AC} = 0$. Likelihood ratio T(1) = 3.61057, p = 0.0574 Power to detect r_{AC} here is .4762 given parameters and Nmz=Ndz=1000

Bad model? Maybe....requires a lot more analyses! (increase r_{AC}, increase %variance due to PGS)

DZ cov matrix

	T1	p1	T2	p2
T1	1.638	0.298	0.888	0.186
p1	0.298	1.000	0.186	0.500
T2	0.888	0.186	1.638	0.298
p2	0.186	0.500	0.298	1.000

The R² in regression of phenotype (T) on p (PGS) is .298^2 / 1.638 = .054 (5.4% explained)

The R ²	UB	est	LB	
05 / 1	0.242	0.105	003	rac
.05/1.	0.546	0.500	0.459	Е
varianc	0.088	0.050	0.023	Ρ
	0.604	0.450	0.302	A*
3% vs. !	0.678	0.505	0.319	С
	0.658	0.500	0.349	А

in the true model is 638 = .030 (3% of the :e)

5.4%

A question.....

Whence the discrepancy (5.4% vs. 3.0%)?

Extending Causality Tests with Genetic Instruments: An Integration of Mendelian Randomization with the Classical Twin Design

Camelia C Minca & Conor Dolan,

+

Eco de Geus, Dorret Boomsma, Michael C. Neale

Thanks: David Evans

Modeling causality: Towards the Direction of Causation (DoC) model

Neale & Cardon, 1992 ; Heath et al., 1993; Duffy & Martin, 1994; Verhulst & Estabrook, 2012.

Special cases (identified models)

Model 1: g1=g2=0; re≠0; rc≠0; ra≠0 (general bivariate model)

Model 2: BMI \rightarrow SBP, g1 \neq 0 & re=rc=ra=0 (unidirectional causation)

Model 3: SBP \rightarrow BMI, g2 \neq 0 & re=rc=ra=0 (unidirectional causation)

Model 4: BMI \rightarrow SBP & SBP \rightarrow BMI; re=rc=ra=0; g1 \neq 0; g2 \neq 0 (reciprocal causation)

Model 5: no association between BMI and SBP

Model 1: g1=g2=0; re≠0; rc≠0; ra≠0 (general bivariate model)

Model 2: BMI \rightarrow SBP, g1 \neq 0 & re=rc=ra=0 (overidentified unidirectional causation)

MR

Dave: MR

Modeling causality: Mendelian Randomization model 1 with PGS & no pleiotropy

Presence of the "instrumental variable PGS" renders g1 identified – the larger the b1 (R^2 + p-value) the more power to reject g1=0

Modeling causality: Mendelian Randomization – model 2 with PGS & pleiotropy – violates IV assumption

32

Relaxing MR's assumptions: Mendelian Randomization meets the Classical Twin Design (MR-Twin model)... DZ model

ab cb eb as cs es all freely estimated

	ra	rc	re	b ₁	b ₂	g ₁	ID?
1	fr	fr	fr	fr	fr	fr	No
2	fr	fr	0	fr	fr	fr	Yes
3	fr	fr	fr	fr	0	fr	Yes

Numerical check: mxCheckIdentification {OpenMx} Symbolic check: MAPLE, Mathematica, Maxima (free)

Model 1: PGS & no pleiotropy

Model 2: PGS & pleiotropy

Behavior Genetics (2018) 48:337–349 https://doi.org/10.1007/s10519-018-9904-4

ORIGINAL RESEARCH

Extending Causality Tests with Genetic Instruments: An Integration of Mendelian Randomization with the Classical Twin Design

Camelia C. Minică¹ · Conor V. Dolan¹ · Dorret I. Boomsma¹ · Eco de Geus¹ · Michael C. Neale^{1,2}

Adding the second IV for SBP (polygenic score NPPA)

Dave: MR

As depicted the model is identified with re≠0 To do: study resolution & power & pleiotropy

good paper:

Biodemography Soc Biol. 2011;57(1):88-141. **Social science methods for twins data: integrating causality, endowments, and heritability.**

<u>Kohler HP¹, Behrman JR</u>, <u>Schnittker J</u>.

Camelia C. Minica

previously, a charming young lady

presently, a charming Nexus 6 Replicant advanced science model