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What is var(A) again ? (in a simple model assuming linkage equilibrium)
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(in a simple model assuming linkage equilibrium)

phenoi =  a0 + a1*QTLA1i + a2*QTLA2i +. . . + aN*QTLANi    + ei
var(A) = s2

Ph_QTL(A) = a1
2*s2

QTLA1+a2
2*s2

QTLA2+...+aN
2*s2

QTLAN

Suppose you have measured QTL1 to QTL10 and 
you have reliable GWAS estimates of a1 to a10: â1 to â10

PRSi = â1*QTLA1i + â2*QTLA2i +. . . + â10*QTLANi 

var(A*) = a11
2*s2

QTLA11+a12
2*s2

QTLA12+...+ aN
2*s2

QTLAN
var(A) = var(P) + var(A*)

The risk score PGS renders part of the latent A observable.

1 to 10

11 to N
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Include polygenic risk scores in the ACE twin model to estimate rAC
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var(pheno) = a2 + c2 + e2

pheno
Twin 1

A C E

pheno
Twin 2

A C E

a c e
c ea

11 or .5

1 1 1
1

1 1
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pheno
Twin 1

A C E

pheno
Twin 2

A C E

a* c e
c ea*

11 or .5

PRS

PRS
Twin 1

p

PRS

PRS
Twin 2

p

1 or .5

1 1 1 1

var(pheno) = a*2 +p2 + c2 + e2

s s
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pheno
Twin 1

PRS

PRS
Twin 1

s

1

pheno
Twin 1

PRS
Twin 1

s2

Identical models

the standard deviation of PRS is s the variance of PRS is s2
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LB    est    UB
ACE.A[1,1]   0.490 0.600 0.714
ACE.C[1,1]   0.198 0.300 0.399
ACE.E[1,1]   0.471 0.500 0.532

Standard model ACE

LB   est    UB
A*+P 0.492 0.600 0.711
C    0.202 0.300 0.396
E    0.471 0.500 0.532
P    0.047 0.060 0.075
A*   0.433 0.540 0.650

Standard model ACE with P

.60 in standard model is decomposed into .060 (P) and .540 (A)
R2 = .06/60 genetic level 10%

R2 = .06/1.4 R2 phenotypic level 4.28%

Nmz = Ndz = 1000   exact data simulation

var(pheno) = .60 + .30 + .50 var(pheno) = .54 + .06 + .30 + .50

LB    est    UB
ACE.A[1,1]   0.490 0.600 0.714
ACE.C[1,1]   0.198 0.300 0.399
ACE.E[1,1]   0.471 0.500 0.532
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pheno
Twin 1

A C E

a* c e

PRS

P
Twin 1

p

1 1 1 1

Phenotype usually includes measurement error which is absorbed by E.
Here we assume that the PRS is error free. If it is not and we know the reliability (rpp) , 
we can include that info. The parameter b is fixed to equal:

ep
bp

1

bp = √{var(P) * (1-rpp)}

s*
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pheno
Twin 1

A C E

a* c e

P

P
Twin 1

p

rAC

rAC

Can we estimate rAC, which not identified in the standard ACE model?

What motivation?

s
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Motivation: Fading C... Is it fading parental influence? 
Is the decrease in C due to decrease in C proper + decrease in rAC

Age (Years)

2 4 6 8 10 12 14 16 18

Va
ria

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Genes (A)
Shared Environment (C)
Nonshared Environment (E)

Tucker-Drob & Bates (2015)

c2 + 2*a*c*rAC

What is decreasing?

c2 or rAC in  
2*a*c*rAC

probably both 
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If rAC > 0 the C variance in the ACE model is overestimated

Purcell (2002) Twin Research Volume 5 Number 6 pp. 554-571

Homework: 
Check
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“INTERPLAY” unmodeled 
biases

r(AC) C
r(AE) A
AxC A
AxE E

“don’t reify variance components”

you can have a long discussion about 
the magnitude of variance of A in IQ

(but a very short discussion about the proposition var(A) = 0)

AxE??? what’s that? (Slide 14 mod) 

14



Motivation: Is rAC>0 of interst? Parent influence the environmental of 
children (recent interest via ‘transmitted’ – ‘non transmitted alleles” 
design), gives rise to rAC in the offspring (w).

