Introduction to Biometrical Genetics \{in the classical twin design $\}$

Conor Dolan
\&
Elizabeth Prom-Wormley

Boulder 2020

Slide acknowledgements (fonts all over the place and inconsistent color coding):
Manuel Ferreira, Pak Sham, Shaun PurceLL, Sarah Medland, and Sophie van der Sluis

Outline

Slides 3-14: What is it about essentially + some basic statistics Slides 15 - 18: Basic genetic terms

Slides 19 - 28: How a QTL contributes to phenotypic variance Slides 30 - 37: How a QTL contributes to phenotypic variance Slides $39-51$: Genetic variance as a source of phenotypic covariance

Slides 52-67: Genetic variance as a source of phenotypic covariance Slides 68-76: Not part of this talk

What are we on about when we talk about genetic influences?
"Having 5 fingers genetically determined"
"DNA includes a blueprint to build a hand"

normal

polydactyly

leprosy
phenotypic difference $\mathbf{6}-\mathbf{5}=+\mathbf{1}$ with a genetic cause
(related to genetic difference - mutation)
phenotypic difference $\mathbf{3 - 5}=\mathbf{- 2}$ with an environmental cause
(related to environmental difference - bacterium)

Phenotype: continuously varying, genetically complex.

 e.g. (ideally) normally distributede.g., binary (dichotomous, $0-1$ coded) phenotype (based on continuous phenotype; liability threshold model).

-
The phenotype is a quantitative trait, a metric trait, a complex trait

Genetically complex:

Individual differences in the phenotype are subject to the effects of many genes of small effects, a.k.a. polygenes, minor genes. How many? Hundreds (Educational Attainment, Height) ... Thousands....?

Phenotypic individual differences are attributable to genetic individual differences in a large number of polygenes, a.k.a. QTLs (quantitative trait loci).

Polygenicity implies phenotypic continuous distributions

People differ phenotypically Q. How to quantify individual differences?

Variance: $\mathrm{s}^{2}, \sigma^{2}, \sigma^{2}{ }_{\mathrm{X}}, \operatorname{var}(\mathrm{X}), \mathrm{V}_{\mathrm{X}}$
mean (X) $\quad \mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
variance (X) $\quad \sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$
x_{i} is the phenotypic value of person $\mathrm{i}(\mathrm{i}=1, \ldots, \mathrm{~N})$
height in inches - sex differences in the distribution how? sex differences in mean and in variance.

Some continuously distributed phenotypes are approximately normally distributed e.g., height, IQ.

Means, Variances and Covariances

$$
\mu=E(X)=\sum_{i} x_{i} f\left(x_{i}\right)
$$

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

$$
\operatorname{Var}(X)=E(X-\mu)^{2}
$$

$$
=\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
$$

$$
\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
$$

$$
\begin{aligned}
\operatorname{Cov}(X, Y)= & E\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right) \\
& \sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right)
\end{aligned}
$$

Individual value of \boldsymbol{x}

We need the covariance: express the phenotypic relatedness among family members

Important to understand!

$$
1,1,2,2,3,4,5,5,6,6
$$

$$
\text { mean }=(1+1+2+2+3+4+5+5+6+6) / 10
$$

$$
=36 / 12=3.5
$$

$$
\mathrm{f}(1)=2 / 10=.2 \quad .2 * 1+
$$

$$
\mathrm{f}(2)=2 / 10=.2 \quad .2 * 2+
$$

$$
\mu=\frac{\sum_{i=1}^{N} x_{i}}{N}
$$

$$
\mathrm{f}(3)=1 / 10=.1 \quad .1 * 3+
$$

$$
f(4)=1 / 10=.1 \quad .1 * 4+
$$

$$
\mathrm{f}(5)=2 / 10=.2 \quad .2 * 5+
$$

$$
\mu=E(X)=\sum_{i} x_{i} f\left(x_{i}\right)
$$

$$
\mathrm{f}(6)=2 / 10=.2 \quad .2 * 6
$$

3.5
$1,1,2,2,2,3,4,5,5,5,6,6$
mean $=3.5$

$$
\mu=E(X)=\sum_{i} x_{i} f\left(x_{i}\right)
$$

$\mathrm{f}(1)=2 / 10=.2$
$.2 *(1-3.5)^{2}+$
$\mathrm{f}(2)=2 / 10=.2$
$.2 *(2-3.5)^{2}+$
$f(3)=1 / 10=.1$
$.1^{*}(3-3.5)^{2}+\operatorname{Var}(X)=E(X-\mu)^{2}$
$f(4)=1 / 10=.1$
$.1 *(4-3.5)^{2}+$
$f(5)=2 / 10=.2$
$.2 *(5-3.5)^{2}+$
$=\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)$
variance $=3.45$
standard deviation $($ stdev $)=\sqrt{ }$ variance
stdev $=\sqrt{ } 3.45=1.857$

covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y)= & E\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right) \\
& \sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right)
\end{aligned}
$$

$$
\operatorname{Cov}_{x y}=\sum_{i=1}^{N} \underset{\substack{\downarrow \\ \text { Individual value of } y}}{\substack{\text { Mean of } x}}
$$

Individual value of x

correlation

$$
\begin{aligned}
\operatorname{Cor}(\mathrm{X}, \mathrm{Y}) & =\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) / \sqrt{ }[\operatorname{Var}(\mathrm{X}) * \operatorname{var}(\mathrm{Y})]= \\
& =\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) /[\operatorname{stdev}(\mathrm{X}) * \operatorname{stdev}(\mathrm{Y})]
\end{aligned}
$$

$\operatorname{Cor}(\mathrm{X}, \mathrm{Y})$ is - stand-alone - interpretable

MZ covariance is 291 uninterpretable MZ correlation is .80 interpretable

Linear association between continuous variables: covariance or Pearson Product Moment (PPM) Correlation Coefficient, r.

To what extent, and how, are individual differences in genetic makeup, and individual differences in environmental factors, related to phenotypic (observed) individual differences?

