Sex-limitation and moderation models *Practical*

Conor Dolan & Eveline de Zeeuw

Thanks to Sarah Medland, Robert Kirkpatrick, Michael Hunter and many others

COPY FILES FROM:

/home/eveline/2020/Heterogeneity

G x Sex interaction

Example

- Measurement
 - BMI at age 12
 - Based on mother-reported height and weight
- Sample
 - Netherlands Twin Register
 - 971 MZM, 878 DZM, 1015 MZF, 835 DZF and 1715
 DOS pairs
- Research question
 - Are there qualitative and/or quantitative sex differences in BMI?

Data

Load Data BMIdata <- read.table(file='dataBMI.dat',header=TRUE, na=-999) head(BMIdata) dim(BMIdata) # Select Variables for Analysis vars <- 'BMI' # list of variables names nv <- 1 # number of variables ntv <- nv*2 # number of total variables selvars <- paste(vars,c(rep('_tw1',nv),rep('_tw2',nv)),sep="")</pre> # Select Data for Analysis mzmData <- subset(BMIdata, zyg==1, selVars)</pre> dzmData <- subset(BMIdata, zyg==2, selvars)</pre> mzfData <- subset(BMIdata, zyg==3, selVars)</pre> dzfData <- subset(BMIdata, zyg==4, selVars)</pre> dzmfData <- subset(BMIdata, zyg==5, selVars)</pre> dzfmData <- subset(BMIdata, zyg==6, selVars)</pre>

Twin Correlations

Means

Create Algebra for expected Mean Matrices

meanGm	<-	<pre>mxMatrix(type="Full", nrow=1, ncol=nv, free=TRUE, values=svMem, labels="meanm", name="meanGm")</pre>
meanGf	<-	<pre>mxMatrix(type="Full", nrow=1, ncol=nv, free=TRUE, values=svMef, labels="meanf", name="meanGf")</pre>
expMeanMZm	<-	mxAlgebra(expression= cbind(meanGm, meanGm), name="expMeanMZm")
expMeanDZm	<-	mxAlgebra(expression= cbind(meanGm, meanGm), name="expMeanDZm")
expMeanMZf	<-	mxAlgebra(expression= cbind(meanGf, meanGf), name="expMeanMZf")
expMeanDZf	<-	mxAlgebra(expression= cbind(meanGf, meanGf), name="expMeanDZf")
expMeanDZmf	<-	mxAlgebra(expression= cbind(meanGm, meanGf), name="expMeanDZmf")
expMeanDZfm	<-	mxAlgebra(expression= cbind(meanGf, meanGm), name="expMeanDZfm")

$$r_A * s_{Am} s_{Af} + s_{Cm} s_{Cf}$$
 $s_{Af}^2 + s_{Cf}^2 + s_{Ef}^2$

(Co)variances

Create Matrices for Variance Components

Am	<- mxM	Matrix(type="Symm",	nrow=n∨,	ncol=nv,	free=TRUE,	values=svPam,	label="A11m",	name="Am")
Af	<- mxM	<pre>Matrix(type="Symm",</pre>	nrow=nv,	ncol=nv,	<pre>free=TRUE,</pre>	values=svPaf,	label="A11f",	name="Af")
Cm	<- mxM	<pre>Matrix(type="Symm",</pre>	nrow=nv,	ncol=nv,	free=TRUE,	values=svPcm,	label="C11m",	name="Cm")
cf	<- mxM	<pre>Matrix(type="Symm",</pre>	nrow=nv,	ncol=nv,	free=TRUE,	values=svPcf,	label="C11f",	name="Cf")
Em	<- mxM	<pre>Matrix(type="Symm",</pre>	nrow=nv,	ncol=nv,	free=TRUE,	values=svPem,	label="E11m",	name="Em")
Ef	<- mxM	Matrix(type="Symm",	nrow=nv,	ncol=nv,	free=TRUE,	values=svPef,	label="E11f",	name="Ef")

Create Matrix for Genetic Correlation between DOS twin pairs
RAos <- mxMatrix(type="Symm", nrow=nv, ncol=nv, free=TRUE, values=.4, label="raos", name="RAos")</pre>