Keller et al (2009) Twin 
Research and Human 
Genetics Volume 12 
Number 1 pp. 8–18.

whence w?

Random mating version

½
½ ½

½
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recent interest via ‘transmitted’ – ‘non transmitted alleles” design

What are the transmitted alleles, what are the untransmitted alleles?
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pheno
Twin 1

A C
(F&S) E

a c e

rAC

pheno
Twin 1

A C
(F&S) E

a* c e

P

P
Twin 1

p

rAC

rAC

Upshot in the offspring  (C = F&S in slide 15) 

rAC not identified rAC identified ?

s
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Simulation model

here rAC = .105 (model right) and R2 of the PGS is .03 
(that is .03 effect in the full model)

Fitted model

s
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DZ covariance matrix (r=.542)
T1        T2

T1 1.639 0.888
T2 0.888 1.639

MZ covariance matrix (r=.694)
T1       T2

T1 1.639 1.139
T2 1.139 1.639

Lots of C!

2*.542 - .694 = .39

“39% is  due to C” 
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LB   est    UB
ACE.A[1,1]  0.349 0.500 0.658
ACE.C[1,1]   0.489 0.638 0.784
ACE.E[1,1]   0.459 0.500 0.546

LB   est    UB
rac - fixed 0 -
E 0.459 0.500 0.546
P 0.057 0.079 0.106
A* 0.306 0.453 0.607
C 0.452 0.596 0.737

LB   est    UB
rac      -.003 0.105 0.242
E    0.459 0.500 0.546
P    0.023 0.050 0.088
A*   0.302 0.450 0.604
C 0.319 0.505 0.678
A    0.349 0.500 0.658

Nmz = Ndz = 1000
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Fix rAC = 0. Likelihood ratio T(1) = 3.61057, p = 0.0574
Power to detect rAC here is .4762 given parameters and Nmz=Ndz=1000

Bad model? Maybe....requires a lot more analyses! (increase rAC, 
increase %variance due to PGS)
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DZ cov matrix      
T1    p1    T2    p2

T1 1.638 0.298 0.888 0.186
p1 0.298 1.000 0.186 0.500
T2 0.888 0.186 1.638 0.298
p2 0.186 0.500 0.298 1.000

LB   est    UB
rac      -.003 0.105 0.242
E    0.459 0.500 0.546
P    0.023 0.050 0.088
A*   0.302 0.450 0.604
C 0.319 0.505 0.678
A    0.349 0.500 0.658

The R2 in regression of phenotype 
(T) on p (PGS)  is  .298^2 / 1.638 = 
.054  (5.4% explained)

The R2 in the true model is 
.05 / 1.638  = .030 (3% of the 
variance)

3% vs. 5.4%

A question.....
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Whence the discrepancy (5.4% vs. 3.0%)?    

pheno
Twin 1

A C E

a* c e

P

P
Twin 1

p

rAC

rAC

s
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Camelia C Minca & Conor Dolan, 

+

Eco de Geus, Dorret Boomsma, Michael C. Neale

Thanks: David Evans
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Modeling causality: Towards the Direction of Causation (DoC) model

25

Neale & Cardon, 1992 ; Heath et al., 1993; Duffy & Martin, 1994; Verhulst & Estabrook, 
2012.

not identified



AB CB EB AS CS ES

BMI SBP

ab cb eb as cs es
g1

1 1

ra
rc re

B S
g20 0

1

note “scaling”
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Special cases (identified models)

Model 1: g1=g2=0; re≠0; rc≠0; ra≠0 (general bivariate model) 

Model 2: BMI àSBP, g1 ≠ 0 & re=rc=ra=0 (unidirectional causation)

Model 3: SBP à BMI, g2 ≠ 0 & re=rc=ra=0 (unidirectional causation)

Model 4: BMIàSBP & SBP àBMI; re=rc=ra=0; g1≠0; g2≠0 (reciprocal causation)