To what extent, and how, do individual differences in genotypes, and individual differences in environmental factors, explain phenotypic (observed) variance?

$$
\begin{aligned}
\operatorname{Var}(X) & =E(X-\mu)^{2} \\
& =\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
\end{aligned}
$$

terminology

- QTL Quantative trait locus: a sequence of DNA base pairs (may be a SNP "snip": single base pair). a.k.a. genetic variant
- Autosomal locus: the site of the QTL on a chromosome (22 pairs + XY). Humans are dipoid (22 pairs autosomal chromosomes + sex chromosomes XY or XX). An autosomal locus is located on one of the 22 pairs.
- Allele: an alternative form of a gene at a locus
- Genotype: the combination of alleles at a particular locus
- Complex phenotype: an observed characteristic, which displays individual differences (in part due to differences at many loci... how many?)

3 alleles A-B-O (blood group)

Locus: autosomal chromosome 9, long arm (q), position 34.2

This is a member of a pair (autosomal chromosomes come in pairs).

Example of a QTL: FNBP1L gene

The FNBP1L gene has been associated with intelligence in two studies:

- Mol. Psychiatry 201216 (10), 996-1005
- Mol. Psychiatry 2011 19(2): 2538.

This gene is on chromosome 1 ($1 \mathrm{p} 22,1$), and it comprises 106531 bases (106.5 Kb). Within this gene the SNP rs236330 specifically is associated with intelligence.

A-B-O locus chr 9 location 9q34.2

Mendelian inheritance

The law of segregation

Blood type A Blood type AB Blood type B Blood type O

Consider a single diallelic locus with alleles A and a
Set up the model to relate the locus (A-a) to the phenotypic variance.

How does the locus contribute to phenotypic individual differences?

Population level

1. Allele frequencies (QTL: diallelic autosomal)
\triangleright A single autosomal locus, with two alleles

- Biallelic a.k.a. diallelic
\triangleright Alleles A and a
- Frequency of A is p
- frequencies in the population
- Frequency of a is $q=1-p$

\triangleright Every individual inherits two alleles
- A genotype is the combination of the two alleles
- e.g. AA, aa (the homozygotes) or Aa (the heterozygote)
* what are the genotype frequencies?

Biometrical model for single biallelic

$Q_{\square} L_{\text {Biallelic locus }}$

- Genotypes: AA, Aa, aa
- Genotype frequencies: $p^{2}, 2 p q, q^{2}$

Genotype frequencies
(Random mating)

Hardy-Weinberg Equilibrium frequencies

$$
\begin{array}{ll}
P(A A)=p^{2} & \\
P(A a)=2 p q & p^{2}+2 p q+q^{2}=1 \\
P(a a)=q^{2} &
\end{array}
$$

Phenotype level: contribution to continuous

variatiqfometric Model

$\boldsymbol{\mu}-a \quad \boldsymbol{\mu}+d \quad \boldsymbol{\mu}+a \quad$ phenotypie means within each genotype (aa, Aa, AA)conditional on genotype

Q: Phenotypic mean conditional on genotype means what?
A: Take all aa individuals and calculate their mean phenotypic value:
$\mu-a$ (the phenotypic mean conditional on genotype aa)

Biometrical model for single biallelic

QTL

1. Contribution of the QTL to the Mean

Genotypes	AA	Aa	$\boldsymbol{a a}$
Effect, x	$\mu+a$	$\mu+d$	$\mu-a$
Frequencies, $f(x)$	p^{2}	$2 p q$	q^{2}

$$
\begin{aligned}
& (\mu+a)\left(p^{2}\right)+(\mu+d)(2 p q)+(\mu-a)\left(q^{2}\right)= \\
& \mu+a\left(p^{2}\right)+d(2 p q)-a\left(q^{2}\right)= \\
& \mu+a(p-q)+2 p q d
\end{aligned}
$$

the unconditional mean contribution of the QTL

$$
\begin{aligned}
& \mu+a(p-q)+2 p q d=\mu+m \\
& m=a(p-q)+2 p q d
\end{aligned}
$$

Biometrical model for single biallelic

QTL

2. Contribution of the QTL to the Variance (X)

Genotypes	AA	Aa	aa
Effect (x)	$\mu+a$	$\mu+d$	$\mu-a$
Frequencies, $f(x)$	p^{2}	$2 p q$	q^{2}
$m=a(p-q)+2 p q d$			
s^{2} Ph_QTL $=$	$(a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2}$		

Q: WAIT!!! What happened to μ ?

A: μ cancels out.

Biometrical model for single biallelic

QTL

$$
\begin{aligned}
s^{2}{ }_{\text {Ph_QTL }}= & (a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2} \\
& \left.=\underline{2 p q[a+(q-p) d]^{2}}+\underline{(2 p q d}\right)^{2} \\
& =s^{2}{ }^{2} h_{-} \text {QTL(A) }+s^{2}{ }^{2} h_{-} \text {QTL(D) }
\end{aligned}
$$

Additive or linear effects give rise to variance component $s^{2}{ }^{\text {Ph_QTL }}(\mathrm{A})=2 * p q[a+(q-p) d]^{2}$ (additive genetic variance)

Dominance or within local allelic interaction effects give rise to variance component
$s^{2}{ }^{\text {Ph_QTLLD }}=(2 \mathrm{pqd}){ }^{2}$ (dominance variance)

Biometrical model for single biallelic

$$
\begin{aligned}
& \begin{array}{l}
\text { Q }_{2}^{T L L} \\
\mathbf{s}^{2} h_{-Q T L}=(a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2}
\end{array}
\end{aligned}
$$

Additive effects: $s^{2}{ }_{\text {Ph_QTL(A) }} \quad=\quad 2 * p q[a]^{2}$
Dominance effects: $s^{2}{ }_{P h}{ }^{2} Q T L(D)=0 \quad(d=0)$

Biometrical model for single biallelic

$$
\begin{aligned}
& \text { QTL } s^{2} \text { Ph_QTL }=(\alpha-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2} \\
& =2 p q[a+(q-p) d]^{2}+(2 p q d)^{2} \\
& \text { 】 】 } \\
& \left.=s^{2}{ }^{\text {Ph_QTLLA }}\right)+s^{2}{ }^{\text {Ph_QTL(D) }}
\end{aligned}
$$

Additive effects：$s^{2}{ }^{2}{ }_{p _Q T L(A)}=\quad 2^{*}{ }_{p q}[a+(q-p) d]^{2}$
Dominance effects：$s^{2}{ }_{\text {Ph＿QTL（D）}}=(2 \mathrm{pqd})^{2}$

Q ：what if $\mathrm{dl}=0$ and $\mathrm{a}=0$ ？

Suppose we measure the QTL and the phenotype and regress X on QTL.The scatterplot of the data (aa coded 0; Aa coded 1; AA coded 2 - call it $\mathbf{Q T L} \mathbf{A}_{\mathbf{A}}$).

we ask:
how much of the phenotypic variance is explained by the predictor $\left(\mathrm{QTL}_{\mathrm{A}}\right)$?

