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“Having 5 fingers genetically determined”
“DNA includes a blueprint to build a hand”

What are we on about when we talk about genetic 
influences? 



normal polydactyly leprosy

phenotypic difference 6 – 5 = +1 with a genetic cause
(related to genetic difference - mutation) 

phenotypic difference 3 – 5 = -2 with an environmental cause 
(related to environmental difference – bacterium)



Phenotype: continuously varying, genetically complex.
e.g. (ideally) normally distributed
e.g., binary (dichotomous, 0-1 coded) phenotype
(based on continuous phenotype; liability threshold model). 

Normal Depressed

0 1

The phenotype is a quantitative trait, a metric trait, a complex trait



Genetically complex:

Individual differences in the phenotype are subject to 
the effects of many genes of small effects, a.k.a. 
polygenes, minor genes. How many? Hundreds 
(Educational Attainment, Height) … Thousands….?

Phenotypic individual differences are attributable to 
genetic individual differences in a large number of 
polygenes, a.k.a. QTLs (quantitative trait loci). 

Polygenicity implies phenotypic continuous 
distributions  



People differ phenotypically
Q. How to quantify individual differences?

Variance: s2, s2, s2
X , var(X), VX

mean (X)

variance (X)

xi is the phenotypic value of person i (i=1,...,N)



BehGen pt 1 ppt 1 

Some continuously distributed phenotypes are 
approximately normally distributed e.g., height, IQ.

height in inches - sex differences in the distribution
how? sex differences in mean and in variance. 
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Means, Variances and Covariances
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We need the covariance: express the phenotypic 
relatedness among family members



1,1,2,2,3,4,5,5,6,6

mean = (1+1+2+2+3+4+5+5+6+6)/10 
= 36/12 = 3.5

f(1) = 2/10 = .2 .2*1 +
f(2) = 2/10 = .2 .2*2 +
f(3) = 1/10 = .1 .1*3 +
f(4) = 1/10 = .1 .1*4 +
f(5) = 2/10 = .2 .2*5 +
f(6) = 2/10 = .2  .2*6

----------
3.5

( )å==
i

ii xfxXE )(µ

Important to understand!



1,1,2,2,2,3,4,5,5,5,6,6

mean = 3.5

f(1) = 2/10 = .2 .2*(1-3.5)2 +
f(2) = 2/10 = .2 .2*(2-3.5)2 +
f(3) = 1/10 = .1 .1*(3-3.5)2 +
f(4) = 1/10 = .1 .1*(4-3.5)2 +
f(5) = 2/10 = .2 .2*(5-3.5)2 +
f(6) = 2/10 = .2 .2*(6-3.5)2

----------------

variance = 3.45
standard deviation (stdev) = √variance 
stdev = √3.45 = 1.857
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covariance
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Cor(X,Y) = Cov(X,Y) / √ [Var(X)*var(Y)] =
= Cov(X,Y) / [stdev(X)*stdev(Y)]

Cor(X,Y) is – stand-alone - interpretable 

MZ covariance is 291.... uninterpretable 
MZ correlation is .80 .... interpretable

correlation



Linear association between continuous variables: 
covariance or Pearson Product Moment (PPM) 
Correlation Coefficient, r.

r = 0.00 DZ r = .40 MZ r = .90

twin 1 twin 1
tw

in
 2

tw
in

 2



To what extent, and how, are 
individual differences in genetic makeup, and 
individual differences in environmental factors, related to 
phenotypic (observed) individual differences ?

To what extent, and how, do 
individual differences in genotypes, and 
individual differences in environmental factors, explain
phenotypic (observed) variance?
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terminology

• QTL Quantative trait locus: a sequence of DNA base pairs 
(may be a SNP “snip”: single base pair). a.k.a. genetic variant

• Autosomal locus: the site of the QTL on a chromosome (22 
pairs + XY). Humans are dipoid (22 pairs autosomal 
chromosomes + sex chromosomes XY or XX). An 
autosomal locus is located on one of the 22 pairs.

• Allele: an alternative form of a gene at a locus 
• Genotype: the combination of alleles at a particular locus 
• Complex phenotype: an observed characteristic, which 

displays individual differences (in part due to differences at 
many loci... how many?)