Model 5: no association between BMI and SBP
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Model 1: g1=g2=0; re≠0; rc≠0; ra≠0 (general bivariate model) 

Meike: Bivariate Model
(not var comp version)
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Model 2: BMI àSBP, g1 ≠ 0 & re=rc=ra=0 (overidentified  unidirectional causation)

AB CB EB AS CS ES

BMI SBP F

ab cb eb as cs es

g1

1 1

AB CB EB AS CS ES

BMI SBP

ab cb eb as cs es

g1

1 1

.5ra

.5ra

rc

rc
.5

.5

BMI SBP BMI SBP

Nathan: DOC Model (unidir)
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AB

BMI

EB

AS

SBP

ES

ra

g1

MR Dave: MR
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Modeling causality: Mendelian Randomization -
model 1 with PGS & no pleiotropy 

Presence of the “instrumental variable PGS” renders g1 identified – the larger 
the b1 (R2 + p-value) the more power to reject g1=0
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Modeling causality: Mendelian Randomization –
model 2 with PGS & pleiotropy – violates IV assumption

A*B

BMI

EB

A*S

SBP

ES

ra

g1
PGS

b1

b2
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Relaxing MR’s assumptions: Mendelian Randomization meets 
the Classical Twin Design (MR-Twin model)... DZ model
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AB CB EB AS CS ES

BMI SBP F

ab cb eb as cs es

g1

1 1

ra rc re
AB CB EB AS CS ES

BMI SBP

ab cb eb as cs es
g1

1 1

ra rc re

.5ra

.5ra
rc

rc.5 .5

BMI SBP BMI SBPb1

prs

x

prs

b2

b1

prs

x

prs

b2

.5



note “scaling”
x is the stdev of FTO

AB CB EB AS CS ES

BMI SBP

ab cb eb as cs es
g1

1 1

ra
rc re

BMI SBP

g20 0

1

prs

x

prs

1
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ra rc re b1 b2 g1 ID?

1 fr fr fr fr fr fr No

2 fr fr 0 fr fr fr Yes

3 fr fr fr fr 0 fr Yes

Numerical check:  mxCheckIdentification {OpenMx}  
Symbolic check: MAPLE, Mathematica, Maxima (free)  

ab cb eb as cs es all freely estimated



Model 1:  PGS & no pleiotropy
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AB CB EB AS CS ES

BMI SBP

ab cb eb as cs es

g1

1 1

ra rc re≠0

BMI SBPb1

PRS

x

PRS

b2=0



Model 2: PGS & pleiotropy
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AB CB EB AS CS ES

BMI SBP

ab cb eb as cs es

g1

1 1

ra rc re = 0

BMI SBPb1

PRS

x

PRS

b2 ≠ 0
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As depicted the model is identified with re≠0
To do: study resolution & power & pleiotropy

Adding the second IV for SBP (polygenic score NPPA)        Dave: MR

AB CB EB AS CS ES

BMI SBP

ab cb eb as cs es

g1

1 1

ra rc re

BMI SBP
g2

b1

FTO

x

FTO

y

NPPA

rPG

NPPA

b3

FTO
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good paper:

Biodemography Soc Biol. 2011;57(1):88-141.
Social science methods for twins data: integrating causality, 
endowments, and heritability.
Kohler HP1, Behrman JR, Schnittker J.

40

https://www.ncbi.nlm.nih.gov/pubmed/21845929
https://www.ncbi.nlm.nih.gov/pubmed/21845929
https://www.ncbi.nlm.nih.gov/pubmed/%3Fterm=Kohler%2520HP%255BAuthor%255D&cauthor=true&cauthor_uid=21845929
https://www.ncbi.nlm.nih.gov/pubmed/%3Fterm=Behrman%2520JR%255BAuthor%255D&cauthor=true&cauthor_uid=21845929
https://www.ncbi.nlm.nih.gov/pubmed/%3Fterm=Schnittker%2520J%255BAuthor%255D&cauthor=true&cauthor_uid=21845929
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previously, a charming 
young lady 

presently, a charming Nexus 
6 Replicant advanced science 
model

Camelia C. Minica