In the following slides we look at the regression lines only (not plotting the residuals - just to avoid clutter).

Linear regression model $\mathrm{y}_{\mathrm{i}}=\mathbf{a}_{\mathbf{0}}+\mathbf{a}_{\mathbf{1}} * \mathrm{x}_{\mathrm{i}}+\mathrm{e}_{\mathrm{i}}$
$\mathrm{x}=$ predictor (variable) ... here: $\mathrm{QTL}_{\mathrm{A}}$, values: aa (0), Aa (1), AA (2)
$y=$ dependent (variable) here: phenotype (ph)
$\mathrm{e}=$ residual (variable)
$\mathrm{a}_{0}=$ intercept (parameter often denoted b_{0})
$a_{1}=$ slope or regression coefficient (parameter often denoted b_{1})
variance of y equals $a_{1}{ }^{2 *} s^{2}{ }_{x}+s^{2}{ }_{e}$
variance explained $\quad a^{2}{ }^{2} s^{2}{ }_{x}$
standard effect size: $\quad R^{2}=\left\{a^{2} * s_{x}{ }_{x}\right\} /\left\{a^{2 *} s^{2}{ }_{x}+s^{2}{ }_{e}\right\}$
$\mathrm{y}_{\text {predicted }}=\mathrm{a}_{0}+\mathrm{a}_{1} *_{\mathrm{x}} \quad \mathrm{e}_{\text {estimated }}=\mathrm{y}-\mathrm{y} \mathrm{y}_{\text {predicted }}$
$\operatorname{var}\left(\mathrm{y}_{\text {predicted }}\right)=\mathrm{a}_{1}{ }^{2} * \operatorname{var}(\mathrm{x})$
$\operatorname{var}(\mathrm{e})$

Linear regression model pheno $_{\mathrm{i}}=\mathbf{a}_{\mathbf{0}}+\mathbf{a}_{\mathbf{1}} * \mathrm{QTL}_{\mathrm{Ai}}+\mathrm{e}_{\mathrm{i}}$

variance of pheno
$\mathrm{a}_{1}{ }^{2 *} \mathrm{~S}^{2}{ }_{\mathrm{QTLA}}+\mathrm{s}_{\mathrm{e}}{ }^{2}$
variance explained

Warning!!! Next slides without residual (error) terms

$s^{2}{ }_{\text {Ph_QTL(A) }}$ always greater than zero (given $d \neq 0 \& a>0$)
$s^{2}{ }^{\text {Ph_QTL(D) }}$ can be zero (additive model $d=0$)

What about the dominance variance? Can we estimate that? regression model $\mathrm{ph}_{\mathrm{i}}=\mathrm{a}_{0}+\mathrm{a}_{1} * \mathrm{QTL}_{\mathrm{Ai}}+\mathrm{d}_{1} * \mathrm{QTL}_{\mathrm{Di}}+\mathrm{e}_{\mathrm{i}}$

genotype	QTL ${ }_{\text {A }}$	QTL ${ }_{\text {D }}$	$\mathrm{p}=.5$
AA	2	$4^{*} \mathrm{p}-2$	0
Aa (aA)	1	$2 *$ p	1
aa	0	0	0
$\mathrm{s}^{2} \mathrm{Ph}=\mathrm{a}_{1}{ }^{2} *^{2}{ }^{2} \mathrm{QTLA}+\mathrm{d}_{1}{ }^{2} \mathrm{~S}^{2}{ }^{2} \mathrm{QTLD}+\mathrm{s}^{2}{ }_{\mathrm{e}}$			
$\begin{aligned} & \mathrm{s}^{2}{ }_{\text {Ph_QTL(A) }}=\mathrm{a}_{1}{ }^{2}{ }^{2} \mathrm{~s}^{2}{ }_{\mathrm{QTLL}}=2 * \mathrm{pq}[a+(q-p) d]^{2} \\ & \mathrm{~s}^{2}{ }_{\text {Ph_QLLL(D) })}=\mathrm{d}_{1}{ }^{2} \mathrm{~s}^{2} \mathrm{~s}^{2} \mathrm{QTLD}_{\mathrm{D}}=(2 \mathrm{pqd})^{2} \end{aligned}$			

Dominance deviation can $\mu+\mathrm{d}$ (positive) or $\mu-\mathrm{d}$ (negative) Q: If we know the value of $\mathbf{s}^{2}{ }_{\text {QTLD }}$ do we know the sign of the dominance deviation?
regression model $\mathrm{ph}_{\mathrm{i}}=\mathrm{a}_{0}+\mathrm{a}_{1} * \mathrm{QTL}_{\mathrm{Ai}}+\mathrm{d}_{1} * \mathrm{QTL}_{\mathrm{Di}}+\mathrm{e}_{\mathrm{i}}$

$$
\mathrm{s}_{\mathrm{Ph}}^{2}=\mathrm{a}_{1}{ }^{2 *} \mathrm{~s}_{\mathrm{QTLA}^{2}}^{2}+\mathrm{d}_{1}^{2 *} \mathrm{~s}_{\mathrm{QTLD}}^{2}+\mathrm{s}_{\mathrm{e}}^{2}
$$

Dominance deviation can $\mu+d$ (positive) or $\boldsymbol{\mu}$ - \boldsymbol{d} (negative)
Q: If we know the value of $\mathbf{s}^{2}{ }^{\text {Ph_QTL(D) }}$ do we know the sign of the dominance deviation?