Create Matrices for Total Variances
varPm <- mxAlgebra(expression= Am+Cm+Em, name="Vm")</pre>

```
varPf <- mxAlgebra(expression= Af+Cf+Ef, name="Vf")
```

```
Varri (= linxargebra(expression= Arterter, name= vr)
```

```
# The following lines calculate the absolute covariation between Males and Females
       <- mxAlgebra((sgrt((Af))%*%t(sgrt((Am)))), name="Aos")
Aos
       <- mxAlgebra((sqrt((Cf))%*%t(sqrt((Cm)))), name="Cos")
Cos
# Create Algebra for expected Variance/Covariance Matrices in MZ, DZ and DOS twins
expCovMZm <- mxAlgebra( expression= rbind(cbind(Am+Cm+Em, Am+Cm),</pre>
                                            cbind(Am+Cm, Am+Cm+Em)), name="expCovMZm")
expCovDZm <- mxAlgebra( expression= rbind(cbind(Am+Cm+Em, 0.5%x%Am+Cm),</pre>
                                            cbind(0.5%x%Am+Cm, Am+Cm+Em)), name="expCovDZm")
expCovMZf <- mxAlgebra( expression= rbind(cbind(Af+Cf+Ef, Af+Cf),</pre>
                                            cbind(Af+Cf, Af+Cf+Ef)), name="expCovMZf")
expCovDZf <- mxAlgebra( expression= rbind(cbind(Af+Cf+Ef, 0.5%x%Af+Cf),</pre>
                                            cbind(0.5%x%Af+Cf, Af+Cf+Ef)), name="expCovDZf")
expCovDZmf <- mxAlgebra( expression= rbind(cbind(Am+Cm+Em, RAos%x%Aos+Cos),</pre>
                                            cbind(RAos%x%Aos+Cos, Af+Cf+Ef)), name="expCovDZmf")
```

Model

Create Data Objects for Multiple Groups

- dataMZm <- mxData(observed=mzmData, type="raw")
 dataDZm <- mxData(observed=dzmData, type="raw")
 dataMZf <- mxData(observed=mzfData, type="raw")
 dataDZf <- mxData(observed=dzfData, type="raw")
 dataDZmf <- mxData(observed=dzmfData, type="raw")</pre>
- dataDZfm <- mxData(observed=dzfmData, type="raw")</pre>

Create Expectation Objects for Multiple Groups

expMZm	<-	mxExpectationNormal(covariance="expCovMZm", means="expMeanMZm", dimnames=selVars)
expDZm	<-	mxExpectationNormal(covariance="expCovDZm", means="expMeanDZm", dimnames=selVars)
expMZf	<-	mxExpectationNormal(covariance="expCovMZf", means="expMeanMZf", dimnames=selVars)
expDZf	<-	<pre>mxExpectationNormal(covariance="expCovDZf", means="expMeanDZf", dimnames=selVars)</pre>
expDZmf	<-	<pre>mxExpectationNormal(covariance="expCovDZmf", means="expMeanDZmf", dimnames=selVars)</pre>
expDZfm	<-	<pre>mxExpectationNormal(covariance="expCovDZfm", means="expMeanDZfm", dimnames=selVars)</pre>
funML	<-	mxFitFunctionML()

Create Model Objects for Multiple Groups

pars <- list(meanGm, meanGf, Af, Cf, Ef, Am, Cm, Em, Aos, Cos, varPm, varPf, RAos)
modelMZm <- mxModel(name="MZm", pars, expMeanMZm, expCovMZm, dataMZm, expMZm, funML)
modelDZm <- mxModel(name="DZm", pars, expMeanDZm, expCovDZm, dataDZm, expDZm, funML)
modelDZf <- mxModel(name="MZf", pars, expMeanDZf, expCovDZf, dataDZf, expDZf, funML)
modelDZmf <- mxModel(name="DZmf", pars, expMeanDZf, expCovDZf, dataDZf, expDZf, funML)
modelDZmf <- mxModel(name="DZmf", pars, expMeanDZf, expCovDZf, dataDZf, expDZf, funML)
modelDZmf <- mxModel(name="DZmf", pars, expMeanDZff, expCovDZff, dataDZff, expDZff, funML)
modelDZfm <- mxModel(name="DZfm", pars, expMeanDZfm, expCovDZff, dataDZff, expDZff, funML)
modelDZfm <- mxModel(name="DZfm", pars, expMeanDZfm, expCovDZff, dataDZffm, expDZmf, funML)
modelDZfm <- mxModel(name="DZfm", pars, expMeanDZfm, expCovDZff, dataDZffm, expDZffm, funML)
modelDZfm <- mxModel(name="DZfm", pars, expMeanDZfm, expCovDZffm, dataDZffm, expDZffm, funML)
modelDZfm <- mxModel(name="DZfm", pars, expMeanDZfm, expCovDZffm, dataDZffm, expDZffm, funML)</pre>

Create Algebra for Variance Components

```
rowVC <- rep('VC',nv)
colVCm <- rep(c('Am','Cm','Em','SAm','SCm','SEm'),each=nv)
colVCf <- rep(c('Af','Cf','Ef','SAf','SCf','SEf'),each=nv)
estVCm <- mxAlgebra( expression=cbind(Am,Cm,Em,Am/Vm,Cm/Vm,Em/Vm), name="VCm", dimnames=list(rowVC,colVCm))
estVCf <- mxAlgebra( expression=cbind(Af,Cf,Ef,Af/Vf,Cf/Vf,Ef/Vf), name="VCf", dimnames=list(rowVC,colVCf))</pre>
```

Build Model
modelACErg <- mxModel("ACErg", pars, modelMZf, modelMZm, modelDZf, modelDZm, modelDZmf, modelDZfm, multi, estVCm, estVCf)</pre>

Run Non-Scalar General Sex-Limitation ACE Model
fitACErq <- mxRun(modelACErq)
(sumACErq <- summary(fitACErq))</pre>

Tests

- 1. Are there qualitative sex differences?
- 2. Are there quantitative sex differences?
- 3. Does the common environment play a role?