BehGen pt 1 ppt 1 

9q34.2

Locus: autosomal chromosome 9, long arm (q), position 34.2

3 alleles A-B-O (blood group)

telomere centromere telomere

This is a member of a pair (autosomal chromosomes 
come in pairs).

16

locus
(of allele A,B, or O)



The FNBP1L gene has been associated with intelligence in two studies:

• Mol. Psychiatry 2012 16 (10), 996-1005    
• Mol. Psychiatry 2011 19(2): 2538.

This gene is on chromosome 1 (1p22,1), and it comprises 106531 bases 
(106.5Kb). Within this gene the SNP rs236330 specifically is associated 
with intelligence. 

Example of a QTL: FNBP1L gene 

here it is!



A-B-O locus 
chr 9 location 9q34.2

Mendelian  inheritance

The law of segregation



Consider a single diallelic locus with alleles A and a

Set up the model to relate the locus (A-a) to the 
phenotypic variance.

How does the locus contribute to phenotypic individual 
differences?



Population level

1. Allele frequencies (QTL: diallelic autosomal) 

A single autosomal locus, with two alleles
- Biallelic a.k.a. diallelic

Alleles A and a 
- Frequency of A is p
- Frequency of a is q = 1 – p

Every individual inherits two alleles
- A genotype is the combination of the two alleles
- e.g. AA, aa (the homozygotes) or Aa (the heterozygote)

* what are the genotype frequencies? 

frequencies in the population



Biometrical model for single biallelic 
QTLBiallelic locus

- Genotypes: AA, Aa, aa
- Genotype frequencies: p2, 2pq, q2

Genotype 
frequencies 
(Random 
mating)

A (p) a (q)

A (p)

a (q)

Mother’s gametes (egg)

Fa
th

er
’s

 g
am

et
es

sp
er

m
AA (p2)

aA (qp)

Aa (pq)

aa (q2)

Hardy-Weinberg Equilibrium frequencies 

P (AA) = p2

P (Aa) = 2pq

P (aa) = q2

p2 + 2pq + q2 = 1



Biometric Model

phenotypie means within 
each genotype (aa, Aa, 
AA) ......conditional on 
genotype

Genotypic effectd +a

µ + aµ + dµ – a

– a

AAAaaa

Phenotype level: contribution to continuous 

variation

Q: Phenotypic mean conditional on genotype means what?
A: Take all aa individuals and calculate their mean phenotypic value:
µ – a (the phenotypic mean conditional on genotype aa)



Biometrical model for single biallelic 
QTL
1. Contribution of the QTL to the Mean

aaAaAAGenotypes

Frequencies, f(x)

Effect, x

p2 2pq q2

µ + a µ +d µ - a

(µ+a)(p2) + (µ+d)(2pq) + (µ–a)(q2) = 
µ + a(p2) + d(2pq) – a(q2) = 
µ + a(p-q) + 2pqd

the unconditional mean µ + a(p-q) + 2pqd = µ + m 
contribution of the QTL m = a(p-q) + 2pqd

see slide 11!



Biometrical model for single biallelic 
QTL
2. Contribution of the QTL to the Variance (X)

aaAaAAGenotypes

Frequencies, f(x)

Effect (x)

p2 2pq q2

µ + a µ + d µ - a

=  (a-m)2p2 + (d-m)22pq + (-a-m)2q2s2
Ph_QTL

m= a(p-q) + 2pqd

see slide 12!



Q: WAIT!!! What happened to µ? 

=  (a-m)2p2 + (d-m)22pq + (-a-m)2q2

25

actually  

((µ + a)–(µ+m))2p2 + ((µ + d)–(µ+m)) 22pq + ((µ-a)–(µ +m)) 2q2

((µ + a)–(µ+m)) = (µ + a–µ-m)        = (a-m)

s2
Ph_QTL

A: µ cancels out.