I haven't measured any QTLs! What am I supposed to do?

Thank you!
Good question

Remember slide 13 ? Of course you do!
covariance

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)= E\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right) \\
& \sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right) \\
& \text { correlation } \\
& \operatorname{Cor}(X, Y) \quad=\operatorname{Cov}(X, Y) / \sqrt{ }\left[\operatorname{Var}(X)^{*} \operatorname{var}(Y)\right]= \\
&=\operatorname{Cov}(X, Y) /\left[\operatorname{stdev}(X)^{*} \operatorname{stdev}(Y)\right]
\end{aligned}
$$

Q: How does locus A-a contribute to the phenotypic covariance among family members?
A: Depends on the exact relationship

Biometrical model for single biallelic

QTL

3. Contribution of the QTL to the $\operatorname{Cov}(X, Y)$ -

Q: What about the $f\left(x_{i}, y_{i}\right)$?

Biometrical model for single biallelic

QT

3A. Contribution of the QTL to the $\operatorname{Cov}(X, Y)-M Z$ twins

$$
\operatorname{Cov}(X, Y)=\sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right)
$$

	$\mathbf{A A}(a-m)$	$\mathbf{A a}(d-m)$	$\boldsymbol{a} \boldsymbol{a}(-a-m)$
$\mathbf{A A}(a-m)$	$\mathbf{p}^{2}(a-m)^{2}$	$0(a-m)(d-m)$	$0(a-m)(-a-m)$
$\mathbf{A a}(d-m)$	$0(a-m)(d-m)$	$2 p q(d-m)^{2}$	$0(d-m)(-a-m)$
$\boldsymbol{a} \boldsymbol{a}(-a-m)$	$0(a-m)((a-m)$	$0(d-m)(-a-m)$	$\mathbf{q}^{2}(-a-m)^{2}$

$\operatorname{Cov}\left(X_{i}, Y_{j}\right)=(a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2}$

$$
\begin{aligned}
& =2 p q[a+(q-p) d]^{2}+(2 p q d)^{2} \\
& =s^{2}{ }^{2} h_{-} Q T L(A) \quad+s^{2}{ }^{P h} h_{-} Q T L(D)
\end{aligned}
$$

Biometrical model for single biallelic

QTL

3B. Contribution of the QTL to the $\operatorname{Cov}(X, Y)$ - Parent-Offspring

$$
\operatorname{Cov}(X, Y)=\sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right)
$$

parent

	AA (a-m)	Aa (d-m)	aa (-a-m)
AA (a-m)	$p^{3}(\alpha-m)^{2}$	$\mathrm{p}^{2} \mathbf{q}(\mathrm{~d}-\mathrm{m})(\mathrm{d}-\mathrm{m})$	0 (a-m) (-a-m)
Aa (d-m)	$p^{2} \boldsymbol{q}(\alpha-m)(d-m)$	$\mathrm{pq}(\mathrm{d}-\mathrm{m})^{2}$	$\mathrm{pq}^{\mathbf{2}}$ (d-m) (-a-m)
aa (-a-m)	0 (a-m) (-a-m)	$\mathrm{pq}^{2}(\mathrm{~d}-\mathrm{m})(\mathrm{ca-m})$	$\mathrm{q}^{3}(-a-m)^{2}$

given an $A A$ parent, an $A A$ offspring can come from either $A A$ $\mathrm{x} A A$ or $A A \times A a$ parental random mating types

$$
\begin{array}{ll}
A A \times A A & \text { will occur } p^{2} \times p^{2}=p^{4} \\
& \text { and have } A \boldsymbol{A} \text { offspring } \operatorname{Prob}(\mathbf{A A})=1
\end{array}
$$

$A A \times A a \quad$ will occur $p^{2} \times 2 p q=2 p^{3} q$ and have $A A$ offspring $\operatorname{Prob}(\mathbf{A A})=0.5$ and have $A a$ offspring $\operatorname{Prob}(A a)=0.5$
$A \boldsymbol{A} \times \boldsymbol{a} \boldsymbol{a} \quad$ Not relevant (offspring Aa)

Therefore, $\mathrm{P}(A A$ parent $\& A A$ offspring $)=p^{4}+.5 * 2 * p^{3} q$

$$
\begin{aligned}
& =p^{3}(p+q) \\
& =p^{3}
\end{aligned}
$$

So can be complicated, but can also be simple

Parent

why zero probability $\{0\}$?

Biometrical model for single biallelic

QTL
 3B. Contribution of the QTL to the $\operatorname{Cov}(X, Y)$ - Parent-Offspring

Parent (X)			
	AA (a-m)	Aa (d-m)	$\mathbf{a d}(-a-m)$
$\sum_{0 \infty} \mathbf{A A}(\mathrm{a}-\mathrm{m})$	$p^{3}(\mathrm{a}-\mathrm{m})^{2}$	$\mathbf{p}^{2} \mathbf{q}(\mathrm{~d}-\mathrm{m})(\mathrm{d}-\mathrm{m})$	0 (a-m) (-a-m)
- Aa (d-m)	$\mathbf{p}^{2} \mathbf{q}(\mathrm{a}-\mathrm{m})(\mathrm{d}-\mathrm{m})$	pq $(\mathrm{d}-\mathrm{m})^{2}$	pq ${ }^{\mathbf{2}}$ (d-m) (- a-m)
	0 (a-m) ($(a-m)$	$p q^{2}(\mathrm{~d}-\mathrm{m})(-\mathrm{a}-\mathrm{m})$	$\mathrm{q}^{3(-a-m)^{2}}$

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, Y_{i}\right) \quad & =(a-m)^{2} p^{3}+\ldots+(-a-m)^{2} q^{3} \\
& =p q[a+(q-p) d]^{2} \quad=1 / 2 s^{2} Q T L(A)
\end{aligned}
$$