Your task

- 1. Open the script *G x Sex interaction*.*R*
- 2. Walk through the first part of the script - 1 = MZM, 2 = DZM, 3 = MZF, 4 = DZF, 5 = DZMF, 6 = DZFM
- 3. Run the saturated model
- 4. Have a look at the twin correlations
- 5. Run the non-scalar general sex-limitation model
- 6. Run the submodels ($\alpha = 0.05$) - For each model fill out the question marks
- 7. Report the standardized variance components of the best model
- 8. Make sure that you know what you are doing
- 9. Raise your hand if you have a question

Results

Model		EP	-2LL	df	AIC	Δ-2LL	∆df	Р
0. SAT		30	45706.65	10753	24560.65	-	-	-
1. ACErq	0	9	45829.65	10594	24641.65	123.00	21	<.001
2. ACEq	1	8	45831.79	10595	24641.79	2.13	1	.144
3. ACE	2	5	45866.29	10598	24670.29	34.50	3	<.001
4. AEboys	2	7	45842.87	10596	24650.87	11.08	1	<.001
5. AEgirls	2	7	45850.71	10596	24658.71	18.92	1	<.001

	mean	Α	С	E	SA	SC	SE
Males	17.5	5.1	0.2	0.7	.85	.04	.11
Females	17.7	4.9	1.5	0.7	.70	.21	.10

G x Age interaction

Example

- Measurement
 - BMI in adulthood (> 18 year)
 - Based on reported height and weight
- Sample
 - Only males
 - Younger and older cohort
 - Australian Twin Register
 - 1232 MZ and 750 DZ pairs
- Research question
 - Is heritability of BMI dependent on age?

Data

```
# Load Data
data(twinData)
head(twinData)
?twinData
# Select Variables for Analysis
     <- 'bmi'
                                        # list of variables names
vars
modVars <- 'age'
                                        # list of moderator variables names
        <- 1
                                        # number of variables
nv
        <- nv*2
                                        # number of total variables
ntv
selvars <- paste(vars,c(rep('1',nv),rep('2',nv)),sep="")</pre>
# Select Data for Analysis
mzData <- subset(twinData, zyg==1|zyg==6, c(selVars,modVars))</pre>
dzData <- subset(twinData, zyg==3|zyg==8, c(selVars,modVars))</pre>
# Select cases with no missings on the definition variable
mzData <- mzData[!is.na(mzData$age),]</pre>
dzData <- dzData[!is.na(dzData$age),]</pre>
# Standardize age
mzData$age <- scale(mzData$age)</pre>
dzData$age <- scale(dzData$age)</pre>
# Generate Descriptive Statistics
round(colMeans(mzData,na.rm=TRUE),3)
round(colMeans(dzData,na.rm=TRUE),3)
round(cov(mzData,use="complete"),3)
round(cov(dzData,use="complete"),3)
round(cor(mzData,use="complete"),3)
round(cor(dzData,use="complete"),3)
```


Means

Create Matrices for Covariates and linear Regression Coefficients
defAge <- mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, labels=c("data.age"), name="defAge")
pathBAge <- mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.3, label="b11", name="bAge")</pre>

Create Algebra for expected Mean Matrices

meanG <- mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, values=c(21,21), labels=c("mean","mean"), name="meanG")
expMean <- mxAlgebra(expression= meanG + cbind(defAge%*%bAge,defAge%*%bAge), name="expMean")</pre>

Covariances

```
# Matrices to store a, d, c, and e Path Coefficients (all fixed to 1)
```

pathA	<-	mxMatrix(type="Fu	11", nr	ow=n∨,	ncol=1,	free=FALSE,	values=1,	label="a11",	name="a")
pathD	<-	mxMatrix(type="Fu	11", nr	ow=nv,	ncol=1,	<pre>free=FALSE,</pre>	values=1,	label="d11",	name="d")
pathC	<-	mxMatrix(type="Fu	11", nr	ow=nv,	ncol=1,	free=FALSE,	values=1,	label="c11",	name="c")
pathE	<-	mxMatrix(type="Fu	11", nr	ow=nv,	ncol=1,	free=FALSE,	values=1,	label="e11",	name="e")