Biometrical model for single biallelic 
QTL

=  (a-m)2p2 + (d-m)22pq + (-a-m)2q2s2
Ph_QTL

= 2pq[a+(q-p)d]2 + (2pqd)2

=  s2
Ph_ QTL(A) + s2

Ph_ QTL(D)

Additive or linear effects give rise to variance component 
s2

Ph_QTL(A) = 2*pq[a+(q-p)d]2 (additive genetic variance)

Dominance or within local allelic interaction effects  give 
rise to variance component 
s2

Ph_QTL(D) = (2pqd) 2 (dominance variance)



Biometrical model for single biallelic 
QTL

Additive effects: s2
Ph_QTL(A) = 2*pq[a]2

Dominance effects: s2
Ph_QTL(D) = 0      (d=0)

=  (a-m)2p2 + (d-m)22pq + (-a-m)2q2

= 2pq[a+(q-p)d]2 + (2pqd)2

=  s2
Ph_QTL(A) + s2

Ph_QTL(D)

s2
Ph_QTL

µ+aµ – a

AAaa Aa

µ



Biometrical model for single biallelic 
QTL

Additive effects: s2
Ph_QTL(A) = 2*pq[a+(q-p)d]2

Dominance effects: s2
Ph_QTL(D) = (2pqd)2

=  (a-m)2p2 + (d-m)22pq + (-a-m)2q2

= 2pq[a+(q-p)d]2 + (2pqd)2

=  s2
Ph_QTL(A) +   s2

Ph_QTL(D)

s2
Ph_QTL

Q: what if d =0 and a =0? 

µ+d µ+aµ – a 

AAaa Aa



s2Ph_QTL(A) and s2Ph_QTL(D)

I know the feeling

I understand, 
but I don’t understand

I think I might understand
or not...?



Suppose we measure the QTL and the phenotype and 
regress X on QTL.The scatterplot of the data 
(aa coded 0; Aa coded 1; AA coded 2 - call it QTLA). 

In the following slides we look at the regression lines only
(not plotting the residuals – just to avoid clutter). 

we ask:

how much of the phenotypic
variance is explained by the 
predictor (QTLA)?



Linear regression model yi = a0 + a1*xi + ei

x = predictor (variable) ... here: QTLA, values: aa (0), Aa (1) , AA (2)
y = dependent (variable)  .... here: phenotype (ph)
e = residual (variable) .... 
a0 = intercept (parameter often denoted b0)
a1 = slope or regression coefficient (parameter often denoted b1)

variance of y equals a1
2*s2

x + s2
e

variance explained a2*s2
x

standard effect size: R2 = {a2 * s2
x} / {a2* s2

x + s2
e}

ypredicted = a0+a1*x eestimated = y - y ypredicted
var(ypredicted) = a1

2 *var(x) var(e)



Linear regression model phenoi = a0 + a1*QTLAi + ei

Warning!!! Next slides without residual (error) terms  

variance of pheno   a1
2*s2

QTLA + s2
e

variance explained a1
2*s2

QTLA



µ µ+aµ-a

µ-a

µ+a

0                      1                       2

regression model
phi = a0 + a1*QTLAi + ei

e terms not shown!!!!

µ

s2
Ph_QTL(A) =2*pq[a+(q-p)d]2

s2
Ph_QTL(A) = a1

2*s2
QTL A

variance of pheno   a1
2*s2

QTLA + s2
e  = 2*pq[a+(q-p)d]2 + s2

e 
variance explained a1

2*s2
QTLA =        = 2*pq[a+(q-p)d]2



µ-a

µ+a
µ+d

µ+d µ+aµ– a 

aa Aa AA

s2
Ph_QTL(A) =2*pq[a+(q-p)d]2

s2
Ph_QTL(A) = a1

2*s2
QTL A

Not explained  
s2

Ph_QTL(D) = (2pqd)2

Important to note:
s2

e includes s2
Ph_QTL(D) 

Explained variance (blue line):

0                    1                    2

e terms not shown!!!!
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s2
Ph_QTL(A) always greater than zero (given d ≠ 0 & a>0)

s2
Ph_QTL(D) can be zero (additive model d=0)

d=0 d≠0

d≠0 d≠0



What about the dominance variance? Can we estimate that?

regression model phi = a0 + a1*QTLAi + d1*QTLDi + ei

s2
Ph = a1

2*s2
QTLA + d1

2*s2
QTLD + s2

e

s2
Ph_QTL(A) = a1

2*s2
QTLA = 2*pq[a+(q-p)d]2

s2
Ph_QTL(D) = d1

2*s2
QTLD =  (2pqd)2

Dominance deviation can µ+d (positive) or µ-d (negative)
Q: If we know the value of s2