Biometrical model for single biallelic

QTL

3C. Contribution of the QTL to the $\operatorname{Cov}(X, Y)$ - Unrelated individuc

	$\begin{aligned} & \mathbf{p}^{2} \\ & \mathbf{A A}(a-m) \end{aligned}$	2pq Aa (d-m)	$\begin{aligned} & \mathbf{q}^{2} \\ & \mathbf{a q}(-a-m) \end{aligned}$
$p^{2} \mathbf{A A}(\mathrm{a}-\mathrm{m})$	$\mathrm{p}^{4}(\mathrm{a}-\mathrm{m})^{2}$	$2 \mathbf{p}^{3} \mathbf{q}(\mathrm{~d}-\mathrm{m})(\mathrm{d}-\mathrm{m})$	$\mathbf{p}^{2} \mathbf{q}^{2}(\alpha-m)(-a-m)$
2pq Aa (d-m)	$2 p^{3} \mathbf{q}(\mathrm{a}-\mathrm{m})(\mathrm{d}-\mathrm{m})$	$4 p^{2} q^{2}(d-m)^{2}$	$\mathbf{2 p q}{ }^{\mathbf{3}}(\mathrm{d}-\mathrm{m})(-a-m)$
q^{2} ad ($-a-m$)	$\mathbf{p}^{2} \mathbf{q}^{\mathbf{2}}(\mathrm{a}-\mathrm{m})(-a-m)$	$2 p q^{3}(d-m)(-a-m)$	$\mathrm{q}^{4}(-a-m)^{2}$

$\operatorname{Cov}\left(X_{i j} Y_{i}\right)$

$$
\begin{aligned}
& =(a-m)^{2} p^{4}+\ldots+(-a-m)^{2} q^{4} \\
& =0
\end{aligned}
$$

Note if mating is random - the spousal correlation is zero. Mother and father are Unrelated individuals !

Follow same method for full sibs and DZ twins
Derive genotype frequences

s1	s2	eff	eff	freq	frequency $(p(A)=p, p(a)=q=1-p)$
AA	AA	a	a	r1	$\mathrm{p}^{* *} 4+\mathrm{p}^{* *} 3 * \mathrm{q}+\mathrm{p}^{* *} 2^{*} \mathrm{q}^{* *} 2 / 4$
aa	aa	-a	-a	r2	$\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 4+\mathrm{p}^{*} \mathrm{q}^{* *} 3+\mathrm{q}^{* *} 4$
Aa	Aa	d	d	r3	$\mathrm{p}^{* *} 3 * \mathrm{q}+3 * \mathrm{p} * * 2 * \mathrm{q}^{* *} 2+\mathrm{p} * \mathrm{q}^{* *} 3$
AA	Aa	a	d	r4	$\mathrm{p}^{* *} 3 * \mathrm{q}+\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 2$
Aa	AA	d	a	r4	$\mathrm{p} * * 3 * \mathrm{q}+\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 2$
Aa	aa	d	-a	r5	$\mathrm{p} * * 2 * \mathrm{q} * * 2 / 2+\mathrm{p}^{*} \mathrm{q}^{* *} 3$
aa	Aa	-a	d	r5	$\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 2+\mathrm{p}^{*} \mathrm{q}^{* *} 3$
AA	aa	a	-a	r6	$\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 4$
aa	AA	-a	a	r6	$\mathrm{p}^{* * 2 *} \mathrm{q}^{* * 2 / 4}$

Biometrical model for single biallelic

QB. Lentribution of the QTL to the $\operatorname{Cov}(X, Y)-D Z$ twins

DZ twin 1
$\mathbf{A A}(a-m) \quad$ Aa $(d-m) \quad \boldsymbol{a} \boldsymbol{a}(-a-m)$

$\sim \mathbf{A A}(\mathrm{a}-\mathrm{m})$	r1(a-m) ${ }^{2}$	r4 (a-m) (d-m)	r6(a-m) (-a-m)
- $\mathbf{A a}(\mathrm{d}-\mathrm{m})$	r4(a-m) (d-m)	r2 (d-m) ${ }^{2}$	r5 (d-m) (-a-m)
N ${ }^{\text {a }}$ ($(-a-m)$	rb(a-m) (-a-m)	r5 (d-m) (-a-m)	r3(-a-m) ${ }^{2}$

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{i}, X_{i}\right)=(a-m)^{2} r 1+\ldots+(-a-m)^{2} r 3 \\
& =1 / 22 p q[a+(q-p) d]^{2}+1 / 4(2 p q d)^{2}=1 / 2 s^{2} Q T L(A)+1 / 4 s^{2} Q T L(D)
\end{aligned}
$$

Genetic variance shared contributes to the phenotypic covariance

$$
s^{2} P h_{-} Q T L(A) \quad s^{2} P h_{-} Q T L(D)
$$

Unrelateds
Parent - child full (DZ) sibs
MZ twins

0
$1 / 2$
$1 / 2$
1

Q: So how does this help to estimate $s^{2}{ }^{P h} _Q T L(A) \& s^{2}{ }^{P h} _Q T L(D)$? A: Come back this afternoon!

Covariance matrix (2x2) in MZ twins

	$\mathrm{MZ1}$	$\mathrm{MZ2}$
MZ1	$\mathrm{s}^{2}{ }_{\mathrm{Ph} 1}$ (variance)	$\mathrm{s}^{2}{ }_{\mathrm{Ph} 1, \mathrm{Ph} 2}$ (covariance)
MZ2	$\mathrm{s}^{2}{ }_{\mathrm{Ph} 1, \mathrm{Ph} 2}$ (covariance)	$\mathrm{s}^{2}{ }_{\mathrm{Ph} 2}$ (variance)