Matrices to compute the A, D, C, and E Variance Components

```
varA <- mxMatrix(type="Full", nrow=nv, ncol=1, free=TRUE, values=.6, label="VA11", name="VA")
varD <- mxMatrix(type="Full", nrow=nv, ncol=1, free=FALSE, values=0, label="VD11", name="VD")
varC <- mxMatrix(type="Full", nrow=nv, ncol=1, free=TRUE, values=.1, label="VC11", name="VC")
varE <- mxMatrix(type="Full", nrow=nv, ncol=1, free=TRUE, values=.5, label="VE11", name="VE")</pre>
```

```
# Matrices to store the moderating a, d, c, and e Path Coefficients
```

```
modPathA <- mxMatrix(type='Full', nrow=nv, ncol=1, free=TRUE, values=.1, label="aM11", name="aM")
modPathD <- mxMatrix(type='Full', nrow=nv, ncol=1, free=FALSE, values=0, label="dM11", name="dM")
modPathC <- mxMatrix(type='Full', nrow=nv, ncol=1, free=TRUE, values=.1, label="cM11", name="cM")
modPathE <- mxMatrix(type='Full', nrow=nv, ncol=1, free=TRUE, values=.1, label="eM11", name="eM")</pre>
```

```
# Matrices to compute the moderated A, D, C, and E variance components
modVarA <- mxAlgebra(expression=((a+ defAge%*%aM) %*% VA %*% t(a+ defAge%*%aM)), name="A")
modVarD <- mxAlgebra(expression=((d+ defAge%*%dM) %*% VD %*% t(d+ defAge%*%dM)), name="D")
modVarC <- mxAlgebra(expression=((c+ defAge%*%cM) %*% VC %*% t(c+ defAge%*%cM)), name="C")
modVarE <- mxAlgebra(expression=((e+ defAge%*%eM) %*% VE %*% t(e+ defAge%*%eM)), name="E")</pre>
```

```
# Algebra to compute the total variance per twin
varP <- mxAlgebra(expression=A+D+C+E, name="V")</pre>
```

Model

```
# Data objects for Multiple Groups
dataMZ <- mxData(observed=mzData, type="raw")</pre>
dataDZ <- mxData(observed=dzData, type="raw")</pre>
# Objective objects for Multiple Groups
objMZ <- mxExpectationNormal(covariance="expCovMZ", means="expMean", dimnames=selVars)
objDZ <- mxExpectationNormal(covariance="expCovDZ", means="expMean", dimnames=selVars)
funML <- mxFitFunctionML()
# Combine Groups
     <- list(pathA, pathD, pathC, pathE, modPathA, modPathD, modPathC, modPathE,</p>
pars
                 defAge, pathBAge, modVarA, modVarD, modVarC, modVarE, varP, varA, varD, varC, varE)
modelMZ <- mxModel(pars, meanG, expMean, covMZ, dataMZ, objMZ, funML, name="MZ")</pre>
modelDZ <- mxModel(pars, meanG, expMean, covDZ, dataDZ, objDZ, funML, name="DZ")
minus211 <- mxAlgebra( expression=MZ.objective+ DZ.objective, name="m2LL" )
         <- mxFitFunctionAlgebra( "m2LL" )
obi
# Build Model
modACEModel <- mxModel( "modACE", pars, modelMZ, modelDZ, minus211, obj, dataMZ, dataDZ )</pre>
# Run Moderation ACE model
modACEFit <- mxRun(modACEModel)</pre>
(modACESumm <- summary(modACEFit))</pre>
round(modACEFit@output$estimate,4)
```

Tests

- 1. Does the mean of BMI depend on age?
- 2. Does the common environment play a role?
- 3. Does the influence of genes and the environment depend on age?

Your task

- 1. Open the script *G x Age interaction*.*R*
- 2. Walk through the first part of the script
 - 1 = MZm young, 3 = DZm young, 6 = MZm old, 8 = DZm old
- 3. Run the first part of the script
- 4. Run the submodels ($\alpha = 0.05$)
 - For each model fill out the question marks
- 5. Plot the (un)standardized variance components of the 'best' model
- 6. Make sure that you know what you are doing
- 7. Raise your hand if you have a question

Results

Model		EP	-2LL	df	AIC	Δ-2LL	∆df	Р
1. modACE		8	9321.68	3845	1631.68	-	-	-
2. modAE	1	6	9325.22	3847	1631.22	3.54	2	.171
3. AEnoModMean	2	5	9552.43	3848	1856.43	227.21	1	<.001
4. AEnoModAE	2	4	9395.07	3849	1697.07	69.84	2	<.001
5. AEnoModA	2	5	9328.26	3848	1632.26	3.04	1	.081
6. AEnoModE	5	4	9395.07	3849	1697.07	66.81	1	<.001

Results

Unstandardized variance components

Standardized variance components

Questions?