QTLD do we know the sign of the 
dominance deviation?

genotype QTLA QTLD p=.5
AA 2 4*p-2 0
Aa (aA) 1 2*p 1
aa 0 0 0



regression model phi = a0 + a1*QTLAi + d1*QTLDi + ei

s2
Ph = a1

2*s2
QTLA + d1

2*s2
QTLD + s2

e

2*pq[a+(q-p)d]2 (2pqd)2

Dominance deviation can µ+d (positive) or µ-d (negative) 

Q: If we know the value of s2
Ph_QTL(D) do we know the sign of 

the dominance deviation?



Thank you!
Good question

I haven’t measured any QTLs!
What am I supposed to do?



Remember slide 13 ? Of course you do!  

Q: How does locus A-a contribute to the phenotypic
covariance among family members?
A: Depends on the exact relationship



Biometrical model for single biallelic 
QTL
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3. Contribution of the QTL to the Cov (X,Y) -

m= a(p-q) + 2pqd

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m) (-a-m) (-a-m)2

(a-m) (d-m) (-a-m)(a-m)
(d-m) (-a-m)

Q: What about the f(xi, yi)?

person 1 (xi)

pe
rs

on
 2

 (y
i)



Biometrical model for single biallelic 
QTL
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3A. Contribution of the QTL to the Cov (X,Y) – MZ twins

=  (a-m)2p2 + (d-m)22pq + (-a-m)2q2Cov(Xi,Yj)

=   s2
Ph_QTL(A) + s2

Ph_QTL(D)

= 2pq[a+(q-p)d]2 + (2pqd)2

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m) (-a-m) (-a-m)2

p2

0

0

2pq

0 q2

(a-m) (d-m)0 (-a-m)(a-m)0

(d-m) (-a-m)0



Biometrical model for single biallelic 
QTL
3B. Contribution of the QTL to the Cov (X,Y) – Parent-Offspring 
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AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m) (-a-m) (-a-m)2

p3

p2q

0

pq

pq2 q3

(a-m) (d-m)p2q (-a-m)(a-m)0

(d-m) (-a-m)pq2

parent

ch
ild



given an AA parent, an AA offspring can come from either  AA
x AA or  AA x Aa parental random mating types

AA x AA will occur p2 × p2 = p4

and have AA offspring Prob(AA)=1

AA x Aa will occur p2 × 2pq = 2p3q
and have AA offspring Prob(AA)=0.5
and have Aa offspring Prob(Aa)=0.5

AA x aa Not relevant (offspring Aa)

Therefore, P(AA parent & AA offspring) = p4 + .5*2*p3q 
= p3(p+q) 
= p3



So can be complicated, but can also be simple ….

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m) (-a-m) (-a-m)2

p3

p2q

0

pq

pq2 q3

(a-m) (d-m)p2q (-a-m)(a-m)0

(d-m) (-a-m)pq2

Parent 

O
ffs

pr
in

g

why zero probability {0}? 



Biometrical model for single biallelic 
QTL

=  (a-m)2p3 + … + (-a-m)2q3Cov (Xi,Yj)

= pq[a+(q-p)d]2

3B. Contribution of the QTL to the Cov (X,Y) – Parent-Offspring 

= ½ s2
QTL(A)

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m) (-a-m) (-a-m)2

p3

p2q

0

pq

pq2 q3

(a-m) (d-m)p2q (-a-m)(a-m)0

(d-m) (-a-m)pq2

Parent (X) 

O
ffs

pr
in

g 
(Y

)



Biometrical model for single biallelic 
QTL

=  (a-m)2p4 + … + (-a-m)2q4Cov (Xi,Yj)

= 0

3C. Contribution of the QTL to the Cov (X,Y) – Unrelated individuals 

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m) (-a-m) (-a-m)2

p4

2p3q

p2q2

4p2q2

2pq3 q4

p2 q2

q2

p2

2pq

2pq

(a-m) (d-m)2p3q (-a-m)(a-m)p2q2

(d-m) (-a-m)2pq3

Note if mating is random - the spousal correlation is zero.
Mother and father are Unrelated individuals !



s1 s2 eff eff freq frequency (p(A)=p, p(a)=q=1-p)