	MZ1	MZ2
MZ1	$\begin{aligned} & s^{2}{ }_{\text {Ph_QTL(A) }}+ \\ & s^{2}{ }^{2}{ }^{2} \mathbf{P h}^{2} \text { QTL(D) }+s^{2} \text { rest } \end{aligned}$	$\begin{aligned} & \hline s^{2} \text { Ph_QTL(A) }{ }^{+} \\ & s^{2} \text { Ph_QTL(D) } \\ & \hline \end{aligned}$
MZ2	$\begin{aligned} & s^{2}{ }_{\text {Ph_QTL(A) }}+ \\ & s^{2} \text { Ph_QLL(D) } \end{aligned}$	$\begin{aligned} & s^{2} \text { Ph_QTL(A) } \\ & s^{2} \text { Ph_QLL(D) }+s^{2} \text { rest } \end{aligned}$

	DZ1	DZ 2
DZ1	$\mathrm{s}^{2}{ }_{\mathrm{Ph} 1}$	$\mathrm{~s}^{2}{ }_{\mathrm{Ph} 1, \mathrm{Ph} 2}$
DZ1	$\mathrm{s}^{2}{ }_{\mathrm{Ph} 1}, \mathrm{Ph} 2$	$\mathrm{~S}^{2}{ }_{\mathrm{Ph} 2}$

	DZ1	DZ2
DZ1	$\begin{aligned} & s^{2}{ }^{\text {Ph_QTL(A) }}+ \\ & s^{2}{ }^{\text {Ph_QTL(D) }}+s_{\text {rest }}^{2} \end{aligned}$	$\begin{aligned} & 1 / 2 \boldsymbol{s}^{2}{ }^{\text {Ph_QTL(A) }}+ \\ & 1 / 4 \boldsymbol{s}^{2} \text { Ph_QTL(D) } \\ & \hline \end{aligned}$
DZ1	$\begin{aligned} & 1 / 2 \boldsymbol{s}^{2} \text { Ph_QTL(A) }+ \\ & 1 / 4 \boldsymbol{s}^{2} \text { Ph_QTL(D) } \end{aligned}$	$\begin{aligned} & s^{2} \text { Ph_QTL(A) }^{+} \\ & s^{2}{ }^{\text {Ph_QTL(D) }}+s_{\text {rest }}^{2} \end{aligned}$

$$
\mathrm{s}^{2}{ }_{\mathrm{Ph}}=2 \mathrm{pq}[\mathrm{a}+(\mathrm{q}-\mathrm{p}) \mathrm{d}]^{2} \quad+(2 \mathrm{pqd})^{2} \quad+\text { residual variance }
$$

1: Genetic variance is due to individual differences in genotype
2: Genotype depends on alleles
3: Alleles are passed on from parents to offspring
4: Relatives share genetic variance, because they share alleles
5: Shared genetic variance contributes to phenotypic covariance
Offspring (DZ twins) share genetic variance, because they share alleles
Parents and Offspring share genetic variance, because they share alleles
Monozygotic (identical) twins share genetic variance, because they share alleles

If I know the proportion of alleles they share at locus,
I'll will know the contribution of the locus to the phenotypic covariance ...

Concept of allele sharing IBD IDENTICALLY BY DESCENT

Segregation and identity-by-descent (IBD) in sibpairs

IDENTITY BY DESCENT (IBD) DZs

 Sib 1
$4 / 16=1 / 4$ sibs share BOTH parental alleles IBD $=2$

$8 / 16=1 / 2$ sibs share ONE parental allele IBD $=1$

$4 / 16=1 / 4$ sibs share NO parental alleles IBD $=0$

IDENTITY BY DESCENT (IBD) MZs

 Sib 1 1| 1

22	2	0	0	0
$2 / 2$	0	2	0	0
$2{ }^{2}$	0	0	2	0
22	0	0	0	2

Sib 2

$$
\begin{array}{|l|l|}
\hline 2 & 2 \\
\hline 2 & 2 \\
\hline
\end{array}
$$

100% MZ sibs share BOTH parental alleles IBD $=2$
\square 0 sibs share ONE parental allele IBD = 1
\square 0 sibs share NO parental alleles IBD $=0$

Segregation and identity-by-descent (IBD) in sibpairs

1/4

1/4

1/4

1/4

What about parent offsping? many alleles do they share IBD? (decending from the grandparent)

(2 alleles IBD)	(1 allele IBD)	(0 alleles IBD)
MZ twins	Parent- Offspring (P-O)	Unrelateds
$\operatorname{Cov}(\mathrm{MZ})$	$\operatorname{Cov}(\mathrm{P}-\mathrm{O})$	Cov(Unrelateds)
	$\underline{1 / 2} \mathbf{s}^{\mathbf{2}}{ }^{\text {Ph_QTL }}$ (${ }^{\text {) }}$	0

slide 43

slide 47

slide 43
Note: spouses given random mating

(2 alleles IBD)	(1 allele IBD)	(0 alleles IBD)
MZ twins	Parent- Offspring (P-O)	Unrelateds
Cov(MZ)	$\operatorname{Cov}(\mathrm{P}-\mathrm{O})$	Cov(Unrelateds)
. 25 DZ twins	. 50 DZ twins	. 25 DZ twins
$\begin{gathered} \hline \mathbf{s}^{\mathbf{2}} \mathrm{Ph} \text { _QTL(A) } \\ \mathbf{s}^{2} \text { Ph_QTL(D) } \\ \hline \end{gathered}$	$\mathbf{1 / 2} \mathbf{S}^{\mathbf{2}} \mathbf{\text { Ph_QTL(A) }}$	0

average DZ genetic variance sharing (based on IBD): $.25 *\left(\mathbf{s}^{\mathbf{2}}{ }_{\mathbf{P h}}\right.$ _QTL(A) $\left.)+\mathbf{s}^{\mathbf{2}} \mathbf{P h}_{\text {_QTL(D) }}\right)+.50 *\left(1 / 2 \mathbf{s}^{\mathbf{2}} \mathbf{P h}_{\text {_QTL(A) }}\right)+.25 * 0=$
$.5^{*} \mathbf{s}^{\mathbf{2}}{ }^{\text {Ph_QtL(A) }}{ }^{+} .25^{*} \mathbf{s}^{\mathbf{2}}{ }^{\text {Ph_QtL(D) }}$.
$\mathrm{s}_{\mathrm{Ph}_{-} \mathrm{QTL}}^{\mathrm{A}}=2 \mathrm{pq}[\mathrm{a}+(\mathrm{q}-\mathrm{p}) \mathrm{d}]^{2}$
$\mathrm{IBD}=0 \quad 0$
$\operatorname{IBD}=1 \quad 1 / 2$
$\operatorname{IBD}=2 \quad 1$
$\mathrm{IBD}=0 \quad 0$
$\operatorname{IBD}=1 \quad 1 / 2$
$\operatorname{IBD}=2 \quad 1$
average $0 * 1 / 4+1 / 2 * 1 / 2+1 * 1 / 4$

$$
=1 / 2
$$

proportion of alleles shared IBD
$\mathrm{S}_{\mathrm{Ph}_{\mathrm{QTL}}^{\mathrm{D}}}=(2 \mathrm{pqd})^{2}$
\(\left.$$
\begin{array}{ll}\mathbf{0} & \begin{array}{l}\text { Unrelated } \\
\mathbf{0}\end{array}
$$

\mathbf{1} \& Parent - Offspring\end{array}\right]\)| MZ twins |
| :--- |
| $\mathbf{0}$ |

$0^{* 1 / 4}+0^{*} 1 / 2+1^{* 1 / 4}$
$=1 / 4$
probability of sharing
2 alleles IBD

Q : Why do twins have to be $\mathrm{IBD}=2$ to shared dominance variance? $(\operatorname{prob}(\operatorname{IBD}=2)=1)$?
A: Because similaries due to dominance effects are related to genotype not individual alleles. You have to have the same genotype to shared dominance variance.

Q: Why does the (average) proportion of alleles shared IBD reflect shared additive genetic variance?
A: Because similaries due to additive effect are related to individual alleles. Sharing an allele implies sharing additive genetic variance.

Q: If I know MZ twin are $\mathrm{IBD}=2$, do I know what actual alleles they have? NO: IBD is about sharing alleles, but if not says nothing about the actual identity of the alleles. However, if relatives are IBD 2, you so know that they have the same alleles (AA and AA, Aa and Aa, or aa and aa).

But all this was about 1 QTL! What if there are >1 or >100 ?

Linear regression model N QTLs ($\mathrm{N}>1$... $\mathrm{N}>1000$)

$$
\begin{aligned}
\text { pheno }_{\mathrm{i}} & =\mathbf{a}_{\mathbf{0}}+\mathbf{a}_{\mathbf{1}} * \mathrm{QTL}_{\mathrm{Ali}}+\mathbf{a}_{\mathbf{2}} * \mathrm{QTL}_{\mathrm{A} 2 \mathrm{i}}+\ldots+\mathbf{a}_{\mathbf{N}} * \mathrm{QTL}_{\mathrm{ANi}} \\
& +\mathbf{d}_{\mathbf{1}} * \mathrm{QTL}_{\mathrm{Dli}}+\mathbf{a}_{\mathbf{2}} * \mathrm{QTL}_{\mathrm{D} 2 \mathrm{i}}+\ldots+\mathbf{d}_{\mathbf{N}} * \mathrm{QTL}_{\mathrm{DNi}}+\mathrm{e}_{\mathrm{i}}
\end{aligned}
$$

\boldsymbol{s}^{2} Ph_QTL(A) $=2^{*} p_{1} q_{1}\left[a_{1}+\left(q_{1}-p_{1}\right) d_{1}\right]^{2}+$
$2{ }^{*} p_{1} q_{1}\left[a_{1}+\left(q_{1}-p_{1}\right) d_{1}\right]^{2}+\ldots+2^{*} p_{N} q_{N}\left[a_{N}+\left(q_{N}-p_{N}\right) d_{N}\right]^{2}$
$\boldsymbol{s}^{\mathbf{2}}{ }_{\text {Ph_QTL(A) }}=\mathrm{a}_{1}{ }^{2 *} \mathrm{~s}_{\mathrm{QTLA} 1}^{2}+\mathrm{a}_{2} 2 * \mathrm{~s}_{\mathrm{QTLA} 2}{ }^{2} \ldots+\mathrm{a}_{\mathrm{N}}{ }^{2 *} \mathrm{~s}^{2}{ }_{\mathrm{QTLAN}}$
$\boldsymbol{s}^{\mathbf{2}} \operatorname{Ph}_{\mathbf{Q T L}(\mathrm{D})}=\left(2 \mathrm{p}_{1} \mathrm{q}_{1} \mathrm{~d}_{1}\right)^{2}+\left(2 \mathrm{p}_{2} \mathrm{q}_{2} \mathrm{~d}_{2}\right)^{2}+\ldots+\left(2 \mathrm{p}_{\mathrm{N}} \mathrm{q}_{\mathrm{N}} \mathrm{d}_{\mathrm{N}}\right)^{2}$
$\boldsymbol{s}^{2}{ }_{P h}$ QTL(D) $=\mathrm{d}_{1}{ }^{2 *} \mathrm{~s}^{2}{ }_{\mathrm{QTLD} 1}+\mathrm{d}_{2}{ }^{2 *} \mathrm{~s}^{2}{ }_{\mathrm{QTLD} 2}+\ldots+\mathrm{d}_{\mathrm{N}}{ }^{2 *} \mathrm{~s}^{2}{ }_{\mathrm{QTLDN}}$

Covariance matrix (2x2) in DZ and MZ twins

	$M Z 1$	$\mathrm{MZ2}$
MZ1	$s^{2}{ }_{A}+s^{2}{ }_{D}+s^{2}{ }_{E}$	$s^{2}{ }_{A}+s^{2}{ }_{D}$
MZ2	$s^{2}{ }_{A}+s^{2}{ }_{D}$	$s^{2}{ }_{A}+s^{2}{ }_{D}+s^{2}{ }_{E}$

	DZ 1	DZ 2
DZ1	$s^{2} A^{+} \boldsymbol{s}^{2}{ }_{D}+\mathbf{s}^{2}{ }_{E}$	$1 / 2 s^{2} A^{+} \quad 1 / 4 s^{2}{ }_{D}$
DZ2	$1 / 2 s^{2} A^{+} 1 / 4 s^{2}{ }_{D}$	$s^{2} A^{+} s^{2}{ }_{D}+s^{2}{ }_{E}$

Point of departure (more or less) for later on

Slide acknowledgement: Manuel Ferreira, Pak Sham, Shaun Purcell, Sarah Medland, and Sophie van der Sluis

STATISTICAL GENETICS

Gene Mapping Through Linkage and Association

Numerical (toy) example.