AA AA a a r1 p**4+p**3*q+p**2*q**2/4
aa aa -a -a r2 p**2*q**2/4+p*q**3+q**4
Aa Aa d d r3 p**3*q+3*p**2*q**2+p*q**3
AA Aa a d r4 p**3*q+p**2*q**2/2

Aa AA d a r4 p**3*q+p**2*q**2/2

Aa aa d -a r5 p**2*q**2/2+p*q**3
aa Aa -a d r5 p**2*q**2/2+p*q**3

AA aa a -a r6 p**2*q**2/4
aa AA -a a r6 p**2*q**2/4

Follow same method for full sibs and DZ twins 
Derive genotype frequences .... 



Biometrical model for single biallelic 
QTL

=  (a-m)2r1 + … + (-a-m)2r3Cov (Xi,Xj)

3B. Contribution of the QTL to the Cov (X,Y) – DZ twins 

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m) (-a-m) (-a-m)2

r1

r4

r6

r2

r5 r3

(a-m) (d-m)r4 (-a-m)(a-m)r6

(d-m) (-a-m)r5

=  ½ s2
QTL(A) + ¼ s2

QTL(D)= ½ 2pq[a+(q-p)d]2 + ¼(2pqd)2

DZ twin 1

D
Z 

tw
in

 2



Genetic variance shared contributes to the phenotypic covariance

s2Ph_QTL(A) s2Ph_QTL(D)

Unrelateds 0 0
Parent - child ½ 0
full (DZ) sibs ½ ¼
MZ twins 1 1

Q: So how does this help to estimate s2
Ph_QTL(A) & s2

Ph_QTL(D) ?
A: Come back this afternoon! 



MZ1 MZ2
MZ1 s2

Ph1 (variance) s2
Ph1,Ph2 (covariance)

MZ2 s2
Ph1,Ph2 (covariance) s2

Ph2 (variance)

MZ1 MZ2
MZ1 s2

Ph_QTL(A) +  
s2

Ph_QTL(D)  + s2
rest

s2
Ph_QTL(A) +  

s2
Ph_QTL(D)

MZ2 s2
Ph_QTL(A) +  

s2
Ph_QTL(D)

s2
Ph_QTL(A) +  

s2
Ph_QTL(D)  + s2

rest

Covariance matrix (2x2)  in MZ twins



DZ1 DZ2
DZ1 s2

Ph1 s2
Ph1,Ph2

DZ1 s2
Ph1,Ph2 s2

Ph2

DZ1 DZ2
DZ1 s2

Ph_QTL(A) +  
s2

Ph_QTL(D)  + s2
rest

½ s2
Ph_QTL(A) +  

¼ s2
Ph_QTL(D)

DZ1 ½ s2
Ph_QTL(A) +  

¼ s2
Ph_QTL(D)

s2
Ph_QTL(A) +  

s2
Ph_QTL(D)  + s2

rest



s2
Ph = 2pq[a+(q-p)d]2  + (2pqd)2 +  residual variance

1: Genetic variance is due to individual differences in genotype
2: Genotype depends on alleles
3: Alleles are passed on from parents to offspring
4: Relatives share genetic variance, because they share alleles
5: Shared genetic variance contributes to phenotypic covariance

Offspring (DZ twins) share genetic variance, because they share alleles
Parents and Offspring share genetic variance, because they share alleles
Monozygotic (identical) twins share genetic variance, because they share alleles

If I know the proportion of alleles they share at locus, 
I'll will know the contribution of the locus to the phenotypic covariance ...

Concept of allele sharing IBD .... IDENTICALLY BY DESCENT



x

¼
A

¼
B

¼
C

¼
D

Segregation and identity-by-descent (IBD) in sibpairs

parent parent



IDENTITY BY DESCENT (IBD) DZs

4/16 = 1/4 sibs share BOTH parental alleles  IBD  =  2

8/16 = 1/2 sibs share ONE parental allele  IBD  =  1

4/16 = 1/4 sibs share NO parental alleles  IBD  =  0

2 2

2 2

2 2

2 2

Sib 1

Sib 2

2 1 1 0

1 2 0 1

1 0 2 1

0 1 1 2

1 1 1 1 1 1 1 1



IDENTITY BY DESCENT (IBD) MZs

2 2

2 2

2 2

2 2

Sib 1

Sib 2

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

1 1 1 1 1 1 1 1

100% MZ sibs share BOTH parental alleles  IBD  =  2

0 sibs share ONE parental allele  IBD  =  1

0 sibs share NO parental alleles  IBD  =  0



What about parent offsping? 
many alleles do they share IBD?
(decending from the grandparent)