Suppose a phenotype subject to the influence of one QTL and environmental influences.

You observe the phenotype and the QTL in 500 individuals

I observe the phenotype S in 250 MZ and 250 DZ twin pairs

$0(\mathrm{aa})$	1 (AA)	2 (AA)
$0.236\left(\mathrm{q}^{2}\right)$	$0.526(2 \mathrm{pq})$	$0.238 \quad\left(\mathrm{p}^{2}\right)$

$\mathbf{a}_{\mathbf{0}}+\mathbf{a}_{\mathbf{1}}{ }^{*} \mathrm{QTL}_{\mathrm{Ai}}+\mathrm{e}_{\mathrm{i}}$
$a_{0} \quad-0.561$
$a_{1} \quad 1.111$
Multiple R-squared: 0.386
$\mathbf{a}_{\mathbf{0}}+\mathbf{a}_{\mathbf{1}} * \mathrm{QTL}_{\mathrm{Ai}}+\mathbf{d}_{\mathbf{1}} * \mathrm{QTL}_{\mathrm{Di}}+\mathrm{e}_{\mathrm{i}}$
$\begin{array}{cc}a_{0} & -1.10449 \\ a_{1} & 1.114 \\ d_{1} & 1.028\end{array}$
Multiple R-squared: 0.560
$0.386 * 1.520=0.586 \Longrightarrow \mathrm{~s}_{\mathrm{Ph}_{-\mathrm{QTL}}^{\mathrm{A}}}=2 \mathrm{pq}[\mathrm{a}+(\mathrm{q}-\mathrm{p}) \mathrm{d}]^{2}$
$(0.560-0.386) * 1.520$
$=0.174 * 1.520=0.264 \Longleftrightarrow \mathrm{~s}_{\mathrm{Ph}_{-\mathrm{QTL}}^{D}}=(2 \mathrm{pqd})^{2}$

$$
\begin{aligned}
& \text { cov (PhMZ) = . } 525 \\
& \text { [,1] [,2] } \\
& \text { [1,] } 1.4660 .736 \\
& {[2,] 0.7361 .343} \\
& \text { cov(PhDZ) = . } 192 \\
& \text { [,1] [,2] } \\
& \text { [1,] 1.559 } 0.311 \\
& \text { [2,] } 0.311 \text { 1.682 } \\
& 0.736=\mathrm{s}^{2}{ }_{\mathrm{Ph} \text { QTL }}+\mathrm{s}_{\mathrm{Ph} / \mathrm{QTL}}^{\mathrm{D}} \\
& 0.311=1 / 2 \mathrm{~S}^{2} \mathrm{Ph}_{\text {_QTLA }}+1 / 4 \mathrm{~S}^{2} \mathrm{Ph}_{\text {_QTLD }}
\end{aligned}
$$

regression model vs biometric model
regression parameter a (henceforth b_{1})
average effect of allele substitution

predicted values
$\mathrm{b}_{0}+\mathrm{b}_{1}{ }^{*} 0$ (aa)
$\mathrm{b}_{0}+\mathrm{b}_{1} * 1$ (Aa or aA$)$
$\mathrm{b}_{0}+\mathrm{b}_{1} * 2$ (AA)
difference in regression model $\mathrm{b}_{\underline{0}}+\mathrm{b}_{1} * 1-\left(\mathrm{b}_{0}+\mathrm{b}_{1} * 0\right)=$
$\mathrm{b}_{0}+\mathrm{b}_{1} * 2-\left(\mathrm{b}_{0}+\mathrm{b}_{1} * 1\right)=\mathrm{b}_{1}$
b_{1} is the average effect of substituting A for a (or vice versa)

The parameter b_{1} in the regression model corresponds to a specific parameter in the biometric model, called α

Now: derive α from the biometric model.
α is the average effect (on the phenotype) of substituting allele A for allele a - how to derive this?

Population of all individuals (HWE)

	genotype AA; freq $=\left(p^{*} p\right) ;$ effect $=a$ genotype $A a ;$ freq $=\left(p^{*} q\right) ;$ effect $=d$ genotype $a A ;$ freq $=\left(q^{*} p\right) ;$ effect $=d$
	genotype aa; freq $=\left(q^{*} q\right) ;$ effect $=-a$

Subpopulation of individual with first allele A

Subpopulation of individual with first allele \mathbf{A}_{2}

average effect of allele substitution $\alpha=a+d(q-p)$

conditional mean $\alpha_{1}=$ mean $(1 s t=A)=(p * a+q * d)$
conditional mean $(1 \mathrm{st}=\mathrm{a}) \alpha_{2}=\operatorname{mean}(1 \mathrm{st}=\mathrm{a})=\left(\mathrm{p}^{*} \mathrm{~d}+\mathrm{q}^{*}-\mathrm{a}\right)$
difference $\alpha=$ average effect of allele substitution
$\alpha=\alpha_{1}-\alpha_{2}=\left(p^{*} a+q^{*} d\right)-\left(p^{*} d+q^{*}-a\right)=$
pa $+q d-p d+q a=$
$\mathrm{pa}+\mathrm{qa}-\mathrm{pd}+\mathrm{qd}=$
$(\mathrm{p}+\mathrm{q}) \mathrm{a}+\mathrm{d}(\mathrm{q}-\mathrm{p})=\mathrm{a}+\mathrm{d}(\mathrm{q}-\mathrm{p})$
b_{1} is the average effect of substituting A for a (or vice versa)
$\mathrm{b}_{1}=\alpha=(\mathrm{a}+\mathrm{d}(\mathrm{q}-\mathrm{p}))$
parameter α derived from the biometric model

α defined in the regression model $\left(b_{1}\right)$ and in the biometric model (α)