(2 alleles IBD) (1 allele IBD) (0 alleles IBD)
MZ twins Parent- Offspring

(P-O)
Unrelateds

Cov(MZ) Cov(P-O) Cov(Unrelateds)

s2
Ph_QTL(A)+

s2
Ph_QTL(D)

½ s2
Ph_QTL(A) 0

slide 43 slide 47 slide 43 
Note: spouses given
random mating



(2 alleles IBD) (1 allele IBD) (0 alleles IBD)
MZ twins Parent- Offspring

(P-O)
Unrelateds

Cov(MZ) Cov(P-O) Cov(Unrelateds)
.25 DZ twins .50 DZ twins .25 DZ twins

s2
Ph_QTL(A)+

s2
Ph_QTL(D)

½ s2
Ph_QTL(A) 0

average DZ genetic variance sharing (based on IBD):  
.25*(s2

Ph_QTL(A) + s2
Ph_QTL(D) ) + .50*(½s2

Ph_QTL(A)) + .25* 0 =

.5*s2
Ph_QTL(A)+ .25* s2

Ph_QTL(D) slide 50



s2
Ph_QTLA = 2pq[a+(q-p)d]2 s2

Ph_QTLD= (2pqd)2 

IBD=0 0  0 Unrelated
IBD=1 ½ 0 Parent - Offspring

IBD=2 1 1 MZ twins

IBD=0 0 0 25% (¼) DZ twins
IBD=1 ½ 0 50% (½) DZ twins
IBD=2 1 1 25% (¼) DZ twins

average 0*¼+ ½ * ½ +1*¼ 0*¼+0* ½ +1*¼
= ½ = ¼

proportion of alleles 
shared IBD

probability of sharing 
2 alleles IBD



Q: Why do twins have to be IBD=2 to shared dominance variance?
(prob(IBD=2) = 1)?
A: Because similaries due to dominance effects are related to genotype not 
individual alleles. You have to have the same genotype to shared dominance 
variance.

Q: Why does the (average) proportion of alleles shared IBD reflect 
shared additive genetic variance?
A:  Because similaries due to additive effect are related to individual alleles. 
Sharing an allele implies sharing additive genetic variance.

Q: If I know MZ twin are IBD=2,  do I know what actual alleles they have?
NO: IBD is about sharing alleles, but if not says nothing about the
actual identity of the alleles. However, if relatives are IBD 2, you so know that 
they have the same alleles (AA and AA, Aa and Aa, or aa and aa).



Thank you! 
Good question !

But all this was about 1 QTL!
What if there are >1 or > 100?



Linear regression model  N QTLs (N > 1... N>1000)

phenoi =  a0 + a1*QTLA1i + a2*QTLA2i +. . . + aN*QTLANi  
+ d1*QTLD1i + a2*QTLD2i +. . . + dN*QTLDNi   + ei

s2
Ph_QTL(A) = 2*p1q1 [a1+(q1-p1)d1] 2 + 

2*p1q1 [a1+(q1-p1)d1]2 +  ... + 2*p N q N [a N +(qN-pN)d N] 2

s2
Ph_QTL(A) = a1

2*s2
QTLA1+a2

2*s2
QTLA2+...+aN

2*s2
QTLAN

s2
Ph_QTL(D) = (2p1q1d1)2  + (2p2q2d2)2 +  ... + (2pNqNdN)2

s2
Ph_QTL(D) = d1

2*s2
QTLD1 + d2

2*s2
QTLD2 + ... + dN

2*s2
QTLDN



MZ1 MZ2
MZ1 s2

A+  s2
D  + s2

E s2
A+  s2

D 

MZ2 s2
A+  s2

D s2
A+  s2

D  + s2
E

Covariance matrix (2x2) in DZ and MZ twins

DZ1 DZ2
DZ1 s2

A+  s2
D  + s2

E ½s2
A+  ¼s2

D 

DZ2 ½s2
A+  ¼s2

D s2
A+  s2

D  + s2
E

Point of departure (more or less) for later on



Slide acknowledgement: Manuel Ferreira, Pak Sham, Shaun 
Purcell, Sarah Medland, and Sophie van der Sluis



Numerical (toy) example.

Suppose a phenotype subject to the influence of one QTL and 
environmental influences. 

You observe the phenotype and the QTL in 500 individuals  

I observe the phenotype S in 250 MZ and 250 DZ twin pairs



0 (aa) 1 (AA) 2 (AA) 
0.236 (q2) 0.526 (2pq) 0.238 (p2) 

a0 + a1*QTLAi + ei
a0 -0.561
a1 1.111      
Multiple R-squared:  0.386

variance of the phenotype s2
Ph = 1.520

a0 + a1*QTLAi + d1*QTLDi + ei
a0 -1.10449 
a1 1.114 
d1 1.028 
Multiple R-squared:  0.560

0.386 * 1.520 = 0.586
(0.560-0.386)*1.520 
= 0.174*1.520 = 0.264

s2
Ph_QTLA = 2pq[a+(q-p)d]2

s2
Ph_QTLD= (2pqd)2 



cov(PhMZ) = .525
[,1]  [,2]

[1,] 1.466 0.736
[2,] 0.736 1.343

cov(PhDZ) = .192
[,1]  [,2]

[1,] 1.559 0.311
[2,] 0.311 1.682

0.736  = s2
Ph_QTLA + s2

Ph_QTLD
0.311 = ½ s2

Ph_QTLA + ¼ s2
Ph_QTLD



regression model  vs  biometric model

regression parameter a (henceforth b1) 
=

average effect of allele substitution



The parameter b1 in the regression model corresponds to a 
specific parameter in the biometric model, called a

Now: derive a from the biometric model.

BehGen pt 1 ppt 1 69

predicted values 
b0+b1*0  (aa)
b0+b1*1  (Aa or aA)
b0+b1*2  (AA)

difference in regression model
b0+b1*1 - (b0+b1*0) =   
b0+b1*2 - (b0+b1*1) = b1

b1 is the average effect of substituting A 
for a (or vice versa)0.0 0.5 1.0 1.5 2.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

geno

p
h

Xb1= a



aa
aA

AA
Aa

Subpopulation of individual with first 
allele A 
(AA and Aa).

Population of all individuals
(AA, Aa, aA, aa)

Subpopulation of individual with first 
allele a  
(aA and aa).
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a is the average effect (on the phenotype) of substituting 
allele A for allele a - how to derive this? 
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A

a

A

a
A

a

p

q

p

q

q

p

genotype AA; freq = (p*p); effect = a

genotype Aa; freq = (p*q); effect = d

genotype aA; freq = (q*p); effect = d

genotype aa; freq = (q*q); effect = -a

Population of all individuals (HWE)
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A

a

A

a
A

a

p

q

p

q

q

p

1st 2st

AA (effect a, freq = p)

AA (effect d, freq = q)

conditional mean
a1 = mean(1st allele=A) = p*a + q*d

Subpopulation of individual with first allele A 
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A

a

A

a
A

a

p

q

p

q

q

p

1st 2st
conditional mean (1st allele=a)
a2 = mean(1st allele=a) = p*d + q*-a

aA (effect d, freq = p)

aa (effect -a, freq = q)

Subpopulation of individual with first allele A2



average effect of allele substitution a = a + d(q-p) 
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conditional mean a1 = mean(1st=A) = (p*a + q*d)
conditional mean (1st=a) a2 = mean(1st=a) = (p*d + q*-a)

difference a = average effect of allele substitution
a = a1 - a2 = (p*a + q*d) - (p*d+q*-a) = 
pa +qd -pd +qa = 
pa +qa - pd + qd = 
(p+q)a +d(q-p) = a + d(q-p)

b1 is the average effect of substituting A for a (or vice versa)

b1 = a = (a + d(q-p))
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a1

a2

a

parameter a derived from the biometric model
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a defined in the regression model (b1) and in the biometric model (a)

a1

a2

a

b1

b1 = a = (a + d(q-p))


